
B-DTN7: Browser-based Disruption-tolerant
Networking via Bundle Protocol 7

Lars Baumgärtner∗, Jonas Höchst†, Tobias Meuser‡
∗ Technische Universität Darmstadt, FB 20, D-64289 Darmstadt, Germany

E-mail: baumgaertner@cs.tu-darmstadt.de
†Philipps-Universität Marburg, FB 12, D-35032 Marburg, Germany

E-mail: hoechst@informatik.uni-marburg.de
‡ Multimedia Communications Lab, Technische Universität Darmstadt, D-64289 Darmstadt, Germany

E-mail: tobias.meuser@kom.tu-darmstadt.de

Abstract—During and after the event of a crisis, means of
communication are vital for civilians and professional responders
alike. In particular, technologies such as disruption-tolerant
networking (DTN) can play a key role to distribute data even
under challenging network conditions. Such networks benefit
from an increased number of mobile participants since they
help distribute messages to remote places. Unfortunately, it is
unrealistic to assume that smartphone vendors will ship the
necessary software or users will be prepared with the needed apps
installed before the crisis happens. Currently, smartphone apps
usually need Internet connections to be installed from an app
store and/or are very platform-specific, i.e., there is no general
device-to-device app distribution. We present a novel solution to
let any user with a web browser persistently participate in a
DTN network. By leveraging a newly written Bundle Protocol 7
draft implementation in the programming language Rust and
deploying it to WebAssembly, we provide a secure and efficient
way for backend and frontend DTN networks. The presented
solution incorporates classic DTN daemons and access points
for web app distribution and bundle synchronization. Through
benchmarks, we show the efficient processing of bundles and the
feasibility of bundle handling in browsers. All code is available
as open-source under a permissive license.

I. INTRODUCTION

Disruption-tolerant networking is used in many different
scenarios, such as Interplanetary Networking, wildlife mon-
itoring, and emergency communication. While protocols con-
stantly evolve, e.g., the official draft of DTN bundle pro-
tocol version 7 [1], some problems for mass adoption in
specific scenarios are still not solved satisfyingly. To enable
DTN communication for regular users during events such as
demonstrations, festivals, or a crisis, where the communication
infrastructure is often disrupted, people usually have to be
prepared and install the necessary communication software.
This typically needs to happen before the crisis due to the
various security mechanisms on current smartphone operating
systems, that often only permit the installation of signed apps
via an official app store. Modern technologies like WebAssem-
bly (wasm) and the web platform in general can be used to
provide a zero-installation, offline way for people to join the
communication only using a web browser, which is readily
available on all modern devices. Furthermore, having people
roam various wireless networks while participating in the DTN
also increases delivery rates as users act as data mules to

WiFi

Mesh

Uplink

B-DTN7

dtn7-godtn7-go

dtn7-rs

dtn7-rs

Fig. 1. Architecture of our communication infrastructure

connect separated networks. Ideally, one should also be able
to have other ways of transmitting DTN bundles, even when
no radio link is currently available.

Our approach is based upon a novel implementation of the
most recent bundle protocol 7 draft and the MTCP conver-
gence layer [2] written in the Rust programming language.
We separated the pure bundle handling parts described in the
RFC from the network-related ones and the general agent
functionality. Therefore, a minimal core for target platforms
with limited capabilities is directly available. Furthermore,
these parts are then used via WebAssembly to write a pro-
gressive web app that can handle bundles and work offline
in any browser using HTML5 offline storage. As a bridge
between classic DTN networks and browser-based clients, a
thin web server component was designed to serve bundles as
well as the app itself. By having public hot spots such as the
ones provided by Freifunk or in streetlights of smart cities,
everyone can easily participate in the communication even
without proper internet uplink. Figure 1 depicts such a scenario
where a heterogeneous DTN network exists between meshed
routers, wired internet uplink, and WiFi participants such as
drones, all running different dtn7 implementations. The WiFi
participants can generate data, e.g., using their local sensors.
Also shown there, smartphones with our progressive web app
that can synchronize with any access point in range and carry



on data to other networks. Besides relying on existing WiFi in-
frastructure, we also provide alternative sync mechanisms that
directly transfer bundles via QR codes or through (ultrasonic)
sound from one device to another. Especially broadcasting via
audio can be used for 1:n communication from local devices
or through public speakers to distribute public data, e.g., maps,
instructions, and announcements.

Our evaluation shows that the Rust implementation and
wasm as a platform provide enough performance, outper-
forming other native implementations, for even higher bundle
workloads, while at the same time leaving only a minimal
memory/storage footprint. The practical evaluation of B-DTN7
shows the general usefulness of our approach and also the
limitations regarding the alternative transmission methods.

In summary, we make the following contributions:
• A novel and secure bundle agent based on the most recent

Bundle Protocol Version 7 draft written in Rust1

• A lean, fast and portable bundle protocol implementation2

• A novel, modern web app that can turn any browser into
a DTN participant

• A novel bridging server connecting bundle agents with
web clients and delivering the web app.

• A unique convergence layer using QR codes to transmit
bundles offline directly from device to device

• A novel way to distribute bundles via (ultrasonic) sound
from one device to multiple others nearby via the web
app

The paper is organized as follows. Section II discusses
related work. In Section III, we present requirements and
designs decisions. Section IV discusses implementation issues.
Section V presents experimental results. Section VI concludes
the paper and outlines areas of future work.

II. RELATED WORK

Since the advent of disruption-tolerant networking, it has
been studied in different forms and aspects. A reference
implementation of the current standard [3], called DTN2 [4],
provided by the IETF DTN working group exists. For the
Interplanetary Overlay Network (ION) developed by NASA,
the focus is set to extreme distances and predicable connec-
tions losses in space [5]. IBR-DTN [6] is a DTN software
for terrestrial use, offering various example applications and
thus real-world applicability. The more recent Bundle Protocol
7 (BP7) is implemented in Micro Planetary Communication
Network (µPCN) and designed to connect different regions
of the world [7]. Terra is a Java implementation of BP7,
claiming to be lightweight and modular [8]. DTN7 is a BP7
implementation in Golang, offering a modular, extendable
and portable implementation, as well as high performance in
competitive network evaluations [9]. Except for the last one,
all other implementations are based on older drafts of BP7
and, thus, incompatible.

Serval is a mesh networking application which is also
available on mobile platforms. It features its own delay-
tolerant component called Rhizome which offers different

1https://crates.io/crates/dtn7
2https://crates.io/crates/bp7

convergence layers, such as packet radio, serial ports, WiFi,
Bluetooth or HTTP-based bundle submission [10]. Forban
is a link-local peer-to-peer software. It runs as a regular
program and implements its bundle exchange mechanism on
top of HTTP [11], which would in principle be extendable
to a browser-based bundle exchange. FireChat is a mobile
application and uses multiple platform-specific and generic
communication protocols, such as Apple Wireless Direct Link
(AWDL), Bluetooth or WiFi Direct to transmit messages [12].

There exist convergence layer implementations for IBR-
DTN based on HTTP and 802.15.4 (ZigBee), specifically
targeting sensor networks [13]. AX.25 packet radio is targeted
as a convergence layer by the work of Ronan et al. [14]. TXQR
is a library that uses animated QR codes and forward error
correction (FEC) to transmit data between devices using their
display and camera [15] reaching up to 200 kbps by using
FEC with fountain codes [16]. Quiet is a framework designed
to transmit data via audible or inaudible sound samples [17]. It
offers various profiles targeted for transmission via speakers
and microphones or via a direct cable connection, allowing
transmission speeds of up to 40 kbps.

In EmerGence a progressive web app served by unmanned
aerial vehicles is proposed to enable communication in emer-
gency or natural disaster situations [18]. Sankaran et al.
developed a framework for highly-localized mobile web ap-
plications, delivered via DTN. While the DTN software itself
does not run inside of the browser, specific applications and
the communication of those can use DTN from inside the
browser [19].

Disruption-tolerant networks were shown to be a resilient
communication-enabler in emergency communications and
challenged networks [20], [21]. Particularly in combination
with sensor networks DTNs show promising results [22],
[23]. Other use cases of DTNs can be found in enabling
communications for rural areas [24], [25].

III. DESIGN

As our goal is to integrate as many users as possible in our
DTN, we need to interoperate with existing Bundle Protocol
Version 7 draft [1] implementations such as dtn7-go to enable
users to participate easily in the communication. The latter is
especially difficult if the process of submitting native apps to
various app stores needs to be avoided. Also, in emergency
scenarios, people might not be able to install new apps, and
only a minor share of the people might have installed the
needed apps before the emergency case. Thus, progressive web
apps that also work offline can be used as an alternative to
typical mobile applications. Having these mobile devices in
the network benefits not only the users themselves but also for
other participants, as every user acts as a data mule and can
distribute data to otherwise unconnected and isolated network
segments.

All relevant components for our approach can be seen in
Figure 2. The most basic requirement is an implementation of
the bundle protocol itself, as this is used in the backend as
well as in the web app. Furthermore, the DTN access point
must contain a dtn7 capable bundle agent as well as a bridging



DTN Access Point

DTN7

BP7

B-DTN7 Server

B-DTN7 Web App

BP7:wasm

HTML+CSS+JS

Fig. 2. Architecture of Software Stack

server to deliver the web app and enable synchronization. The
web app itself must utilize the bp7 library and should build on
standard web technologies such as wasm, HTML, CSS, and
JavaScript.

A. Bundle Protocol

The new Bundle Protocol Version 7 draft has some signif-
icant changes compared to RFC 5050 [3]. Most prominently,
encoding is performed through standard CBOR encoding [26].
Furthermore, configurable CRC checksums were added, as
some convergence layers might not be reliable. Bundle com-
pilation was also simplified, as bundles always begin with a
Primary Block. Other functionality, e.g., routing information,
signatures or other metadata can be realized using Canonical
Blocks.

BP7 defines the Bundle Protocol Agent (BPA), which is
responsible for communication between the other components
and, e.g., creates bundles. An Application Agent (AA) is
responsible for interconnecting DTN applications to the BPA.
Convergence Layers Adapters (CLA) implement Convergence
Layers (CL), which are used to establish connections between
nodes. CLs can be of different types, bi- or unidirectional, slow
(LoRa) or fast (WiFi) and of different qualities, e.g., long-lived
or ephemeral.

While the bundle protocol 7 draft contains information
about encoding individual bundles as well as processing and
delivering them, it is a reasonable decision to split this
functionality into two separate libraries. As the encoding can
easily be ported to and used in embedded devices, the minimal
needed functionality should be compiled in a bundle protocol
library (bp7). Everything else needed for a complete bundle
protocol agent including application agents, routing and con-
vergence layers should be built upon this lib in another project
(dtn7). The bp7 lib should also be reusable as a WebAssembly
library within the browser. The complete software stack can
be seen in Figure 2.

B. B-DTN7 Server

New gateway software is needed to bridge between clas-
sic DTN networks and web-based clients. This server must

serve the B-DTN7 web app as well as synchronize bundles
with multiple browser B-DTN7 instances. Following the Unix
philosophy, we chose to build a separate server specifically
designed for handling this task and interacting as a client to
a local dtn7 daemon. This way, the underlying dtn7 daemon
implementation can be swapped out, and it makes the whole
project more maintainable in the long run. The web app
should be served as static web content and the necessary
synchronization functions for, e.g., getting a list of known
bundles or adding new bundles, should be implemented as
REST calls.

C. B-DTN7 Web App

The main component of the web app should be the bp7
library that is also used for the native dtn7 daemon. Through
the use of the HTML5 local storage facilities, it is possible
to store bundles persistently on the browser device for later
use. Furthermore, besides just syncing existing bundles, it
should be possible to create new bundles with text messages
for emergency communication. If not even local networks are
available, the last resort feature should be to pass selected
messages directly from device-to-device via QR code sharing.
Due to size limitations of QR codes, this can only be used for
rather small bundles, but the compression of bundles can help
to stretch these boundaries. Besides making cameras accessible
from web pages, HTML5 also provides easy access to the
microphone and speakers. Thus, modulated sound can be sent
from one device to be received by others and demodulated
again, resulting in another offline communication channel
usable for larger bundles.

IV. IMPLEMENTATION

A. Bundle Protocol

As one of the design goals is to target small devices,
efficiency and a low resource footprint heavily influence
the programming language used. Furthermore, security is of
utmost concern. Thus, memory safety and the avoidance of
undefined behaviour must also be considered. This leads us to
the Rust programming language, which delivers performance
comparable to C++ but makes strong safety guarantees and,
through llvm, can even target embedded systems or output
WebAssembly directly. Besides being available as a library, a
command-line tool is shipped to debug, encode and decode
bundles in various forms. Furthermore, building upon the
wasm output a web-based helper is provided to generate
bundles for testing as shown in Figure 3.

B. B-DTN7 Server

This component serves multiple purposes. First, it must
serve the web app to mobile users via HTTP(S). Second, it
must provide a REST interface for synchronizing bundles with
the web apps. Third, it must interact with a local dtn7 daemon
to forward bundles between web-connected users and bundle
agents using classic convergence layers such as MTCP. As
this component is heavily based upon web technologies and
not performance critical, the proof-of-concept implementation



Fig. 3. Web helper tool shipped with BP7 to create custom bundles.

was realized using Google’s Go programming language - as
it contains all necessary functionality in its standard library.
This server is meant to be run on the network edge at access
points or as part of a captive portal. Therefore, the app can be
distributed even without a working internet connection.

C. B-DTN7 Web App

Since Rust can compile to WebAssembly, the bp7 library
can easily be reused in the web app as well. To rapidly
prototype B-DTN7, we choose JavaScript. Therefore, it is
possible to access the HTML5 Storage and to request further
resources from the server, such as new bundles. The whole app
consists only of a few files that can be served statically. In the
future, all logic could be implemented as a wasm module,
eliminating JavaScript almost completely. As the web app
follows responsive design principles, it can adapt to various
devices such as desktop browsers, tablets, and smartphones.

Due to the browsers security restrictions, e.g., same origin-
policy, it is not easily possible to implement peer-to-peer
communication in the web app. Thus, bundle synchronization
by default happens with the IP address from which the app was
served. In case of large mesh communities such as Freifunk
or GuiFi, this would also be the access point through which
the mobile device is connected to the WiFi. When acting as
a captive portal, all users can easily be made aware of the
service and directly participate. In the future, a combination
of WebRTC and QR codes for signalling data transfer could
be used for an actual web-based peer-to-peer system without
a fixed third party server3. To support direct bundle transfer
without any network connectivity whatsoever, the app can

3https://github.com/AquiGorka/webrtc-qr

present any small bundle encoded as a QR code. Which in
return can be scanned and imported on another device running
B-DTN7. Due to the limited number of bytes that can be
packed into a QR code, all bundles are compressed using a
LZ-based algorithm. This heavily reduces the number of bytes
needed to be transmitted, e.g., a benchmark bundle of 281
bytes can be transmitted in only 72 encoded and compressed
bytes in the QR code. As the local HTML5 Storage only
supports a maximum size of 5 MB worth of string data to be
stored offline, this compression can also be used to store more
bundles locally. The possibility for bundle transmission via au-
dio depends heavily on the used browser and security settings.
Prior to transmission via audio, we compress the bundle again
and then transmit it as a hex-encoded string. Depending on
whether two devices are connected via an audio cable or the
audio is transmitted over the air, various transmission profiles
can be used. We can even broadcast bundles via ultrasonic
sound, which makes it is almost unnoticeable for humans.

V. EXPERIMENTAL EVALUATION

To evaluate B-DTN7, we conducted several tests, ranging
from pure benchmarks to real-world deployments. While the
benchmarks can give a general impression of the quality and
usefulness of our Rust implementation of the protocol draft,
the real-world deployment case study shows the practicality
and the limitations of our approach and the overall system.

A. Rust Bundle Protocol 7 Evaluation

To evaluate our Rust implementation of the bundle protocol
7 draft, we mainly focus on the encoding and decoding
aspects of the implementation in different environments as this
is most relevant for our application of Bundles-in-Browser.
Due to the fact that the protocol draft is rather new, there
are not many alternative implementations. Thus, we focus
on comparison with dtn7-go, which is quite up-to-date and
can also be deployed to WebAssembly. Here, the evaluation
mainly focuses on the recent stable version 0.2 but to explain
some effects the previous version 0.1 was also included for
some additional benchmarks as major critical parts of dtn7-
go have been rewritten between these two versions. For the
Rust implementation, the most recent version, 0.3.7, was
evaluated. The whole evaluation setup is available as a docker
container4 and the raw results can be downloaded5 for further
evaluation as well. The hardware used for evaluation is a
Quad Core 2.3 GHz Intel Core i5 with 16 GB RAM. If not
stated otherwise, browser-based benchmarks were performed
in Google’s Chrome.

1) Performance: The core metrics that are relevant for
classic bundle agents, routers, and web clients alike is the raw
processing speed of bundles. More specifically, how fast can
new bundles be created, existing bundles encoded and finally
how fast can they be decoded and parsed again. For these
benchmarks standard bundles with a small 3 byte payload and
two extension blocks (bundle age and hop count) are created.

4https://github.com/stg-tud/bp7eval
5dat://bdtn7raw.hashbase.io



Fig. 4. Bundle creation performance

All tests were performed without CRC checksum, with CRC16
enabled and with CRC32 enabled to identify possible overhead
through checksum calculation. The benchmarks ran 3 times
plus one additional warm-up run beforehand.

a) Bundle Creation: Of the three performance evaluation
subjects, the bundle creation is the operation usually performed
least often. Complete bundles are only created when new
content is to be distributed or a new administrative record
has to be sent. Thus, its performance is not as critical as
pure encoding and decoding operations. Nevertheless, when
used on small sensor nodes or energy-constrained devices, the
efficiency of the bundle creation mechanisms is pivotal for the
performance of these.

The results of the bundle creation benchmarks can be seen
in Figure 4. Due to the fact that bundle creation involves
many allocations and other calculations, the effects of the
used checksum settings are mostly neglectable. This is also
consistent across all implementations. One can clearly see that
the Rust implementations are significantly faster than the Go
version, around 100.000 bundles/second for Rust versus less
than 20.000 for the native Go version. In the case of Go wasm,
there is even a speed difference up to two orders of magnitude.
When comparing the native Rust version with the wasm one,
the native one has a slight edge probably due to the easier
and more direct memory management. Also, as timestamps
are added during the bundle creation process, this requires a
bridged JavaScript call in wasm to get the current time, which
adds extra overhead compared to the direct system call in the
native version.

b) Bundle Encoding: The pure encoding speed is espe-
cially relevant for less capable devices such as small sensor
nodes and central routers that need to handle large numbers
of bundles. Each bundle needs to be re-encoded before trans-
mission to update hop counts, previous node blocks and/or
bundle age blocks. Thus, encoding is a frequently performed
operation in environments with many participants and a high
bundle load.

To prevent any unfair JIT optimizations in wasm, the pre-
viously encoded bundle’s lifetime field is increased before en-
coding. As shown in Figure 5, the raw encoding performance
is 5 to 10 times higher than the bundle creation performance.
This performance increase can easily be explained with the

Fig. 5. Bundle encoding performance

fact that only the CBOR encoding has to be performed
and the optional checksum has to be calculated. Here, the
variants without CRC checksum are significantly (factor 2 or
more) faster than the CRC16 and CRC32 variants across all
implementations. Also noteworthy that the runtime difference
between the CRC16 and CRC32 variants are neglectable. So
if slightly larger bundles sizes are not an issue, CRC32 is
to be preferred. The Rust implementation, depending on the
configuration, can encode from 500k bundles/second up to
over 3 million bundles per second. The Go native version in
average has problems reaching more than 200k bundles/second
and in case of the wasm version is way below 10.000 bun-
dles/second. Interestingly enough, the Rust wasm version is
even faster than its native counterpart. This could be related
to JIT optimizations or that the data structures and calculations
can be handled very effectively in wasm, not needing any
bridges to JavaScript functions or any external functionality.

c) Bundle Decoding: Similarly to bundle encoding the
decoding process is a vital operation that is performed quite
often by any involved bundle agent. Each bundle received
or loaded from disk has to be decoded first, which also
includes verifying CRC checksum and performing various
validity checks.

The results of this evaluation are shown in Figure 6. While
decoding is significantly slower than pure encoding it is
slightly faster than bundle creation. Again, the differences
between different checksum settings are mostly neglectable.
Here, the Rust versions are in the order of one or two magni-
tudes faster than the Go implementations, 500-800k versus less
than 10-50k. Just as seen in the bundle creation benchmarks
the native version outperforms the wasm Rust version again.
Since decoding a bundle means recreating bundle structures
this might also be a result of the better memory management
in the native version.

d) Performance Conclusion: Across all benchmarks one
can clearly see that the Rust version is consistently at least
5 to 10 times faster than the Go version. This is especially
relevant for nodes handling many bundles or very constraint
devices. When targeting wasm as a platform the very poor
performance of the Go version is a real show stopper and the
benefits of the Rust implementation come into play.



Fig. 6. Bundle decoding performance

Fig. 7. Binary sizes of the various benchmarks

2) Binary Sizes: Binary sizes might not be so relevant for
laptops, cloud instances or even Raspberry Pi grade SBCs but
when targeting embedded devices or even the web platform,
one needs to keep the binary footprint low for efficiency.
For this evaluation all native binaries have been previously
stripped6 and for the wasm parts only the assembly file itself
was measured, while the generated JavaScript glue code with
a size of less than 25 KB is neglectable.

The different binary sizes are shown in Figure 7. A big
factor influencing the binary sizes are used dependencies,
which also explains the sizes of the Go implementation v0.1
ranging from 11 to 17 MB. Many of these dependencies
have been removed in the now current version 0.2 which
is significantly smaller with about 3 MB. Still the stripped
Rust binaries are significantly smaller with less than 0.5 MB.
Especially for web apps, smaller code sizes are relevant, since
they directly influence load times, bandwidth usage and the
user experience. Also the memory accessible for each wasm
app in a browser tab is rather limited.

B. B-DTN7 in Action

To evaluate our approach under real world circumstances
we set up a small network consisting of two access points, a
backend router, a wired workstation and three different mobile

6http://pubs.opengroup.org/onlinepubs/9699919799/utilities/strip.html

Fig. 8. Network setup of real life evaluation.

devices. The complete setup is visualized in Figure 8. One
access point is isolated and dependant on roaming users to
synchronize bundles. There is one user permanently connected
to this access point and injecting new bundles there. Connected
to the second access point is a network with a DTN router
and a wired workstation also producing new content. Mobile
clients used in this case study are laptops, tablet computers and
smartphones. B-DTN7 was tested on iOS and Android based
devices with their corresponding default browsers as well as
Firefox and Google Chrome on Linux and macOS desktops.

1) Browser performance: Besides limited connectivity op-
tions, the biggest constraint of a browser-based DTN agent is
the storage capacity available. In our tests, we were able to fit
around 16.000 of our benchmark bundles into the 5 MB HTML
storage available to each web app. As we achieved quite good
results when using compression to fit a bundle into a QR
code, we also applied this to fit more bundles into the local
storage. Unfortunately, one can only store strings there. Thus,
serialization of binary bundles to a JSON string is necessary.
While several 100.000 bundles can easily be stored using
compression, over 100 MB of RAM are consumed for the
temporary string representation. Even worse, the compression
of these strings can easily take several minutes for larger
numbers of messages as shown in Figure 9. Here, we limited
the compression run time to 30 seconds and were able to
store 150.000 bundles locally. On disk they only accounted for
about 800 KB, so while plenty more bundles could be stored,
the long compression time makes this unfeasible. A direct
comparison of the uncompressed and compressed variants with
around 16.000 bundles already shows the overhead introduced
by the compression. While the plain variant only took 71ms
the compression already needs 2636ms. So, in general, the
uncompressed storage should be preferred, alternatively, com-
pression could be provided by a WebAssembly module, which
might deliver a higher compression speed.

2) User Experience: We used our app with various devices
in our setup. Here, we will present some observations we
made from a users perspective. A brief overview of B-DTN7
in action on an iPad can be seen in Figure 10. The user
interface easily adapts from desktop over tablet class devices to
smartphones. Given a camera is present and web browser with



Fig. 9. HTML5 storage speed test with serialized bundles.

Fig. 10. B-DTN7 web app running on iPad

HTML5 support is used, QR codes such as the one generated
on an iPhone 8 (Fig. 11), can quickly be transferred.

The biggest limitation from a user perspective is the time
it takes to sync a bundle from one device to another even
when both are connected to the same access point. While a
synchronization is directly triggered when a user presses the
send button, the passive sync happens only periodically. This
could be compensated by a lower sync interval but this would
lead to an increased load and higher battery drain. A better
solution would be to use WebSockets for communication or
receive push notifications through a service worker and avoid
unnecessary synchronizations completely.

Transmitting a bundle via QR code is quite fast but really
only feasible for small text payloads. The audio transmission
on the other hand can transfer bundles of any size.

In order to benchmark the transmission speeds of audio
transfers we generated sound files using the library imple-
mented by the Quiet Modem Project, available open source7.

7https://github.com/quiet/quiet

Fig. 11. Exported bundle as QR code on iPhone 8

250 500 750 1000 1250 1500 1750 2000
Datasize (bytes)

0

20

40

60

80

Tr
an

sm
iss

io
n 

du
ra

tio
n 

(s
)

audible
audible-7k-channel-0
audible-7k-channel-1
cable-64k
ultrasonic
ultrasonic-3600
ultrasonic-whisper

Fig. 12. Transmission duration of bundles with different sizes and different
modem profiles.

The profiles defined by the software were used to generate
audio files for different-sized payloads ranging from 128
bytes up to 64 kilobytes. Figure 12 shows the transmission
duration times of the different payload sizes up to 2 kilo-
bytes. The profiles audible-7k and cable-64k are designed
for high-quality cable-based connections, and would not work
in speaker-microphone transmissions. The profile cable-64k
reaches the fastest transmission speeds of up to 118.05 kbps.
The profile audible-7k is designed for full-duplex transmission
and uses two different subcarriers, enabling 13.34 kbps in
both directions. The profiles designed for speaker-microphone
transmissions are named audible reaching 1.30 kbps and three
ultrasonic variants, reaching 0.35 kbps (ultrasonic-whisper),
1.04 kbps (ultrasonic) and 7.23 kbps (ultrasonic-3600). The
variants targeting a speaker-microphone combination use the
same principal encodings, but are limited to certain frequency
bands and thus induce no additional complexity.

Unfortunately, the longer the bundle needs for transmission,
the more error-prone the process gets and it also requires
significant patience from the users staying close to each other.
In our study, we had problems using this functionality across
devices. Google’s Chrome browser worked the best, Safari and
Firefox proved to be problematic, depending on the OS and



devices. Another source for possible problems is the audio
equipment in the device itself, bad microphones or speakers
can prevent successful transmissions easily. In our tests the
ultrasonic profile worked best, only showing a small amount of
failed transmissions where the audible profile produces more
errors. To summarize, audio-based transmission is a promis-
ing approach for peer-to-peer transmission, of bundles in
challenging situations. Especially the multicast functionality,
sending a bundle to multiple recipients at once, of audio-based
transmissions can be a good extension for certain scenarios.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have shown that our proposed solution,
B-DTN7, enables DTN communication on any platform that
has a modern web browser. To achieve this, we designed
and implemented a modular version of the Bundle Protocol
version 7 draft in the secure systems programming language
Rust. Furthermore, we targeted WebAssembly and the web
platform to build a progressive web app that can be used
to store, carry, forward, and create new bundles. This app
provides two novel and distinct ways to transmit bundles even
without any network connection by relying either on QR codes
or sound for direct device to device transfers. Finally, we
designed a bridging component in Google’s Go to deliver
the web app, provide a rest API for bundle synchronization
and interaction with classic dtn7 daemons using, for example,
the MTCP convergence layer. Through various benchmarks,
we have shown the efficiency of the bundle protocol library
for different standard operations that are needed frequently.
Finally, we have presented a small case study with real-world
usage of our proposed solution.

In the future, the proof-of-concept web app could be com-
pletely implemented as a single wasm app, eliminating the
number of involved technologies, making the code less error-
prone and easier to maintain. Also, this might lead to more
code-reuse across platforms such as desktop apps compared
to just the web. Furthermore, sophisticated convergence layers
and synchronization mechanisms based upon web technologies
such as WebRTC or WebSockets should be considered.

ACKNOWLEDGMENT

This work has been performed in the context of the LOEWE
centre emergenCITY. Furthermore, it was supported by the
German Federal Ministry of Education and Research (BMBF)
as well as by the Hessen State Ministry for Higher Education,
Research and the Arts (HMWK) within CRISP. It was also
funded by the LOEWE initiative in Hessen, Germany (Natur
4.0), and the Deutsche Forschungsgemeinschaft (SFB 1053).

REFERENCES

[1] S. Burleigh, K. Fall, and E. Birrane, “Bundle Protocol Version 7,”
Working Draft, IETF Secretariat, Internet-Draft draft-ietf-dtn-bpbis-14,
August 2019. [Online]. Available: http://www.ietf.org/internet-drafts/
draft-ietf-dtn-bpbis-14.txt

[2] S. Burleigh, “Minimal TCP Convergence-Layer Protocol,” Working
Draft, IETF Secretariat, Internet-Draft draft-ietf-dtn-mtcpcl-01,
April 2019. [Online]. Available: http://www.ietf.org/internet-drafts/
draft-ietf-dtn-mtcpcl-01.txt

[3] K. Scott and S. Burleigh, “Bundle Protocol Specification,” Internet
Requests for Comments, RFC Editor, RFC 5050, November 2007.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc5050.txt

[4] M. Demmer, E. Brewer, K. Fall, S. Jain, M. Ho, and R. Patra,
“Implementing Delay Tolerant Networking,” Intel Research Berkeley
and University of California, Berkeley, Tech. Rep., 2003.

[5] S. Burleigh, “Interplanetary Overlay Network An Implementation of the
DTN Bundle Protocol,” JPL, Tech. Rep., 2007.

[6] M. Doering, S. Lahde, J. Morgenroth, and L. Wolf, “IBR-DTN: An Effi-
cient Implementation for Embedded Systems,” in Third ACM Workshop
on Challenged Networks. ACM, 2008, pp. 117–120.

[7] M. Feldmann and F. Walter, “µPCN - A Bundle Protocol Implementation
for Microcontrollers,” in 2015 Int. Conf. on Wireless Communications
& Signal Processing (WCSP). IEEE, 2015.

[8] RightMesh, “Terra: Lightweight and Extensible DTN Library,” 2018.
[Online]. Available: https://github.com/RightMesh/Terra

[9] A. Penning, L. Baumgärtner, J. Höchst, A. Sterz, M. Mezini, and
B. Freisleben, “DTN7: An Open-Source Disruption-tolerant Networking
Implementation of Bundle Protocol 7,” in Ad-hoc, Mobile, and Wireless
Networks - 18th International Conference on Ad Hoc Networks and
Wireless, ADHOC-NOW 2019, 2019.

[10] P. Gardner-Stephen, “The Serval Project: Practical Wireless Ad-Hoc
Mobile Telecommunications,” Flinders University, Adelaide, Australia,
Tech. Rep., 2011.

[11] A. Dulaunoy, “Forban: A P2P Application for Link-local and Local Area
Networks,” 2016. [Online]. Available: https://github.com/adulau/Forban

[12] Open Garden, “Firechat,” 2019. [Online]. Available: https://www.
opengarden.com/firechat/

[13] S. Schildt, J. Morgenroth, W.-B. Pöttner, and L. Wolf, “IBR-DTN: A
lightweight, modular and highly portable Bundle Protocol implementa-
tion,” Electronic Communications of the EASST, vol. 37, 2011.

[14] J. Ronan, K. Walsh, and D. Long, “Evaluation of a DTN convergence
layer for the AX. 25 network protocol,” in Proceedings of the Second
International Workshop on Mobile Opportunistic Networking. ACM,
2010, pp. 72–78.

[15] I. Daniluk. (2019) TXQR: Animated QR data transfer with Gomobile
and Gopherjs. [Online]. Available: https://divan.dev/posts/animatedqr/

[16] ——. (2019) TXQR: Fountain codes and animated QR. [Online].
Available: https://divan.dev/posts/fountaincodes/

[17] B. Armstrong. (2016) Quiet Modem Project. [Online]. Available:
https://quiet.github.io/quiet-blog/2016/03/29/quiet.html

[18] U. Paul, M. Nekrasov, and E. Belding, “EmerGence: A Delay Tolerant
Web Application for Disaster Relief,” in Proceedings of the 20th
International Workshop on Mobile Computing Systems and Applications.
ACM, 2019, pp. 167–167.

[19] K. Sankaran, M. C. Chan, L.-S. Peh et al., “Dynamic framework for
building highly-localized mobile web DTN applications,” Computer
Communications, vol. 73, pp. 56–65, 2016.

[20] P. Lieser, F. Alvarez, P. Gardner-Stephen, M. Hollick, and D. Boehnstedt,
“Architecture for responsive emergency communications networks,”
in 2017 IEEE Global Humanitarian Technology Conference (GHTC).
IEEE, 2017, pp. 1–9.

[21] F. Álvarez, L. Almon, P. Lieser, T. Meuser, Y. Dylla, B. Richerzhagen,
M. Hollick, and R. Steinmetz, “Conducting a large-scale field test of a
smartphone-based communication network for emergency response,” in
Proceedings of the 13th Workshop on Challenged Networks (CHANTS).
ACM, 2018, pp. 3–10.

[22] M. Erdelj, M. Król, and E. Natalizio, “Wireless sensor networks and
multi-UAV systems for natural disaster management,” Computer Net-
works, vol. 124, pp. 72–86, 2017.

[23] P. Graubner, P. Lampe, J. Höchst, L. Baumgärtner, M. Mezini, and
B. Freisleben, “Opportunistic named functions in disruption-tolerant
emergency networks,” in Proceedings of the 15th ACM International
Conference on Computing Frontiers. ACM, 2018, pp. 129–137.

[24] A. Lindgren, “Social networking in a disconnected network: fbDTN:
facebook over DTN,” in Proceedings of the 6th ACM workshop on
Challenged networks. ACM, 2011, pp. 69–70.

[25] L. Baumgärtner, P. Gardner-Stephen, P. Graubner, J. Lakeman, J. Höchst,
P. Lampe, N. Schmidt, S. Schulz, A. Sterz, and B. Freisleben, “An
Experimental Evaluation of Delay-Tolerant Networking with Serval,” in
IEEE Global Humanitarian Technology Conference (GHTC). IEEE,
2016, pp. 70–79.

[26] C. Bormann and P. Hoffman, “Concise Binary Object Representation
(CBOR),” Internet Requests for Comments, RFC Editor, RFC 7049,
October 2013.


