How to Misuse SMTP over TLS: A Study of the
(In)Security of Email Server Communication

Lars Baumgirtner, Jonas Hochst, Matthias Leinweber, Bernd Freisleben

Department of Mathematics & Computer Science, University of Marburg
Hans-Meerwein-Strasse 6, D-35032 Marburg, Germany
Email: {lbaumgaertner, hoechst, leinweberm, freisleb} @informatik.uni-marburg.de

Abstract—Electronic mail is one of the oldest and widely used
services on the Internet. In this paper, an empirical study of
the security properties of email server communication within
the German IP address space range is presented. Instead of
investigating end-user security or end-to-end encryption, we focus
on the connections between SMTP servers relying on transport
layer security. We analyze the involved ciphers suites, the used
certificates and certificate authorities, and the behavior of email
providers when communicating with improperly secured email
servers. Conclusions drawn from this analysis lead to several
recommendations to mitigate the security issues currently present
in the email system as it is deployed in the Internet.

I. INTRODUCTION

Transport Layer Security (TLS) and its predecessor, Secure
Sockets Layer (SSL), are application-layer protocols to encrypt
data segments transferred on the underlying transport layer of
the Internet Protocol Suite. The communicating entities use
X.509 certificates and thus rely on asymmetric cryptography
to authenticate themselves and to exchange symmetric session
keys to encrypt data flowing between the communicating
entities. The use of X.509 certificates requires certificate
authorities (CA) and a public key infrastructure (PKI) to verify
the relation between a certificate and its owner, as well as to
generate, sign, and administer the validity of certificates.

Several versions of TLS and SSL protocols are used in
applications such as the WWW, electronic mail (email), and
Voice-over-IP. The current version of TLS, TLS 1.2, was
defined in RFC 5246 and released in August 2008, TLS 1.3 is
currently available as a draft version. The most recent version
of SSL, SSL 3.0, was released in 1996 (see RFC 6101).

The focus of this paper is the use of TLS in SMTP [1]
[2], the Simple Mail Transfer Protocol, responsible for the
delivery of email. In Figure 1, the process of sending and
receiving email is outlined. Alice connects to her provider via
SMTP on Mail Submission Port 587. Using StartTLS, she can
encrypt the connection, as long as the email provider has this
option enabled. After authenticating herself, she submits her
email for Bob to her provider’s email server. Her provider then
looks up the DNS MX record for Bob’s email address. In the
next step, Alice’s provider connects to Bob’s provider using
the Mail Transfer Port 25. Neither Alice nor Bob are able to
review the connection properties the providers are using for
the email transfer. Finally, Bob connects to his provider via
the provider’s web page or protocols such as POP3 or IMAP,

and retrieves the email from his provider. Even if the email
body may be encrypted by Alice using a client-side end-to-
end encryption protocol such as Pretty Good Privacy (PGP)
[3], meta-data such as sender, receiver and subject names may
be visible to others, if the server-to-server connection is not
encrypted properly. To secure the server-to-server connection,
SMTP has been combined with TLS to encrypt email delivery
and exchange between the participating entities [4]. Usually,
the end user has no influence on this part except for his/her
own mail submission to his/her provider’s email server.

Recent revelations by Edward Snowden show that various
government agencies actively and passively gather as much
information from communication in the Internet as they can.
Furthermore, since many corporate processes are coordinated
using email within a company or with its costumers, the
security of email is important for avoiding corporate espi-
onage. Although consumers often communicate via Facebook,
Whatsapp or Google Talk, email is typically used for banking,
tax and online shopping related information that may be quite
valuable for criminals, governments or other entities.

In this paper, we present the results of a study of the security
properties of SMTP over TLS conducted within the German
IP address space (about 100 million IP addresses). We take a
look at the involved cipher suites, the used certificates, CAs,
and the general availability of TLS within the detected SMTP
servers. Since most private email correspondence is managed
by a few big email providers, we also analyze the behavior
of their Mail Transfer Agents (MTAs) when communicating

@ user-opaque
@ user-influenceable

Mail Transfer
SMTP Port 25

Mail Retrieval
IMAP, HTTP, ...

Mail Submission
SMTP Port 587

| e sends maitosop [
(= [,

alice@one.de bob@two.org

Fig. 1. Email transfer and TLS usage.

with improperly secured email servers. The results of our
investigation lead to recommendations and best practices to
solve some of the identified security issues.

This paper is organized as follows. Section II discusses
related work. Section III presents the results of our empirical
study. Advice on how to increase security of SMTP servers is
given in Section IV. Finally, Section V concludes the paper
and outlines areas for future work.

II. RELATED WORK

The security properties of the TLS/SSL landscape have been
investigated in several works. The used certificates, the lengths
of the private keys and the supported cryptographic functions
bear significant security risks, as indicated by attacks such as
POODLE!, BEAST? and LUCKY THIRTEEN [5].

Lee et al. [6] have investigated cryptographic cipher suites,
key lengths and support for the insecure version SSL 2.0
in TLS/SSL servers. Attacks on the RC4 stream cipher [7]
and the MDS5 hash function [8] have been presented in other
publications. In their study on the certificate ecosystem used
in the WWW, Eckersley and Burns [9] have shown that
only around 40% of the investigated web servers had a valid
certificate chain. In 2011, Holz et al. [10] have presented their
analysis of the SSL landscape and the use of X.509 PKIs based
on active and passive gathering of certificates, indicating that
only 18% of the provided certificates were accepted without
warning when validating them with the Mozilla Root Store.
Ristic and Small [11] have presented an overview of SSL usage
in the WWW. In 2013, a similar study has been published by
Durumeric et al. [12] to analyze signing CAs, key lengths and
cryptographic algorithms. Fahl et al. [13] have conducted a
mass audit of mobile Android applications to identify security
issues in the use of TLS/SSL.

Giesen et al. [14] have published an approach to increase
the security of recent mechanisms for TLS renegotiation. This
hardening prevents Man-in-the-Middle attacks in some in-
stances and minimizes the attack surface of applications using
TLS. Focusing on TLS certificate management, Szalachowski
et al. [15] have presented a solution based on the idea of
publicly verifiable logs as made popular by Laurie et al.
[16] with Certificate Transparency for PKIs. The reference
implementation for a HTTP environment aids in securing the
PKI landscape as a whole. Ryan’s work [17] also enhances
Certificate Transparency and integrates it with end-to-end
email encryption in an attempt to make it easier accessible
for users and avoid some of the cumbersome quirks of PGP.
This approach helps to improve certificate management, re-
moves several trust issues and includes end-to-end encryption
transport channel security. Even if certificate validation is
performed accordingly, it still leaves an attack surface. A
general overview of past attacks on SSL in the context of
the WWW and issues with the certificate trust model has been
shown by Clark and Oorshot [18]. However, the authors have
web browsers and HTTPS traffic in mind, and their solutions
are tied to this use case.

Thttps://poodlebleed.com/ssl-poodle.pdf
Zhttp://www.hit.bme.hu/ buttyan/courses/EIT-SEC/abib/04-TLS/BEAST.pdf

Huang et al. [19] have published a study to detect forged
SSL certificates in the wild. They have analyzed over 3 million
real-world SSL connections to Facebook. Even though the
used detection mechanisms are limited, about 0.2% of the
connections were detected using forged certificates. Validating
certificates is an error-prone task, and various SSL libraries
have different default behaviors. Automated tests have been
performed by Brubaker et al. [20] to reveal major flaws in
common libraries and how they are used in software like web
browsers, giving false or at least misleading feedback to the
user. Slow deployment rates of security fixes for SSL related
code has been identified as a key problem by Bates et al. [21].
The proposed approch hooks SSL verification code to non-
browser applications to give them increased security without
tampering with the actual source code. These extra validations
impose a 20 ms overhead and work out-of-the-box with 94%
of Ubuntu’s most popular packages.

None of the cited works is concerned with the use of
TLS/SSL in SMTP server communications. However, email
is still an integral part of today’s business communications.
Recently, Facebook® has published some interesting observa-
tions regarding their email system. For example, STARTTLS is
adopted by 76% of the unique MX hostnames that Facebook is
in contact with. Moreover, 58% of the notification emails sent
are successfully encrypted. The study concludes that general
support for encryption is available, but proper certificates and
certificate validation are missing.

III. AN EMPIRICIAL STUDY OF SMTP OVER TLS

Our study of the email TLS landscape is based on the Ger-
man IPv4 address space. In particular, we scanned 116,824,576
IP addresses to investigate the TLS properties of German
SMTP servers. Using nmap*, we first checked whether the
relevant ports were open and then analyzed TLS versions,
cipher suites, certificates, CAs, and email provider strategies.

SMTP uses port 25 as its main port. Port 465 has been
suggested for SMTP over TLS, called SMTPS (Simple Mail
Transfer Protocol Secure) [4], but was later revoked; neverthe-
less some email providers still use this port. Port 587 is used
to transfer email from the user to the provider’s server.

Nmap also performs a reverse Domain Name System (DNS)
lookup to find the domain names belonging to the referenced IP
addresses. It is common to check the reverse DNS name when
an email is sent to a server, thus the domain names should be
set. These domain names are used later to check the validity
of TLS certificates and to make sure that the IP in question is
under the authority of the domain owner; emails from servers
without valid reverse lookups should not be accepted.

A. TLS Usage

From the scanned hosts reached at the 116,824,576 IP
addresses, 656,295 hosts offer SMTP services on at least one
of the following ports: 25, 465 or 587. Figure 2 shows that

3https://www.facebook.com/notes/protect-the-graph/the-current-state-of-
smtp-starttls-deployment/1453015901605223
4Network Mapper - https://nmap.org

B TLS handshake successful

TLS handshake failed W total

total

port 25 188,765
port 465 Zetsisrd 27,870
port 587 PANEEEEE 44,478

0 175,000 350,000 525,000 700,000

Fig. 2. SMTP and TLS usage among the scanned hosts.

only 68.96% (419,373) of the 608,138 hosts that offer SMTP
services on port 25 perform a successful TLS handshake on
this port. On the mail submission port 587, 82.63% (211,556
of 256,034) complete a TLS handshake successfully. While on
port 465, which has TLS enabled by default, a TLS handshake
nevertheless fails in 10.45% of the attempts. It is likely that
server administrators use this port for different services not
related to SMTPS. The results presented below are either based
on the 656,295 hosts that offer SMTP services on at least one
of the three ports or on the 869,756 services (see Fig. 3) with
a successful TLS handshake on at least one of three ports.

B. TLS/SSL Versions

TLS and SSL have a long history of organic growth, leading
to a non-uniform use of their different versions. SSL 2.0 had
certain design flaws, ultimately leading to an insecure protocol.
SSL 3.0 was considered secure, until the POODLE attack went
public in October 2014. Our SMTP server scans took place
in May 2014, five months before the POODLE attack was
released to the public. On these grounds, the collected data
allows us to observe the potential impact of the attack.

In Figure 3, the TLS/SSL versions used in the scanned
SMTP servers are visualized. While the insecure version SSL
2.0 is not used at all, SSL 3.0 is enabled in 94.83% of the
servers. The most popular TLS version 1.0 is supported by
99.34% of the servers, whereas the versions TLS 1.1 and TLS
1.2 are supported by less than half of the servers. BEAST’s
target was TLS 1.0, so there is no reason to hold back the
newer versions. POODLE is also a good argument to use TLS
1.2 instead of SSL 3.0 — SSL 3.0 is only used for the sake (or
curse) of compatibility.

C. TLS Cipher Suites

In a TLS handshake, the client offers a list of supported
cipher suites to the server, which then picks one to secure the
connection. To obtain all cipher suites supported by a server,
the client has to iterate over the cipher suites and then tries
to establish a connection using the selected cipher suite. This
functionality is provided by the nmaps ssl-enum-cipher script>.
Performing this test requires many connections to the tested
servers and therefore creates quite some traffic in the network.

Shttps://nmap.org/nsedoc/scripts/ssl-enum-ciphers.html

total

SSL3.0
TLS 1.0
TLS 1.1
TLS 1.2
0 225,000 450,000 675,000 900,000
Fig. 3. SSL and TLS versions used in the scanned services.

If an attacker is able to influence the TLS handshake by
selecting a cipher suite that (s)he is able to break, this attack
is called a cipher suite downgrade attack. Even if backward
compatibility is a reason to offer potentially insecure cipher
suites, they open up a huge attack vector. The cipher suite
classification of the nmap ssl-enum-ciphers script provides
three categories of cipher suites, as described below.

Broken Cipher Suites: Broken cipher suites do not support
protection against passive or active eavesdropping. Therefore,
all anonymous cipher suites with an unauthorized Diffie-
Hellman key exchange belong to this category. It is easy for
an attacker to intercept and modify the messages between
client and server and decipher the data. Furthermore, cipher
suites using no encryption at all or just authentification are
also considered as broken.

Weak Cipher Suites: The category of weak cipher suites
mainly consists of historical cipher suites. Examples are the
export ciphers that emerged as a consequence of the US export
rules on cryptographic systems before 1999, and cipher suites
based on the legacy Data Encryption Standard (DES). Weak
cipher suites can be deciphered in a brute force manner by
powerful hardware in less than a day®.

Strong Cipher Suites: All remaining cipher suites are strong
cipher suites. Although there are known weaknesses in RC4
[22] and MDS5 [23], they are nevertheless used with some
workarounds in many cases. With RFC 7465, attempts are
made to remove RC4 completely [24].

Another noteworthy property of cipher suites is Perfect
Forward Secrecy [25]. It ensures that a session key derived
from a set of long-term keys can not be compromised if one
of the long-term keys is compromised in the future. Thus, an
attacker cannot decipher past messages even with the server’s
private long-term key.

Figure 4 illustrates the used cipher suites. Almost every
server offers strong cipher suites, but only 27.66% of the
servers are hardened in the sense that they offer strong cipher
suites only. It is remarkable that 85.28% of the servers offer
Perfect Forward Secrecy (PFS). A widely discussed issue is
the use of Elliptic Curve Cryptography (ECC), since many of
the ECC algorithms are suspected to have been constructed
under the influence of US intelligence services’. In our data
set, 22,32% of the servers support ECC ciphers (ecdh).

Shttp://www.sciengines.com/company/news-a-events/74-des-in-1-day.html
"http://archive.wired.com/politics/security/commentary/securitymatters/
2007/11/securitymatters_1115

total

with strong ciphers
with weak ciphers
with broken ciphers

only strong ciphers

with pfs
with ecdh
0 225.000 450.000 675.000 900.000
Fig. 4. Use of cipher suites.
Name Usage Share
DH_anon_AES_256_CBC_SHA 426,848 | 49.08%
DH_anon_3DES_EDE_CBC_SHA 426,835 | 49.08%
DH_anon_AES_128_CBC_SHA 426,779 | 49.07%
DH_anon_RC4_128_MD5 424,526 | 48.81%
RSA_DES_CBC_SHA 416,324 | 47.87%
RSA_EXPORT_RC4_40_MD5 410,627 | 47.21%
RSA_EXPORT_RC2_CBC_40_MD5 409,893 | 47.13%
RSA_EXPORT_DES40_CBC_SHA 407,480 | 46.85%
DHE_RSA_DES_CBC_SHA 382,903 | 44.02%
DHE_RSA_EXPORT_DES40_CBC_SHA | 368,247 | 42.34%

Fig. 5. Shares of weak and broken cipher suites.

In Figure 5, we present the top ten most used weak and
broken cipher suites. Many servers accept weak cipher suites
without the need to. Looking at the FREAK attack® published
in March 2015, more than half of the server’ connections can
be downgraded to weak or broken cipher suites.

D. TLS Certificates

We used the nmap ssl-cert script’ to retrieve the certificates
used by the servers. This script tries to perform a TLS
handshake with the given server/port and saves the Privacy-
enhanced Electronic Mail (PEM) certificate in the scan report.
In addition, it parses the fields of the certificate and stores
them in the report. The script also supports the STARTTLS
command for an active SMTP session.

The validity of a certificate is based on three major prop-
erties: issuance by a valid CA, time period of validity and
a matching Common Name (CN). In addition, we investigate
other issues of certificates, such as multiple uses of the key
pair or short private keys. Lastly, all retrieved certificates are
categorized using these properties.

1) Multiple Use of Key Pairs: X.500 certificates are uniquely
identified by their fingerprint using a MDS5 or the Secure Hash
Algorithm I (SHA1) sum; current practice is to use a SHA256
hash nowadays. Although 656,295 hosts offer SMTP services
in our data set, we only found 218,239 unique certificates. The
reason is the presence of shared hosters using a single wildcard

8https://freakattack.com
9https://nmap.org/nsedoc/scripts/ssl-cert.html

Type Count Share
not yet valid 161 0.07 %
expired 56,078 | 25.68 %
valid 161,993 | 74.20 %
never valid 99 0.05 %

Fig. 6. Time period of validity of the retrieved certificates.

Type ‘ Count Share | is_ca | is_server

server 79,832 | 36.58 % 0 1

ca 705 0.32 % 1 0

self-signed | 137,694 | 63.09 % 1 1

invalid 1 0.01 % 0 0
Fig. 7. Self-signed, server and CA certificates.

certificate for their hosts. This may not be a problem unless
any user is able to retrieve the corresponding private key.

Another group of repeatedly used certificates are the cer-
tificates delivered with the servers’ operating systems. Those
are recognizable by their subject’s CN, which often contains
the operating system name, phrases like localhost or a domain
ending in *.local. These configurations have to be considered
insecure, because multiple users have access to the private key
and therefore can decipher the TLS connections of other users.

We also found private keys that are used multiple times in
different certificates. At a first glance, this does not involve a
decrease of security. However, if the private key is lost, one has
to revoke not only one, but all certificates issued for this private
key. There is no acceptable reason for a system administrator
to use the same key for multiple certificates.

2) Time Period of Validity: To investigate the time of valid-
ity, we categorized the certificates into four groups, as outlined
in Figure 6. A certificate has two timestamps, defining the
time period during which the certificate is valid. 25.80% of
the certificates were not valid. We suspect these are hosts that
are not maintained anymore. Although expired certificates may
not be a security problem, they are an indicator that email is
treated with a low priority. Expired certificates prevent secure
communication with these servers if strict certificate validation
is turned on at the email sender’s side. There are 99 certificates
which were never valid, since the nor-after date of use was
lower than or equal to the not-before date of use.

3) Certificate Issuance: We analyzed who issued and signed
the obtained certificates. Figure 7 shows that 63.09% of the
certificates were self-signed certificates, i.e., certificates that
are signed by the same entity whose identity they certify, by
signing with their own private key. We did not look at them
in more detail, since the signature is not meaningful in these
certificates, and they clearly represent a security issue.

To build the chain of trust for the non-self-signed cer-
tificates, we used the Ubuntu 14.04 trusted root certificates
as a trust anchor. We were able to reach 24,641 certificates
by building a trust chain with the root and the retrieved
intermediate certificates. This set of certificates corresponds to
11.29% of the 218,239 found certificates and can be considered
trustworthy according to the signature.

o °
o
N
N
o
o
o
N
£
[=2)
5 8-
% —
X
[}
j=2]
o
[
>
© [=]
o |
©o
—
o
o]
<
Lal
T T T T
2008 2010 2012 2014
date of issue (2007-01 to 2014-05)
Fig. 8. Change of the average key lengths over time.

untrusted
5.47%

wrong CN
untrusted, expired 5.99%

29.03% expired
0.19%

valid (wildcard)
9.34%

valid

untrusted, wrong CN 1.89%

0.84%
wrong CN, expired
0.39%

nothing correct

12.51% no SSLITLS

23.87%

no rDNS
10.48%

Fig. 9. Categorization of services using the main security properties.

4) Key Lengths: Figure 8 shows the growth of key lengths
in relation to the dates of issuance of their certificates. It is
apparent that the key lengths are growing steadily, using an
average of more than 2,230 bits at the time of our scans. The
average lowest key length stems from 2007 with 1366 bits. It
is remarkable that a 1023-bit RSA number has been factored in
May 2007'°, and that key lengths will become an issue when
more powerful hardware becomes available.

5) Categorization: To summarize our findings regarding
certificates, we use the three main validity properties to form
eight disjoint categories of certificates. Since not every server
has reverse DNS entries, we were not able to get the names
of 10.48% of the servers. 23.87% did not offer TLS. Figure 9
indicates that only 11.23% of all scanned email services had
valid certificates in all concerns. Considering the certificate
subject’s CN, we can split up the category of valid certificates
further. A certificate is not only accepted as valid, if the CN

1Ohttp://phys.org/news98962171.html

o
]
P
2
g
£ S
8
— o
g 27
g
2 o |
5 °
2]
F*
-
T T T T
0 50 100 150
trusted root certificates
Fig. 10. Root certificates in relation to their signed server certificates.
Count | Share Common Name
1 7,085 | 28.58 % | StartCom Certification Authority
2 4,309 | 17.38 % | AddTrust External CA Root
3 4,278 | 17.26 % | GeoTrust Global CA
4 2,632 | 10.62 % | thawte Primary Root CA
5 2,079 8.39 % | GlobalSign Root CA
6 1,243 5.01 % | DFN-Verein PCA Global - GO1
7 640 2.58 % | UTN-USERFirst-Hardware
8 515 2.08 % | COMODO Certification Authority
9 285 1.15 % | Go Daddy Root Certificate Authority
10 279 1.13 % | Deutsche Telekom Root CA 2
Fig. 11. Top 10: Most popular CAs, measured by their issued certificates.

matches the domain name, but if it has a wildcard pattern
in the form of *.domain.tld matching the domain name (e.g.,
mail.domain.tld). Using this categorization, only 1.89% of the
email services use a certificate only valid for this specific host.

E. Certificate Authorities

A widely criticized problem of the TLS trust model are
CAs. Over the last years, more and more CAs are trusted by
software vendors. Figure 10 outlines the obtained trusted root
CAs in relation to their signed server certificates of our test set.
The ten most popular CAs shown in Figure 11 sign 94.16%
of the server certificates. To have 99% coverage, one needs to
trust the 23 most popular CAs. The idea that ”if a CA can
sign for one domain, it can sign for any domain” leads to a
loss of security. Examples such as the DigiNotar hack!! or the
TurkTrust incident'? show that this is a problem of practical
relevance. Since the default configuration remains unchanged
in many settings, the operating system and application vendors
should act more responsibly in this respect.

FE. CA Topologies

To check the validity of a certificate, a user builds a so called
chain of trust. In addition to its own certificate, the server

https://www.eff.org/deeplinks/2011/08/iranian-man-middle-attack-
against-google

2http://web.archive.org/web/20130926134541/http://turktrust.com.tr/en/kamuoyu-

aciklamasi-en.2.html

‘COMODO Extended .Dn g Server CA
' Essef L CA
cmacmc@mnm

UTN { DATACorg SGC

Gandi s ssLcA
Pos cA

UTN-UB d rde
epspace @ Server CA
Europea@er\/ev CA
'dTru CA Root
COM BLCA

ay anA thoriy
- H\gh sEcu.)C uneny
COMODO RS ation A

COMODO RSA orgamzauuanun Secure Server CA
COMODO RSA Dcmalmn Secure Server CA

Fig. 12. CA Topology of the Comodo CA.

can deliver additional intermediate certificates. The client then
builds a chain of trust as follows: The issuer of a non-
root certificate is identified by the issuer’s properties of this
certificate, and the signature is obtained by using the issuer’s
private key. To get a valid chain of trust, the last certificate
needs to be in the list of trusted root certificates of the client.
If no path from the server certificate to any of the trusted
root certificates can be found, the certificate is considered as
untrusted. This is often the case when a private CA for in-
house deployment or self-signed certificates are used.

Using OpenSSL'3, we built a key-value database represent-
ing the graph of signatures and the hierarchy of CAs. Two CAs
showed peculiarities. First, StartSSL uses two almost identical
root certificates, only differing in the date of issuance and
the serial number. We used the trusted root certificate set as
shipped by default with Ubuntu 14.04. Second, as shown in
Figure 12, the Comodo CA uses more than just the CA and
intermediate certificates. Comodo cross-certifies its root keys
using the other root certificates. This results in multiple signed
key pairs and therefore in multiple certificates for every key.
If one of those root certificates is revoked, there are signing
chains starting at other root certificates available. Comodo
enables a kind of fail-safe strategy for their customers. Even
if one root certificate is removed from the set of trusted
certificates, the customers’ servers have other intermediate
certificates to build a trusted chain. Although cross-certification
is legitimate according to the X.509 standard, it implies a less
secure CA, if the private key is lost.

G. Email Provider Strategies

Finally, we investigated the connections of the providers’
email servers to other email servers. For this purpose, we reg-
istered email accounts at various free email providers popular
in Germany and sent emails to our prepared test email server.
This allowed us to investigate the connection details of the

Bhttps://www.openssl.org

providers’ outgoing connections. For this part of our study,
we used Google Mail'*, web.de!’, GMX'6, Freenet!”, Yahoo
Mail'8, Microsoft Outlook.com/Hotmail/Live!?, Apple iCloud
Mail®® and T-Online?'.

The idea of this investigation was to find situations that
a potential attacker with access to the connection between
two email servers can exploit to read email. The attacker
could just passively eavesdrop on the connection or actively
perform a Man-in-the-Middle attack. To simulate an attacker
that attempts to change cryptographic properties, we changed
the servers’ TLS properties to test the behavior of the email
providers. In particular, we examined the following settings:

e Expired certificate (not security critical)
512-bit RSA key certificate

Certificate with wrong CN

Only anonymous ciphers (no certificate)
Only weak or broken ciphers

We found different security settings and thus more and less
difficult situations to attack the email providers. All providers
forward email to servers with invalid certificates and still
communicate plaintext if a server does not support TLS at
all. With one exception (Google), we were even able to trick
the email providers to send their data without any encryption.
The results of the experiments are summarized in Figure 13.

1) Invalid Certificates: The main security properties of a
certificate are a trusted issuer, the period of validity and the
domain name matching the common name. All email providers
ignored these features, completed the TLS handshake and
submitted the data. A Man-in-the-Middle could provide this
kind of certificate without any effort and thus see the data. We
used multiple certificates to check these properties. None of
the providers complained about the often changing certificates,
implying that certificate pinning is not used at all or at least
not automatically for new or uncommon servers.

2) Default Cipher Suites: All examined email providers use
strong cipher suites in their connections, with one exception.
Freenet offered, in addition to several strong cipher suites,
three cipher suites with an anonymous key exchange. The
anonymous key exchange methods do not use a certificate and
therefore do not provide any authentication of the server. An
attacker would love this situation, since his or her effort to
read the email data is minimized.

3) Short RSA Keys: To examine the use of short crypto-
graphic keys, we created a certificate with a 512-bit RSA
key. The email providers acted in different ways: Web.de,
GMX, Yahoo and iCloud accepted the certificate, completed
the TLS handshake and transmitted the email data. Google
Mail and Microsoft Outlook/Hotmail rejected the certificate
and continued with multiple unsuccessful retries. Freenet and

4https://mail.google.com
Shttps://www.web.de
16https://www.gmx.de
7https://email.freenet.de
8https://mail.yahoo.com
https://login.live.com
2Ohttps://www.icloud.com
21 https://email.t-online.de

Fig. 13.

Provider Untrusted Certificate 512-bit RSA Key Anonymous Ciphers Weak Ciphers No STARTTLS
Google Mail encrypted no delivery no delivery no delivery unencrypted
Web.de encrypted encrypted unencrypted unencrypted unencrypted
GMX encrypted encrypted unencrypted unencrypted unencrypted
Freenet encrypted unencrypted encrypted unencrypted unencrypted
Yahoo encrypted encrypted unencrypted unencrypted unencrypted
Outlook/Hotmail encrypted no delivery unencrypted unencrypted unencrypted
iCloud encrypted encrypted unencrypted unencrypted unencrypted
T-Online encrypted unencrypted unencrypted unencrypted unencrypted

Email provider strategies for connections to other email servers.

T-Online rejected the certificate and closed the connection.
Immediately afterwards, they opened another connection to
transfer the email without using any encryption.

4) Weak Cipher Suites: We also checked the behavior of the
email servers when our server only supported weak ciphers.
As mentioned above, the providers offer only strong ciphers
in their client hello message. Therefore, the TLS handshake
could not be completed. However, all providers except Google

Mail reconnect after this failed TLS handhake and transfer the

email without using encryption.

5) No STARTTLS: In the last test, we completely disabled
the STARTTLS command on port 25. After the SMTP session
is initiated, an email server offers a list of features it supports.
STARTTLS is a means to encrypt the session after it is
established. All tested email providers continued with the
non-encrypted transfer of an email when this feature was
disabled. Therefore, an attacker only needs to modify the
SMTP command list provided by the server. Modern routing
and firewall hardware, e.g., as provided by Cisco, has exactly
this mechanism built in to inspect mail traffic??.

6) Implications: Considering the results presented above, an
interesting situation happens: If an attacker is able to inject
a few TCP packets into the connection, the TLS handshake
is aborted, and the email provider reconnects and transfers
the email without any transport security. Google seems to use
a non-secured TLS policy in the sense that Google transfers
email using TLS only, but does not insist on correct certificates.
Over the last years, several methods to avoid downgrade
attacks in web browsers and other applications have been
developed. Initiatives such as the SSL Observatory?? and tools
such as HTTPS Everywhere?* try to protect users against
leakage of their private data. Email providers need to catch up
and deploy similar security standards in their infrastructures.

IV. ADVICE FOR EMAIL PROVIDERS

The SMTP TLS landscape has major flaws across most
email providers. In this section, we give some advice to
email providers for obtaining secure configurations for their

servers. Our advice is meant to harden a TLS server at the

cost of compatibility, which we think is one reason for weak

22https://www.cisco.com/web/about/security/intelligence/asa_esmtp_

starttls.html

Zhttps://www.eff.org/observatory
24https://www.eff.org/de/https-everywhere

configurations. In addition to the relevant TLS factors, we
suggest measures to prevent simple downgrade attacks.

We give the following recommendations to network admin-
istrators and email providers to harden their TLS configura-
tions:

1) Update the TLS stack frequently.

2) Use TLS 1.0 (or higher) instead of SSL 3.0 (or lower).
3) Support strong cipher suites only.

4) Perform smart TLS certificate checks.

e Time of validity
e CA issuance
o Key lengths
5) Accept/use TLS enabled email transfer only.

The first advice is that the TLS stack of the system needs
to be updated frequently to keep the system secure.

The second advice is that currently only TLS 1.0 and the
higher TLS versions can be considered secure, since SSL 3.0
is affected by the POODLE attack.

The third advice is to support strong cipher suites only.
Older cipher suites with MDS5 hashing or 3DES encryption
should not be used, since they are more likely to be broken in
the near future. As with security updates for software and the
TLS stack, email providers should pay close attention to the
effects of new attacks on the list of secure cipher suites and
remove insecure cipher suites accordingly®.

The fourth advice is to perform appropriate certificate
checks regarding period of validity, CA issuer and key lengths
and use a certificate pinning mechanism to detect bogus
certificates®®. A list of the trusted certificates for every server
must be maintained. When a TLS handshake is in progress,
it can be checked whether the certificate has changed without
revocation or whether it has expired.

The final advice is to either at least warn users and let
them decide to use a potentially insecure connection, as done
in web browsers, or decline non-encrypted email transfer,
rather than just transferring email without encryption. One
possibility to achieve this would be to set a special email
header in the Mail User Agent (MUA) indicating that an email
should only be delivered over encrypted links, with strictly
validated peers or just anybody and any connection. Email
should only be delivered over links with an equal or higher
security rating than the one provided in the header. Although

ZShttps://hynek.me/articles/hardening- your- web-servers-ssl-ciphers/
26https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning

there is no guarantee that the server respects the user’s wishes,
if the big email providers followed this proposal and enough
users set a flag for strict validation and encryption, smaller
providers would be forced to use valid certificates and strong
ciphers. Thus, unencrypted communication could possibly be
eliminated after some time. We also recommend to consider
Ristic’s TLS deployment best practices?’ for more details on
TLS configuration hardening.

Furthermore, email providers are mostly left alone when it
comes to tools for securing and testing their setups. Qualys
provides a service for web server administrators to check their
setup for common misconfigurations®®. This kind of service
would be of great benefit for email providers. Standardized
test infrastructures could also be utilized by central instances
like CERT, the German BSI or large websites with lots of email
traffic, such as Facebook, Youtube or Github, to automatically
generate emails to MTA owners in case of security concerns.
This, of course, means that every entity must support the
common mailbox names as suggested by RFC2142 [26].

V. CONCLUSION

In this paper, we have presented an empirical study of the
security properties of SMTP over TLS within the German IP
address space. We have shown that even though many email
servers support strong cipher suites, weak or broken cipher
suites are still present. Furthermore, only few certificates
provided by the email servers are valid (about 11%). The
behavior of email providers differs significantly with respect
to handling various TLS configurations. Based on our results,
we have given practical advice on securing SMTP setups to
avoid some of the identified issues. Unfortunately, an ultimate
solution offering perfect security is simply not possible with
the current PKI landscape. This topic is often discussed in the
context of HTTP(S), but with email the problems may be even
harder to fix, since decision making happens automatically
without user interaction.

There are several areas for future work. For example,
appropriate best practices are needed to ensure transport layer
security of email traffic. A simple plain-text fallback as used
by many providers significantly reduces the protection level of
SMTP communication. Furthermore, validation and verifica-
tion of peers and their certificates must be simplified. Finally,
staying up to date with broken, weak and strong cipher suites is
another challenging task, since there is no central entity giving
advice for regular updates.

REFERENCES
[1]1 1. Postel, “RFC 821: Simple Mail Transfer Protocol,” http://tools.ietf.
org/html/rfc821, August 1982.

[2] 1. Klensin, “RFC 5321: Simple Mail Transfer Protocol (SMTP),” http:
/Itools.ietf.org/html/rfc5321, October 2008.

[3]1 S. Garfinkel, PGP: Pretty Good Privacy. O’Reilly Media, 1995.

[4] P. Hoffman, “RFC 3207: SMTP Service Extension for Secure SMTP
over Transport Layer Security,” http://ietf.org/rfc/rfc3207.txt, 2002.

2Thttps://www.ssllabs.com/downloads/SSL_TLS_Deployment_Best_
Practices.pdf
28 https://www.ssllabs.com/

(31

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

N. J. Al Fardan and K. G. Paterson, “Lucky Thirteen: Breaking the
TLS and DTLS Record Protocols,” in IEEE Symposium on Security
and Privacy. 1EEE, 2013, pp. 526-540.

H. K. Lee, T. Malkin, and E. Nahum, “Cryptographic Strength of
SSL/TLS Servers: Current and Recent Practices,” in 7th ACM SIG-
COMM Conference on Internet Measurement. ACM, 2007, pp. 83-92.

A. Klein, “Attacks on the RC4 Stream Cipher,” Designs, Codes and
Cryptography, vol. 48, no. 3, pp. 269-286, 2008.

M. Stevens, A. Sotirov, J. Appelbaum, A. Lenstra, D. Molnar, D. A.
Osvik, and B. De Weger, “Short Chosen-prefix Collisions for MDS5 and
the Creation of a Rogue CA Certificate,” in Advances in Cryptology-
CRYPTO 2009. Springer, 2009, pp. 55-69.

P. Eckersley and J. Burns, “Is the SSLiverse a Safe Place?” in Chaos
Communication Congress, https://Ibl.eff.org/files/ccc2010.pdf, 2010.

R. Holz, L. Braun, N. Kammenhuber, and G. Carle, “The SSL Land-
scape: A Thorough Analysis of the X.509 PKI Using Active and Passive
Measurements,” in 2011 ACM SIGCOMM Conference on Internet
Measurement. ACM, November 2011, pp. 427-444.

I. Ristic and M. Small, “A Study of What Really Breaks SSL,” Hack
in the Box, vol. http://blog.ivanristic.com/Qualys_SSL_Labs-A_Study_
of_Really_Breaks_SSL-HITB_Amsterdam_2011.pdf, May 2011.

Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman, “Analysis
of the HTTPS Certificate Ecosystem,” in 2013 Conference on Internet
Measurement. ACM, October 2013, pp. 291-304.

S. Fahl, M. Harbach, T. Muders, M. Smith, L. Baumgirtner, and
B. Freisleben, “Why Eve and Mallory Love Android: An Analysis of
Android SSL (In)Security,” in 2012 ACM Conference on Computer and
Communications Security. ACM, 2012, pp. 50-61.

F. Giesen, F. Kohlar, and D. Stebila, “On the Security of TLS Renego-
tiation,” in ACM Conference on Computer & Communications Security.
ACM, 2013, pp. 387-398.

P. Szalachowski, S. Matsumoto, and A. Perrig, “PoliCert: Secure and
Flexible TLS Certificate Management,” in ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2014, pp. 406—417.

B. Laurie, A. Langley, and E. Kasper, “RFC 6962: Certificate Trans-
parency,” 2013.

M. D. Ryan, “Enhanced Certificate Transparency and End-to-end En-
crypted Mail,” Proceedings of NDSS 2014, The Internet Society, 2014.

J. Clark and P. C. van Oorschot, “SoK: SSL and HTTPS: Revisiting
Past Challenges and Evaluating Certificate Trust Model Enhancements,”
in IEEE Symposium on Security and Privacy. 1EEE, 2013.

L. S. Huang, A. Rice, E. Ellingsen, and C. Jackson, “Analyzing Forged
SSL Certificates in the Wild,” in IEEE Symposium on Security and
Privacy. 1EEE, 2014, pp. 83-97.

C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov, “Using
Frankencerts for Automated Adversarial Testing of Certificate Valida-
tion in SSL/TLS Implementations,” in IEEE Symposium on Security
and Privacy. 1EEE, 2014, pp. 114-129.

A. Bates, J. Pletcher, T. Nichols, B. Hollembaek, D. Tian, K. R.
Butler, and A. Alkhelaifi, “Securing SSL Certificate Verification through
Dynamic Linking,” in ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2014, pp. 394-405.

S. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses in the Key Schedul-
ing Algorithm of RC4,” in Selected Areas in Cryptography. Springer,
2001, pp. 1-24.

X. Wang and H. Yu, “How to Break MDS5 and Other Hash Functions,”
in Advances in Cryptology—-EUROCRYPT. Springer, 2005, pp. 19-35.
A. Popov, “Prohibiting rc4 cipher suites,” Computer Science, vol. 2355,
pp. 152-164, 2015.

W. Diffie, P. C. Van Oorschot, and M. J. Wiener, “Authentication
and Authenticated Key Exchanges,” Design, Codes and Cryptography,
vol. 2, no. 2, pp. 107-125, Jun. 1992.

D. Crocker, “RFC 2142: Mailbox Names for Common Services, Roles
and Functions,” http://www.ietf.org/rfc/rfc2142.txt, 1997.

