

Speak Less, Hear Enough: On Dynamic Announcement Intervals in Wireless On-demand Networks

L. Baumgärtner, P. Graubner, <u>J. Höchst</u>, A. Klein, B. Freisleben WONS2017 — February 21 - 24, 2017

https://www.uni-marburg.de/fb12/arbeitsgruppen/verteilte_systeme

Table of Contents

- 1. Introduction
- 2. Dynamic Announcement Intervals
- 3. Implementation
- 4. Evaluation
- 5. Experimental Evaluation
- 6. Final Thoughts

Announcement protocols

Network protocols relying on broadcasting announcements:

L. Baumgärtner, P. Graubner, <u>J. Höchst</u>, A. Klein, B. Freisleben WONS2017 — February 21 - 24, 2017

Announcement protocols

Network protocols relying on broadcasting announcements:

- Service Discovery: Bonjour / ZeroConf
- Routing Protocols: RIP, OLSR
- Delay-tolerant Networking (DTN): Forban, Serval

Announcement protocols

Network protocols relying on broadcasting announcements:

- Service Discovery: Bonjour / ZeroConf
- Routing Protocols: RIP, OLSR
- Delay-tolerant Networking (DTN): Forban, Serval

Bandwidth in wireless networks (802.11, Bluetooth) is limited.

L. Baumgärtner, P. Graubner, <u>J. Höchst</u>, A. Klein, B. Freisleben WONS2017 — February 21 - 24, 2017

• Fast spreading of messages and files produced at a disaster site.

- Fast spreading of messages and files produced at a disaster site.
- **Epidemic routing** to as many neighbors as possible.

- Fast spreading of messages and files produced at a disaster site.
- **Epidemic routing** to as many neighbors as possible.
- Static nodes (*islands*):
 - people trapped in houses, emergency camps, etc.

- Fast spreading of messages and files produced at a disaster site.
- **Epidemic routing** to as many neighbors as possible.
- Static nodes (*islands*):
 - people trapped in houses, emergency camps, etc.
- Moving nodes (carrier-pigeons):
 - by bike, car, foot, etc.

Introduction

Delay-tolerant data exchange

Figure: Drive-by store-and-forward data exchange.

L. Baumgärtner, P. Graubner, <u>J. Höchst</u>, A. Klein, B. Freisleben WONS2017 — February 21 - 24, 2017

Introduction

Delay-tolerant data exchange

Figure: Drive-by window of opportunity example.

L. Baumgärtner, P. Graubner, <u>J. Höchst</u>, A. Klein, B. Freisleben WONS2017 — February 21 - 24, 2017

DTN drawbacks

- r = 40m: WiFi radius
- d = 10m: Node-to-street distance
- v = 50 km/h: drive-by speed
- ightarrow under 6 seconds for node discovery and exchange of data.

High announcement rates: **more** power consumed, **low** announcement rates: data exchange **time reduced**.

Basic idea

8

Regular static announcements: Announce myself to the other nodes within a **fixed time delay**.

Dynamic announcements: **Adapt** announcement rate **dynamically**, based on multiple properties.

Interface for announcement computation

Access to a few general purpose variables:

Interface for announcement computation

Access to a few general purpose variables:

current announcement delay

Interface for announcement computation

Access to a few general purpose variables:

- current announcement delay
- global announcement count

Interface for announcement computation

Access to a few general purpose variables:

- current announcement delay
- global announcement count
- current number of unique peers

1. Static: fixed 2s announcement interval

- 1. Static: fixed 2s announcement interval
- 2. Random: random announcement interval

- 1. Static: fixed 2s announcement interval
- 2. Random: random announcement interval
- 3. RandomSweet: new random interval, if global count is bad

- 1. Static: fixed 2s announcement interval
- 2. Random: random announcement interval
- 3. RandomSweet: new random interval, if global count is bad
- 4. Step: raise / lower node announce interval step-by-step

- 1. Static: fixed 2s announcement interval
- 2. Random: random announcement interval
- 3. RandomSweet: new random interval, if global count is bad
- 4. Step: raise / lower node announce interval step-by-step
- 5. StepRand: Step with added small random number

- 1. Static: fixed 2s announcement interval
- 2. Random: random announcement interval
- 3. RandomSweet: new random interval, if global count is bad
- 4. Step: raise / lower node announce interval step-by-step
- 5. StepRand: Step with added small random number
- 6. MaxFirst: defensive set to low rate and raise step-by-step

- 1. Static: fixed 2s announcement interval
- 2. Random: random announcement interval
- 3. RandomSweet: new random interval, if global count is bad
- 4. Step: raise / lower node announce interval step-by-step
- 5. StepRand: Step with added small random number
- 6. MaxFirst: defensive set to low rate and raise step-by-step
- 7. *MinFirst*: **aggressive** set to high rate and lower step-by-step

- 1. Static: fixed 2s announcement interval
- 2. Random: random announcement interval
- 3. RandomSweet: new random interval, if global count is bad
- 4. Step: raise / lower node announce interval step-by-step
- 5. StepRand: Step with added small random number
- 6. MaxFirst: defensive set to low rate and raise step-by-step
- 7. *MinFirst*: **aggressive** set to high rate and lower step-by-step
- 8. Unsteady: delay derived directly from the number of nodes

Observation delay:

compute announcement interval afterwards

- compute announcement interval afterwards
- announce at least once per observation delay

- compute announcement interval afterwards
- announce at least once per observation delay
- globally defined for all nodes

- compute announcement interval afterwards
- announce at least once per observation delay
- globally defined for all nodes
- the higher, the longer the network needs to adapt to new situations

- compute announcement interval afterwards
- announce at least once per observation delay
- globally defined for all nodes
- the higher, the longer the network needs to adapt to new situations
- 20 seconds used in this paper

Quality measuring properties

Main goal: 1 second global announcement delay

L. Baumgärtner, P. Graubner, <u>J. Höchst</u>, A. Klein, B. Freisleben WONS2017 — February 21 - 24, 2017

Quality measuring properties

Main goal: 1 second global announcement delay

• Global Anouncement Rate: announcements per second

Quality measuring properties

Main goal: 1 second global announcement delay

- Global Anouncement Rate: announcements per second
- (Global Announcement Gaps: time between two announcements)

Quality measuring properties

Main goal: 1 second global announcement delay

- Global Anouncement Rate: announcements per second
- (Global Announcement Gaps: time between two announcements)
- Adaptation Rate: time needed to adapt to the new rate
Implementation

Example Application: Mesher

Implementation

Example Application: Mesher

simple local chat, written in Google's Go

Example Application: Mesher

- simple local chat, written in Google's Go
- 642 bytes broadcast packets for neighbor discovery and database status updates

Example Application: Mesher

- simple local chat, written in Google's Go
- 642 bytes broadcast packets for neighbor discovery and database status updates
- JavaScript-based API for dynamic announcement computation

Evaluation setup: network emulation

Evaluation setup: network emulation

Centralized network: all nodes connected centrally

¹⁴ Evaluation setup: network emulation

- Centralized network: all nodes connected centrally
- Growing network: nodes added periodically

¹⁴ Evaluation setup: network emulation

- Centralized network: all nodes connected centrally
- Growing network: nodes added periodically
- Merging network: merge of two equally sized networks

¹⁴ Evaluation setup: network emulation

- Centralized network: all nodes connected centrally
- Growing network: nodes added periodically
- *Merging network*: merge of two equally sized networks
- Splitting network: split into two equally sized networks

Raspberry Pi 3 Model B single-board computers

- Raspberry Pi 3 Model B single-board computers
- Vendor-provided Debian-based Raspbian OS

- Raspberry Pi 3 Model B single-board computers
- Vendor-provided Debian-based Raspbian OS
- 8 network participants

- Raspberry Pi 3 Model B single-board computers
- Vendor-provided Debian-based Raspbian OS
- 8 network participants
- 1 system under test (SUT)

¹⁵ Evaluation setup: physical testbed

- Raspberry Pi 3 Model B single-board computers
- Vendor-provided Debian-based Raspbian OS
- 8 network participants
- 1 system under test (SUT)
- Data-logging at 5 Hz using an Odroid Smart Power

Test configurations

L. Baumgärtner, P. Graubner, <u>J. Höchst</u>, A. Klein, B. Freisleben WONS2017 — February 21 - 24, 2017

Test configurations

Eight announcement strategies

Test configurations

- Eight announcement strategies
- Number of nodes: 2, 5, 10, 25, 50, 100, 200

¹⁶ Test configurations

- Eight announcement strategies
- Number of nodes: 2, 5, 10, 25, 50, 100, 200
- batch node start, delayed node start

¹⁶ Test configurations

- Eight announcement strategies
- Number of nodes: 2, 5, 10, 25, 50, 100, 200
- batch node start, delayed node start
- two dynamic network configurations: Split and Merge

Test configurations

- Eight announcement strategies
- Number of nodes: 2, 5, 10, 25, 50, 100, 200
- batch node start, delayed node start
- two dynamic network configurations: Split and Merge
- total of 224 independent experiments

Announcements in a 25 node static network (1)

L. Baumgärtner, P. Graubner, <u>J. Höchst</u>, A. Klein, B. Freisleben WONS2017 — February 21 - 24, 2017

¹⁸ Announcements in a 25 node static network (2)

All non-random strategies reach the goal of a **less saturated network** and also approach **the same minimum**.

L. Baumgärtner, P. Graubner, J. Höchst, A. Klein, B. Freisleben WONS2017 — February 21 - 24, 2017

L. Baumgärtner, P. Graubner, <u>J. Höchst</u>, A. Klein, B. Freisleben WONS2017 — February 21 - 24, 2017

Adaptation rate

L. Baumgärtner, P. Graubner, <u>J. Höchst</u>, A. Klein, B. Freisleben WONS2017 — February 21 - 24, 2017

²⁰ Adaptation rate

 Unsteady and MaxFirst show very high adaptation rates, since the announcement delay is set after the first observation delay.

²⁰ Adaptation rate

- Unsteady and MaxFirst show very high adaptation rates, since the announcement delay is set after the first observation delay.
- MaxFirst achieves a high rate in larger islands, while MinFirst achieves a higher adaptation rate in smaller islands.

Adaptation rate

- Unsteady and MaxFirst show very high adaptation rates, since the announcement delay is set after the first observation delay.
- MaxFirst achieves a high rate in larger islands, while MinFirst achieves a higher adaptation rate in smaller islands.
- Adaptation rates of *Step*-based strategies depend on the number of nodes.

Adaptation rate: 10 nodes split

L. Baumgärtner, P. Graubner, <u>J. Höchst</u>, A. Klein, B. Freisleben WONS2017 — February 21 - 24, 2017

²² Adaptation rate: 100 nodes delayed

L. Baumgärtner, P. Graubner, <u>J. Höchst</u>, A. Klein, B. Freisleben WONS2017 — February 21 - 24, 2017

# Nodes Name	2	5	10	25	50
Static	291	732	1460	3658	7296
Random	34.4%	47.0%	37.0%	37.9%	37.3%
RandSweet	58.1%	41.7%	29.0%	35.6%	37.7%
Step	101.7%	45.4%	35.2%	33.2%	33.4%
StepRand	99.7%	42.5%	32.5%	30.1%	30.2%
MaxFirst	99.0%	21.2%	17.1%	17.0%	17.1%
MinFirst	84.9%	44.3%	34.7%	33.3%	33.5%
Unsteady	188.7%	56.8%	32.5%	17.7%	17.1%

Table: Bandwidth Comparison

²⁴ Bandwidth savings

L. Baumgärtner, P. Graubner, <u>J. Höchst</u>, A. Klein, B. Freisleben WONS2017 — February 21 - 24, 2017

²⁴ Bandwidth savings

• *Step*, *StepRand* and *MinFirst*: **bandwidth savings** > 60%.

²⁴ Bandwidth savings

- *Step*, *StepRand* and *MinFirst*: **bandwidth savings** > 60%.
- Unsteady and MaxFirst: bandwidth savings > 80%
 → quick adaptation to the given situations.

²⁴ Bandwidth savings

- *Step*, *StepRand* and *MinFirst*: **bandwidth savings** > 60%.
- Unsteady and MaxFirst: bandwidth savings > 80%
 → quick adaptation to the given situations.
- Unsteady: 188.7% of Static in a two nodes network.
 → low announcement delays in small networks achievable.

Energy consumption: setup

L. Baumgärtner, P. Graubner, <u>J. Höchst</u>, A. Klein, B. Freisleben WONS2017 — February 21 - 24, 2017

Energy consumption: setup

• 8 regular nodes, 1 system under test

Energy consumption: setup

- 8 regular nodes, 1 system under test
- ad-hoc (1.35 W idle consumption) and managed mode (1.45 W)

Energy consumption: setup

- 8 regular nodes, 1 system under test
- ad-hoc (1.35 W idle consumption) and managed mode (1.45 W)
- added Static05 and Static01, with 2 / 10 announces per second

Energy consumption: setup

- 8 regular nodes, 1 system under test
- ad-hoc (1.35 W idle consumption) and managed mode (1.45 W)
- added Static05 and Static01, with 2 / 10 announces per second

$$E:=\int_{0}^{300} P_{measured}(t)\,\mathrm{d}t-300*P_{idle}$$

 1		ï
-		5
-	v	

Name	# Ann.	E (mWh)	rel. Ann.	rel. E	ratio
Static	1323	1.99	1.00	1.00	1.00
Static05	5404	11.97	4.08	6,00	1.47
Static01	29342	32.52	22.18	16.31	0.74
MaxFirst	256	1.17	0.19	0.59	3.04
MinFirst	473	1.26	0.36	0.63	3.04
Random	434	1.34	0.33	0.67	2.04
RandomSweet	342	0.73	0.26	0.37	1.42
Step	495	1.20	0.37	0.60	1.61
StepRand	460	1.12	0.35	0.56	1.61
Unsteady	514	1.38	0.39	0.69	1.78

L. Baumgärtner, P. Graubner, <u>J. Höchst</u>, A. Klein, B. Freisleben WONS2017 — February 21 - 24, 2017

Energy consumption: overall results

- General trend proven: less announcements \rightarrow less power consumed

- General trend proven: less announcements \rightarrow less power consumed
- correlation coefficient r = 0.985

- General trend proven: less announcements \rightarrow less power consumed
- correlation coefficient r = 0.985
- Side-effects due to programming language, OS, ...

- General trend proven: less announcements \rightarrow less power consumed
- correlation coefficient r = 0.985
- Side-effects due to programming language, OS, ...
- though relatively small, announcements effect battery lifetimes

Conclusion

L. Baumgärtner, P. Graubner, <u>J. Höchst</u>, A. Klein, B. Freisleben WONS2017 — February 21 - 24, 2017

²⁸ Conclusion

• Eight different announcement strategies compared

- Eight different announcement strategies compared
- reduction by 80% compared to a static strategy, while reaching the goal of a fast island discovery.

- Eight different announcement strategies compared
- reduction by 80% compared to a static strategy, while reaching the goal of a fast island discovery.
- Energy impact: announcements effect battery lifetimes and are worth to be reduced.

29

Future Work

L. Baumgärtner, P. Graubner, <u>J. Höchst</u>, A. Klein, B. Freisleben WONS2017 — February 21 - 24, 2017

• More realistic WiFi emulation, eg. Island center vs. edge nodes

- More realistic WiFi emulation, eg. Island center vs. edge nodes
- Design algorithms based on additional information

- More realistic WiFi emulation, eg. Island center vs. edge nodes
- Design algorithms based on additional information
- Evaluate on real world applications eg. Serval

- More realistic WiFi emulation, eg. Island center vs. edge nodes
- Design algorithms based on additional information
- Evaluate on real world applications eg. Serval
- Make software use dynamic announcements.

Thanks for your Attention!

Are there any questions?

L. Baumgärtner, P. Graubner, J. Höchst, A. Klein, B. Freisleben WONS2017 — February 21 - 24, 2017