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Abstract—Serval is an open-source, delay-tolerant wireless ad-
hoc networking system designed to allow communications any-
where and anytime, despite the total loss of supporting telecom-
munications infrastructures provided by mobile phone operators.
In emergency situations, Serval can be used to establish a
disaster-response communications network spontaneously formed
by mobile phones and/or battery powered wireless routers. In
this paper, we present an in-depth experimental evaluation of
Serval for various network setups and usage patterns, including
simulated long term use. The focus of our evaluation is on
the delay-tolerant aspects of Serval, providing insights into the
scenarios where Serval can be deployed with satisfactory qual-
ity and performance characteristics. Furthermore, since mobile
phones have a limited battery capacity, we take a closer look
at the battery drain resulting from using Serval over different
communication links, such as WiFi and Bluetooth. Our purpose
in providing these analyses is to understand the current capability
of Serval and identify any areas where further improvement
is required, and to provide a summary of current readiness of
Serval in advance of planned pilots in the Pacific region.

I. INTRODUCTION

The unfortunate reality is that each year disasters and
emergencies in many places around the world happen, and
that a common feature of these events is that partial or com-
plete loss of communications capacity occurs. Even without
the loss of communications capacity in a disaster, there are
significant challenges to providing effective information for
those affected [1]. The loss of means of communications
serves to compound the difficulties and sufferings faced by
those affected [2]. There is, therefore, a moral imperative to
seek out means of finding ways to restore, or better, sustain
communications during and following such adverse events.

The Serval Project [3], [4], [5], [6] is one of a number of
endeavours that seeks to respond to this moral imperative. Its
objective is to allow people to use mobile telephone handsets
to communicate anywhere, anytime [5]. The project seeks to
achieve this by creating protocols, writing software, including
mobile apps, and creating complementary hardware devices
that, together, are able to replicate many of the functions of a
conventional cellular network to some degree. The goal is not
the replacement of cellular networks, but rather provisioning
the best possible set of functionality and quality of service that
is feasible, without requiring any conventional infrastructure.

Currently, pilots are being planned in the Pacific region and
in Outback Australia over the coming months. The pacific tri-
als that are sponsored by the Pacific Humanitarian Challenge1

in particular will involve the provision of Serval technology to
the general public in regions that are particularly vulnerable to
natural disasters. It is therefore imperative that the behaviour of
the technology be sufficiently characterised, so that informed
decisions can be made, and where any current deficiencies
might exist, that they can be identified, and thus be scheduled
for remediation. There is a similar need for the activities of
the NICER2 project in Germany. NICER is exploring how
infrastructureless information and communications technology
can establish links between people in the event of a crisis, thus
enabling them to work together to overcome the crisis.

In this paper, we present an in-depth experimental evalu-
ation of the delay-tolerant networking (DTN) aspects of the
Serval software stack for various network setups and usage
patterns, including simulated long term use. The evaluation is
based on a simulation and emulation environment to provide
insights into the scenarios where Serval can be deployed with
satisfactory quality and performance characteristics, without
requiring the expense and complication of deploying large
and potentially costly physical test networks. Since battery
capacity is limited on mobile phones, we take a closer at the
battery drain from using Serval over various communication
links, such as WiFi and Bluetooth. The contributions of this
paper are:

• A hybrid simulation and emulation environment is pre-
sented that allows us to run real OpenWRT3 firmware
images in an emulator, in contrast to mere simulations
where only the DTN protocol can be tested.

• Various network topologies, ranging from many 1-hop
neighbours and a 64-hop chain to more realistic merging
islands connection schemes are evaluated.

• Several test cases mimicking common functionality, such
as file distribution, messaging and peer discovery, and
typical user behaviour, such as rapid bulk insertion of

1http://pacifichumanitarianchallenge.org/
2https://nicer.network/en
3https://openwrt.org/



content, writing periodic text messages, and adding differ-
ent types of content every now and then, are considered.

• Different file sizes are examined to reflect different
patterns of mobile phone usage, such as sharing text
files (GPX data, ebooks, messages), images (map tiles,
pictures), voice and video recordings (eye-witness video
footage, voice memos, diaries).

• All test data, scripts and topologies are freely available
and can be adapted to test other software4.

The paper is organized as follows. Section II discusses
related work. Section III presents the basic concepts of Ser-
val. The experimental setup is described in Section IV, and
experimental results are presented in Section V. Section VI
concludes the paper and outlines areas for future research.

II. RELATED WORK

There exists a wide range of related work addressing
emergency communications needs and solutions, beyond what
is possible to cover in this paper [7]. Nonetheless, many of
the solutions in this space can be classified according to (1)
the communications medium/media and modulation(s); and (2)
the architectural model(s) used by each solution.

Communications media include WiFi, Bluetooth, WiMAX,
GSM, TETRA digital radio, and various analog two-way and
digital microwave, UHF, VHF and HF radio systems, as well
as wired analog or digital systems, and satellite based systems,
all available from various commercial vendors.

The architectural models can be often classified as either
infrastructure-oriented, distributed (including peer-to-peer ad-
hoc systems), or hybrid architectures of both approaches.

Several systems support multiple transport modalities. For
example, WISECOM [8] is an infrastructure-oriented system
that seeks to provide a comprehensive approach to post-
disaster communications, using satellite for global connectivity
and a wide range of media and modulations. A significant chal-
lenge with such systems is their overall complexity, and their
dependence on a sophisticated Internet-side infrastructure.

Distinct from the transport media, considerable work has
been done on designing network protocols and frameworks
for emergency communications using various selections of
the media and modulations listed above [9], [10], [11]. A
resulting problem in this diversity is that interoperability can
be a signifcant challenge and requires ongoing effort to contain
and improve this situation [12], [13].

Mobile applications are also becoming more prominent in
the emergency communications space [3], due to the increas-
ing capability of modern smartphones. Several systems also
employ DTN principles to mitigate the challenges that arise
when forming networks from end-user devices, and without
adequate supporting infrastructure [14]. Such systems are
particularly relevant, due of their ability to operate when faced
with the failure of infrastructure, which is a common feature
in disasters and emergencies [7].

For example, FireChat5 is a DTN system for sending mes-
sages, but it lacks openness. Other DTN systems such as SPAN

4https://github.com/umr-ds/
5http://opengarden.com/firechat

[15] and Briar6 only support specific target operating systems
such as Android, and SPAN does not provide applications
built on top of it. Furthermore, Forban7 can spread files
opportunistically in a DTN manner, but lacks protocol support
for direct private file transfers, messaging or routing.

Liu et al. [16] have developed a DTN based mobile mi-
croblogging app for censorship resistant communication. Their
focus is on the app’s energy consumption in an 802.11 ad-
hoc network, ignoring other means of communication such as
Bluetooth or WiFi in AP mode and limiting the system to
specific rooted Android devices in ad-hoc networking mode.
Also, there is no support for sending large files, such as videos.

Ntareme et al. [17] have presented an approach based
on Android phones using a store-and-forward architecture.
Services such as email are transparently delivered via DTN,
but the solution requires special server software in addition
to the Android app. Energy and bandwidth consumption
were measured, but scalability and performance in different
scenarios were not evaluated.

Heimerl et al. [18] attempt to solve the problem of poor
cellular coverage and power outages in rural areas by using
low-cost GSM hardware and a system for reduced power
consumption. While this approach is interesting for feature
phones and services such as voice calls and text messages, it
still requires infrastructure to function.

III. SERVAL

The basic concepts of Serval are presented below.

A. Overview

Serval is centered around a suite of protocols and tech-
nologies designed to allow ad-hoc infrastructure-independent
communications [3], [4], as illustrated in Fig. 1. The goal
is to provide infrastructure-independent versions of many
of the services that are commonly used on smartphones in
conjunction with the Internet and/or cellular networks, e.g.,
voice calls, short text messaging (SMS), voice mail, social
media, as well as file and image transfer.

The Serval Mesh protocols purposely take a contrasting
approach to that of using IP (v4 or v6) as the basis for forming
mobile ad-hoc communications networks (MANETs) [5]. The
reason for this is that despite billions of dollars of research
and development work, IP-based MANETs still struggle, and
face a number of significant challenges that limit their real-
world use, e.g., address allocation, the need to maintain a
routing table, authenticity and integrity of communications,
and the need for relatively reliable and stable end-to-end
connectivity for such systems. Instead, Serval uses 256-bit
public cryptographic keys as the primary network identifier,
the so-called Serval ID (SID), and also includes a rich security
model that facilitates confidentiality, integrity and authenticity
by design, and does not require a Trusted Third Party (TTP)
to operate. It also includes a store-and-forward DTN protocol
(Rhizome), allowing network operation in the absence of end-
to-end connectivity.

6https://briarproject.org/
7http://www.foo.be/forban/
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Fig. 1: The Serval technology stack

B. Rhizome and Delay Tolerant Networking

Rhizome is a simple bundle protocol that principally defines
data units as bundles, consisting of an optional payload,
together with a manifest that contains necessary meta-data.
Manifests have a hard size limit of 1 KB to improve efficiency,
and must also contain a cryptographic public key that is used
to protect the integrity and authenticity of the manifest itself.
The manifest may also contain a cryptographic hash, indicating
that it has an associated payload, together with other meta-
data, such as mime-type, Rhizome service tag, file-name, and
SID of the sender and/or recipient, as appropriate.

While the Rhizome implementation includes several trans-
ports for Rhizome, including HTTP, packet radio and the Ser-
val MDP protocol described below, the protocol is purposely
agnostic of the transport, to allow other transports to be added.
The intention of this is that any transport that is capable of
carrying bytes of data can be used to transport Rhizome data.

As a simple state-less flooding protocol, Rhizome requires
no routing table, and never requires that two parties have
an end-to-end connection for them to communicate. That
is, the Rhizome protocol is always focused on single-hop
communications, with multi-hop communications emerging as
a natural consequence of bundles replicating among nodes.

Rhizome is used as the basis for the SMS-like Mesh Mes-
saging Service (MeshMS) [6], and file distribution, including
software updates. It is also planned to implement a twitter-like
micro-blogging service using Rhizome.

C. MDP, MSP and Node Discovery

In addition to the Rhizome DTN protocol, Serval also
includes a real-time packet-switched protocol, the Mesh Data-
gram Protocol (MDP) that is generally similar to UDP/IP, but
uses SIDs instead of IP addresses, and includes encryption,
authentication and integrity features by default. The TCP-
like Mesh Streaming Protocol (MSP) is layered atop MDP
to provide reliable data streaming. Various services can be
implemented atop MDP and MSP, including the VoIP-like
Voice over MDP Protocol (VoMP).

MDP routing uses an OSLR- and BATMAN-
inspired [19], [20] ad-hoc protocol for both node discovery
and maintaining a routing table, that facilitates multi-hop
routing of packets. In order to reduce packet sizes, address
abbreviation is used, so that only the minimum number of
bytes of a SID is required to uniquely identify a node among
its direct, i.e., 1-hop neighbours. This reduces the header size
in the common case to be smaller than that used for IPv6.

IV. EXPERIMENTAL SETUP

The experimental setup for our in-depth evaluation of
Serval, including the hard-/software environment used, the
parameters measured, the network topologies chosen, and
communication scenarios, is presented below.

A. Simulation/Emulation Environment

To evaluate the performance in a realistic manner, we have
developed a simulation/emulation system called MiniWorld
based on QEMU/kvm and Linux networking code to achieve
full system emulation. This gives us the opportunity to use the
OpenWRT build chain for building router images that include
Serval. OpenWRT is also used on real world routers such as
TP-Link MR3020 or the Mesh Extenders of the Serval Project.
Having a full operating system with its own network stack
running on each node gives a much better picture of real life
performance than pure protocol simulation.

All tests are performed on a 64 core AMD Opteron 6376
CPU with 256 GB RAM, simulating up to 100 virtual nodes,
each one with 512 MB RAM and 2 GB of storage space. These
quite limited values allow us to investigate how Serval per-
forms on older smartphones like the original Samsung Galaxy
S or similar, which are common in developing countries.

B. Measurements

Standard Unix tools are used to measure system properties,
with a measuring interval of one second. For memory con-
sumption, CPU and I/O usage pidstat8 is used to monitor the
statistics of the Serval process from within a node. Disk space
is measured with du and df, both from the GNU coreutils9.
Network usage is measured on the MiniWorld bridge interfaces
of the host system using a custom Python tool10 based on
libpcap11. Insertion points in time for the Rhizome store are
derived directly from Serval’s log, while the general file count
is logged using direct servald calls.

C. Network Topologies

Several network topologies are studied, as shown in Table I.
The Hub topology connects 48 nodes with each other. It rep-
resents a scenario with a high number of direct neighbours all
using bandwidth, flooding each other with status information
and new files, sharing the same transport channel. Typically,
the number of direct neighbours is limited by the radio range
of WiFi or Bluetooth (i.e., often less than 48). Thus, Hub is
challenging for Serval and also the radio link itself.

The Chained topology consists of a chain of 64 nodes, thus
the last node is 63 hops away from the first node. Typically,
network connections over the Internet require less than 16
hops. In a delay-tolerant mobile mesh network, more hops
might be needed for messages to reach their destination com-
pared to static networks physically optimized for minimum
hop numbers and maximum throughput.

8http://sebastien.godard.pagesperso-orange.fr
9http://www.gnu.org/s/coreutils/
10https://github.com/umr-ds/serval-tests/blob/master/netmon.py
11http://www.tcpdump.org



TABLE I: Topologies

Name # Nodes Description
Hub 48 All nodes connected to each other

Chained 64 Pair-wise connected
Islands 100 Partitioned islands, merging over time

The Islands topology represents a partitioned network that
slowly merges over time. At the beginning, there are 100 nodes
in small islands with only a few neighbours. Between these
small islands there are no links, but after a predefined time a
few of them merge together, exchanging all their information
that they have collected so far. Finally, there are two big islands
where one node acts as a bridge between the two, and all
accumulated data from one island has to pass through this
node to propagate to the other island.

All topologies are used in two configurations, one modeled
after the common 802.11g standard with a 54 Mbit/s limit on
each link and one with no bandwidth limitations.

D. Scenario Tests

Based on these topologies, we designed several tests, as
shown in Table II.

Idle (I) simply starts Serval and waits until all nodes have
found each other. This test serves to evaluate how long the
discovery phase takes in various network setups and how much
traffic Serval produces while idling.

Mass Files (MF) pre-generates a number of files and inserts
them at one specific node. The goal is to evaluate whether
Serval can handle a large number of files at once. Propagation
through the network is observed to reveal problems related to
high bandwidth, storage and/or CPU usage.

Mass Messages (MM) is designed to test the messaging sub-
system of Serval by flooding the network with text messages.
A number of messages is sent at once to every single node in
the network no matter if it is currently reachable or not.

Periodic Files (PF) is designed to observe the long-term
behaviour of the system. Files are added at random points in
time by every node. A real world analogy is: people taking
pictures occasionally and sharing them with everybody else.

Periodic Private Files (PPF) is a special case of PF where
files are not shared with the public but sent to a randomly
chosen recipient.

Periodic Messages (PM) is designed to evaluate the Serval
messaging subsystem. These messages are also directed to a
specific recipient and are not meant for the public.

Combined (C) is designed to run all periodic tests (PF, PPF,
PM) at once. Similar to real life situations, the nodes change
their behaviour and there is a competition for the resources in
the network. Broadcasting files, sending files to “friends” and
writing text messages all have different requirements.

E. Data Sent

Text messages consist of a fixed string plus a timestamp in
milliseconds when a message was sent. Since these messages
are meant to mimic real world chat, the total string length

TABLE II: Scenario Tests

Name Short Description
Idle I Node discovery, no actions triggered

Mass Files MF Insert bulk of file set at once
Mass Messages MM Insert bulk of messages at once
Periodic Files PF Periodic adding of files

Periodic Private Files PPF Periodic adding of private files
Periodic Messages PM Periodic sending of messages

Combined C All periodic tests together

TABLE III: Test File Sets

Name Sizes Description
Small 64K, 256K, 512K Small pictures, map data, text files

Medium 1M, 5M, 10M Camera pictures, audio recordings
Large 25M, 50M, 100M Recorded video
Mixed all of the above -

is kept small (53 characters). According to a chat study of
Battestini et al. [21], text messages sent by males had an
average length of 47 characters and for females 58 characters.

Files have different file sizes representing different types
of data, as shown in Table III. The Small file set contains
randomly generated files ranging from 64 KB to 512 KB; large
text files, ebooks, small pictures or other data such as map tiles
typically have these sizes. In the Medium file set we have files
between 1 MB and 10 MB, which is nowadays the size of
pictures taken with mobile phones or some audio recordings.
Recorded video or software bundles are represented in the
Large file set and are generated in the range from 25 MB to
100 MB. Finally, there is a Mixed file set where small, medium
and large files are included.

F. Test Execution

All file related tests were performed with all four file sets,
every test was executed on all topologies with limited and
unlimited bandwidth resulting in a total of 114 tests. While
some tests (e.g., MF) are count-based and terminate after every
node has received a specific number of files, other tests (e.g.,
PPF) are time-based - always running for the same duration.
We performed 5 iterations of each test, resulting in a total of
570 test runs.

V. EXPERIMENTAL RESULTS

In this section, various results regarding Serval’s behaviour
during the experiments are presented.

A. Idle Behaviour

To investigate the idle behaviour of Serval, we looked
at network traffic, CPU load and memory usage after the
initial discovery phase, without triggering further actions. In
every scenario, whenever Serval is started, there are peaks
in the network load, in the Chained and Hub topologies
at approximately 10 to 12 Mbit/s. After this peak, Chained
has a summed average network traffic of around 0.7 Mbit/s,
whereas the nodes in Hub produce 6 Mbit/s. This behaviour is
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Fig. 2: MF Mixed: Rhizome store size, network and CPU load.

caused by Serval’s information distribution strategy, because
it announces status information, such as the list of files
in Rhizome, periodically via broadcasts. Since there are 47
neighbours for each node, traffic is relatively high in the Hub
topology. Islands has extrema whenever partitions merge. The
traffic during peaks grows with the number of nodes.

CPU usage of the Serval process correlates with network
load in our scenarios, but never gets larger than two percent
per node. Serval uses around 4 MB of memory in all scenarios.

Moreover, the discovery time of each topology is differ-
ent. For Hub, the average time of a full network discovery
is approximately 5 seconds, since every node has a direct
connection to all others. In contrast, the Chained topology
takes about 20 seconds, because announcements have to be
forwarded through all other nodes.

In some experiments, Serval’s address abbreviation
(Sec. III-C) mechanism caused conflicts under special cir-
cumstances, depending on the keys and when different nodes
announce themselves for the first time. If a node already has
seen another node with the same abbreviated address, it is
ignored, potentially causing a partitioning of the network. To
circumvent such effects, we modified Serval to generate unique
prefixes for the desired node number in our tests.

B. Hub Constraints

For Hub, a single bridge interface was used to connect
all nodes. Since each node is a single hop away from all
other nodes and Serval uses broadcast packets to announce
meta-data (e.g., the files of a node), each node is flooding all
neighbours with this information. Since the number of adjacent
nodes affect the CPU consumption of the respective node, in
the Hub topology the CPU usage is always higher than in
the corresponding test in Chained or Islands, due to the high
number of direct neighbours.

C. Topology Characteristics

Fig. 2 shows Mass Files tests with a Mixed file set in
different topologies. It shows how transfer rate in Mbit/s, size
of the Rhizome database and the CPU usage change over time.
The transfer rate is stacked for all links. The Rhizome size is
the stacked database sizes of all nodes.

Fig. 2a shows a limited (802.11g) Chained topology, in
which five phases are visible, caused by the Rhizome priori-
tization based on file sizes. Small files are delivered first and
therefore can be distributed earlier by the following nodes.
The bigger the files get, the less total network utilization is
achieved. Despite this effect, a constant stable data flow is vis-
ible, and the Rhizome store grows constantly. The maximum
CPU load correlates with network usage, since the most active
network nodes do have the highest CPU usage.

In Fig. 2b, a limited Hub topology is shown. Though a
constant 54 Mbit/s data flow is visible, the spikes exceeding
54 Mbit/s are measurement errors, caused by differing network
backend and traffic monitoring timers. With a constant network
load caused by the file transfers, the disk usage also grows
linearly as expected in this case, meaning that the network
load is not dominated by status and management information
but real content distribution. Compared to Fig. 2a the average
CPU usage is about 10 times higher, as explained in Sec. V-B.

For Islands, CPU usage increases every time the network
changes. Looking at Periodic Files tests, the max. CPU load
rises to 15% when large files are inserted, since they have
to be redistributed among the other nodes. Fig. 2c shows the
Mixed file set in MF, which peaks at around 7% CPU load.
Since many of the files already exist on various nodes, every
time new network connections are set up, the impact on the



Fig. 3: MM CPU usage over time. Left: unlimited Chained,
right: unlimited Hub.

CPU is relatively low compared to Hub. In general, smaller
files have a negligible impact on the CPU.

The Periodic File tests with small sizes do not show
any unexpected behaviour in terms of CPU consumption in
Chained, the CPU peaks at about 10%. When the files are
encrypted as in PPF, the CPU utilization is slightly higher, at
about 15%, due to CPU intensive cryptographic operations.

The file size influences CPU utilization, which greatly im-
pacts the inserting node. For instance, when sending Small files
in Chained, there is no significant change of CPU utilization
compared to idling, whereas file set Large utilizes the CPU
up to 35%. Bigger files lead to more time consuming hashing,
as it is required by the corresponding protocol. Thus, every
node receiving the file needs to compute a hash, verify and
redistribute it, which also leads to a higher load.

In terms of CPU usage, Islands is a combination of Chained
and Hub. CPU usage does not exceed 50%, since the total
number of neighbours per node is not as high as in Hub.

In the message based tests, the measured CPU consumption
correlates with the number of messages sent. For MM, the
behaviour differs depending on the topology used. Fig. 3
shows the CPU usage per node of two experiments over time.
Using Chained, the inserting node peaks at 30% CPU load
compared to the receiving nodes, which consume about 15%.
Using Hub, the load of the inserting node remains the same. In
contrast, the receiving nodes constantly consume about 65%
CPU. Hub suffers from the broadcast overhead (Section V-B),
but this does not fully explain the high load, as the sending
node is not affected. Further investigating this behaviour, we
tracked it back to recurring hashing and encryption in Rhizome
Journal syncing, which is the core of MeshMS messaging.

PM results differ from MM. For Chained, the CPU utiliza-
tion is relatively low at about 15% maximum. This correlates
with the CPU load of the non-inserting nodes in MM. Since
they are added periodically, the CPU overhead is negligible
here. Hub behaves differently than in the file based tests or
MM: The PF tests show that in every topology the more files
are injected in the network, the more CPU is needed to handle
the broadcast packets. Messages are not announced further
after reaching their destination and being acknowledged by the
recipient. The obvious consequence should be that the CPU
usage decreases. However, as indicated by Fig. 4, once the
CPU peaks at about 25%, it does not settle any more, but
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Fig. 4: Hub limited PM: Rhizome store size, network & CPU

increases even further, although the network load decreases to
the idle level and the Rhizome database size is at its maximum,
which indicates that all messages have arrived. This behaviour
cannot be transferred to Islands, where the inserting nodes
peak at about 40% and all other nodes do not exceed 15%.

For C tests, the general CPU usage is similar to other file
based tests. The only difference is the fact that in Chained
and Hub the CPU usage increases by 5% after about 500
seconds and also correlates with the network load, similar to
the behaviour depicted in Fig. 4. This problem emerges when
sending messages over a longer time period. Since Islands is
not in the final state at the beginning of the test in terms of
the links between the nodes, this result can not be observed
in this particular topology.

D. Network Performance

One goal was to test to what extent Serval is able to use
available bandwidth. Chained was created to assess this.

The cumulative transfer rate using Rhizome in this topology
reached 500 Mbit/s to 2 Gbit/s, depending on the file sets, with
Large being the fastest. That is, up to 2 Gbit/s of traffic was
being carried over the set of hops in the chain, with each seeing
an average utilization of 32 Mbit/s. Tests that transfer large
files over an unlimited network show that Serval is able to use
even more bandwidth, since the highest measured transmission
speed from one node to another can be up to 160 Mbit/s.

Using Chained, the hop-to-hop transmission time can be
modeled, since node n is able to receive a file just after node
n − 1 received it. Fig. 5 shows the hop-to-hop transmission
times of the Medium file set. The five files of each size
are grouped into one box plot, while the colors present five
different runs of each experiment. The median transmission
times for 1, 5 and 10 MB files are 0.54, 1.06 and 1.85 seconds,
and only 0.27 sec for 64 KB files. From these values, a
simple correlation for the transmission time can be derived:
T (sizeMB) = 0.16 · size + 0.26, which also holds for the
Large set. The formula indicates a net transmission rate of
around 31 Mbit/s, with a 0.26 sec delay.

The average speeds are lower, because files are exchanged
node-by-node, and can only be spread to node n+1 after reach-
ing node n, resulting in an effective end-to-end bandwidth, for
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Fig. 5: Chained limited Medium file set: File-size-grouped
hop-to-hop delivery periods of five runs.

a given bundle, inversely proportional to the number of hops.
This compares favourably with end-to-end ad-hoc wireless
routing protocols, where the effective end-to-end bandwidth
drops by approximately half for each additional hop.

Briefly considering the different topologies, the network
utilization in Islands for file based tests is generally about
the same as in Chained, since each node has only a few
neighbours, in contrast to Hub, which is always able to saturate
all links due to the high degree of connection among nodes.

Messages in Serval are effectively transported as small files,
with a payload size of 53 bytes in both PM and MM cases.
The network load shows a behaviour similar to small files in
the PF test, peaking at up to 40 Mbit/s at all topologies and
regardless if the network is limited or not.

The network load for C tests in all topologies is similar to
the file based tests, independent of bandwidth limitations. The
only difference is the increase of the network load after about
500s on Chained and Hub, as shown in Section V-C.

In Hub, small files take between 1 and 4 min to arrive
on the last node in the limited network links. This increases
linearly, up to 20 min, with increasing file size. If the network
is unlimited, transmission time reduces to between 18 sec and
9 min, depending on the file size. One difference between
Hub and Chained is the runtime. Small files are transmitted
faster in Hub, whereas Large files are faster in Chained. The
time overhead for file announcements is relatively higher for
Small. Even with a lower total bandwidth (Hub: 54 Mbit/s for
48 nodes vs. Chained: 54 Mbit/s pairwise), Hub can achieve
faster transmission rates. The limitation of network speed does
not influence this behaviour, only the overall transmission time
increases.

The transfer times of messages differ from topology to
topology. While it takes about 350 sec in Chained until all
messages arrive at their destinations, it can take up to 900
sec in Hub. This again shows that the high number of 1-hop
neighbours in Hub is challenging for Serval. The transmission
time for messages in the C tests depends highly on the used
file set, rather than on the topology and network speed. The
reason is that the network is saturated with big files, which
leads to overall higher transmission times for messages.

E. Energy Consumption

The Idle test in Section V-A showed network peaks caused
by Rhizome status information announcements. Therefore,
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Fig. 6: Energy consumption of announcement intervals

the energy consumption of the announcements is evaluated:
Two devices send announcements in different intervals. Fig. 6
shows the energy consumption for peer A using different
announcement intervals at peer A and peer B. With a 0.5 sec
or 1 sec interval, the consumed energy is 9% higher than in
idle state. With a 2 sec interval, the consumed energy is only
3% higher than in idle state. With a higher interval of 4 sec
or 8 sec, only negligible decreases in energy can be achieved.

Furthermore, the power consumption during MM and MF
tests were evaluated. Two peers were connected via an 802.11n
WiFi Access Point. Peer A inserts files and messages into
Rhizome in the same manner as MM and MF tests. The power
consumption of peer B, a Raspberry Pi 3, is then measured
with the Odroid Smart Power measurement device, an external
power meter. The aim of these experiments is to measure
the energy overhead for running Serval on a device, which
allows conclusions about the power drain of Serval on battery-
powered devices.

Fig. 7 shows the power consumption during different Rhi-
zome file set insertions similar to MF. The file sizes are
increased during the phases f1-f4. During f1, the file sizes
are smaller than 1 MB, resulting in a negligible additional
power consumption. The bigger the transmitted files are, the
more power is consumed. The comparison between receiving
files and sending files shows an unexpected behaviour: In
all phases f1-f4, sending files is less expensive compared to
receiving files, on the average between 0.05 and 0.1 W (3-
6%). This counterintuitive result is caused by additional CPU
consumption of the Rhizome checksum calculation during
reception. Compared to a 1.53 W mean idle value of peer
B, the power overhead introduced by Serval is between 0.01
and 0.13 W (1-8%) during phases f1-f4.

In another experiment, we measured the power consump-
tion during different message insertions similar to the Mass
Messages test. The results show a power consumption peak
between 1.81 and 1.91 W during a short period of reception,
followed by a phase of negligible additional power consump-
tion. During the reception of 100 messages, a mean value of
1.69 W (10%) additional power consumption is measured.

A better energy efficiency during message transmission
could be achieved by using Bluetooth. It consumes a sig-
nificant amount of energy during device discovery, but has
a lower power consumption during data transmission than
WiFi. Due to the low energy efficiency (joule per bit) of
Bluetooth compared to WiFi, it consumes significantly more
energy for large data transmissions. During an experiment, we



Fig. 7: Power consumption during different Rhizome file set
insertions (f1-f4) similar to the Mass Messages test.

measured a 32 times better energy efficiency of WiFi compared
to Bluetooth for files between 512 KB and 16 MB.

VI. CONCLUSION

In this paper, we have presented an in-depth experimental
evaluation of the delay-tolerant aspects of Serval for various
network setups and usage patterns. The results show satis-
factory performance of Serval when deployed in partitioned
scenarios and extreme examples of network topologies. Fur-
thermore, we have analyzed Serval’s energy consumption,
having the limited battery capacity of mobile devices in mind.

In particular, our experiments indicate that there is a sweet-
spot for the trade-off between up-to-dateness and energy
consumption regarding announcement intervals. Furthermore,
Serval can handle a realistic number of files over a longer time
period. In the Chained topology, neither the CPU load nor
the used network bandwidth leads to out of service situations.
All tests with the Hub topology show that in a highly used
network the announcements consume a considerable portion
of the available bandwidth. In emergency situations or in long-
term setups this could have a negative effect depending on the
number of people in direct communication range. The Com-
bined tests in our Islands topology demonstrate that Serval
works flawlessly in adapting to heterogenous environments
where users have different requirements at the same time and
the topology changes over time.

There are several areas for future work. Mobility sim-
ulations should be carried out, preferably with real world
movement patterns gathered from past events. More powerful
hardware with higher numbers of nodes should be used to
run the simulations and emulations, to further investigate
Serval’s scalability properties, particularly in highly-connected
topologies, like Hub. The defect that has been exposed in the
address abbreviation code should be rectified. An evaluation of
Serval’s non-DTN related features, such as voice calls, could
further increase the attractivity of Serval as a solution for
emergency or off-grid communication. Finally, it is interesting
to investigate how Rhizome bundles can be prioritized or
filtered, e.g., to distribute critical messages faster.
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