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Problems and Targets
Challenges in Modern Computer Networks
§ Growing popularity of smartphone and tablet usage
§ Competing services on mobile devices:

§ Web browsing, Voice-over-IP, video live streaming, ...
§ Real-time, high-bandwidth applications
§ HTTP(s) as main communication channel

§ Paradigm shift towards Software-Defined Networking (SDN) and 
Software-Defined Wireless Networking (SDWN)

§ Dynamic flow configurations based on application demands

Targets
§ Protocol independent traffic flow classification
§ Rely on statistical flow properties, rather than port-identification or deep-

packet inspection (DPI)
§ Enable online-classification and reclassification
§ Enable efficient on-device classification

Methods and Approaches

Related Work

Traffic Patterns

Experimental Evaluation

§ Bayesian analysis into 10 fixed classes, 65% accuracy [1]
§ Comparing different supervised machine learning approaches, including 

SVMs, up to 97,8% accuracy, using prelabeled traffic [2]
§ Semi-supervised learning using K-means, subsequent cluster-labeling [3]
§ Unsupervised clustering algorithm based on statistical properties and 

payload-based clustering [4]
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Feature Vector Construction
§ Low number of statistical features to reduce computational amounts and 

memory usage:
§ Number of packets & bytes, avg./stdev./sum of packet sizes, mean 

DSCP
§ Feature computation in forward (client to server) and backward direction
§ Snapshots of statistical features after exponentially growing intervals, after 

1, 2, 4, 8, 16, … seconds.

§ Forward and backward traffic (lines)
§ Forward and backward packets (dots)
§ Typical patterns observable after a short period of

time. 
§ Main differences observable in packet sizes, traffic

shapes and inter-arrival times. 
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Data Clustering using a Neural Autoencoder
1. Feature normalization using standard score
2. Data encoding using the trained 

autoencoder
3. Apply softmax to raise output contrast
4. Reduction by choosing the index of the 

greatest element.

Training: Summed squared error combined 
with the Adaptive Moment Estimator (Adam).

Autolabeling Clusters
1. Clustering flows of equally sized sets per traffic class
2. Assign cluster labels by choosing the label with the highest occurrence in 

the cluster.  

Clustering using massive 
amounts on unlabeled data.

Classification using a small 
amount of labeled data.

Aggregation Method
§ Using statistical non-cumulative features is 15% better than using 

cumulative values.

Number of Clusters
§ Sweet spot when using 60 

clusters – no further impro-
vement using more clusters.

Scaler
§ Using a scaler improves the precision and recall to an average of 

around 60%. 

Classification Quality
§ Best result: 100 clusters, 30 epochs,

standard scaler, full dataset (including 
UDP and TCP flows):

§ Average precision of 80%
§ average recall of 75%
§ F1 Score of 0.76.

Conclusion
§ Novel time interval based feature vector and semi-automatic cluster 

labeling method.
§ Clustering independent independent of known traffic classes, classification 

using limited set of example flows.
§ Future Work: a) using deep and stacked Autoencoding, b) improving the 

SoftMax function to improve Clusters, c) real-time classification.

Fig. 2: Classification quality vs. number of clusters

d) Classification Quality: Table II shows the obtained
classification quality. The neural autoencoder in the configu-
ration with 100 clusters, learning in 30 epochs with a standard
scaler based on the full dataset produced the best result. These
100 clusters are mapped by our classifier to our 7 chosen
classes. An average precision of 80% and an average recall of
75% are achieved, which results in an F1 score of 76%.

e) Execution Time: Our runtime experiments were per-
formed on a 2 x 2.26 GHz Intel Xeon quad-core machine.
While the generation of flow objects from the pcap file took
around 2.20 ms per flow and the computation of the feature
vectors took about 1.67 ms per flow, the actual classification
only took 0.006 ms per flow. With a rate of over 200,000 flows
per second, our method can be used at the network edges,
where access points or mobile devices themselves can classify
the traffic and dynamically change connection properties using
SDN and SDWN technology to ensure optimal resource usage.

VI. CONCLUSION

In this paper, we have presented a novel approach to unsu-
pervised traffic flow classification using statistical properties
of flows and clustering based on a neural autoencoder that
has been used to cluster traffic flows into downloads, up-
loads, calls, browsing, videostream, live stream or interactive
communication, independent of the particular network proto-
cols used for performing these tasks. A novel time interval
based feature vector construction and a semi-automatic cluster
labeling method have facilitated traffic flow classification
independent of known traffic classes. Our evaluation using
four months of captured traffic has shown that our 7 classes
of traffic flows are detected sufficiently fast with an average
precision of 80% and an average recall of 75%.

There are several areas for future work, such as (a) using
deep and especially stacked autoencoders [19] to improve
the mapping of classes to clusters, (b) replacing the SoftMax
classification method by other methods to improve the classi-
fication, and (c) training the network with subflows of varying
lengths to use our approach for nearly real-time classification
after observing only a few seconds of the packet stream.

ACKNOWLEDGMENT

This work is funded by the LOEWE initiative (Hes-
sen, Germany) within the NICER project and the Deutsche
Forschungsgemeinschaft (DFG, SFB 1053 - MAKI).

TABLE II: Classification quality

precision recall F1 score
videostream 0.47 0.80 0.59
upload 1.00 0.85 0.92
livestream 0.86 0.67 0.75
browsing 0.91 0.50 0.65
download 0.80 0.80 0.80
call 0.87 1.00 0.93
interactive 0.71 0.60 0.65
avg/total 0.80 0.75 0.76

REFERENCES

[1] C. J. Bernardos, A. De La Oliva, P. Serrano, A. Banchs, L. M. Contreras,
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[15] A. Vlăduţu, D. Comăneci, and C. Dobre, “Internet traffic classification
based on flows’ statistical properties with machine learning,” Interna-
tional Journal of Network Management, 2016.

[16] C. Song, F. Liu, Y. Huang, L. Wang, and T. Tan, “Auto-encoder based
data clustering,” in Iberoamerican Congress on Pattern Recognition.
Springer, 2013, pp. 117–124.

[17] P. Huang, Y. Huang, W. Wang, and L. Wang, “Deep embedding network
for clustering,” in 22nd International Conference on Pattern Recognition
(ICPR). IEEE, 2014, pp. 1532–1537.

[18] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[19] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” Journal of Machine
Learning Research, vol. 11, no. Dec, pp. 3371–3408, 2010.

Fig. 2: Classification quality vs. number of clusters

d) Classification Quality: Table II shows the obtained
classification quality. The neural autoencoder in the configu-
ration with 100 clusters, learning in 30 epochs with a standard
scaler based on the full dataset produced the best result. These
100 clusters are mapped by our classifier to our 7 chosen
classes. An average precision of 80% and an average recall of
75% are achieved, which results in an F1 score of 76%.

e) Execution Time: Our runtime experiments were per-
formed on a 2 x 2.26 GHz Intel Xeon quad-core machine.
While the generation of flow objects from the pcap file took
around 2.20 ms per flow and the computation of the feature
vectors took about 1.67 ms per flow, the actual classification
only took 0.006 ms per flow. With a rate of over 200,000 flows
per second, our method can be used at the network edges,
where access points or mobile devices themselves can classify
the traffic and dynamically change connection properties using
SDN and SDWN technology to ensure optimal resource usage.

VI. CONCLUSION

In this paper, we have presented a novel approach to unsu-
pervised traffic flow classification using statistical properties
of flows and clustering based on a neural autoencoder that
has been used to cluster traffic flows into downloads, up-
loads, calls, browsing, videostream, live stream or interactive
communication, independent of the particular network proto-
cols used for performing these tasks. A novel time interval
based feature vector construction and a semi-automatic cluster
labeling method have facilitated traffic flow classification
independent of known traffic classes. Our evaluation using
four months of captured traffic has shown that our 7 classes
of traffic flows are detected sufficiently fast with an average
precision of 80% and an average recall of 75%.

There are several areas for future work, such as (a) using
deep and especially stacked autoencoders [19] to improve
the mapping of classes to clusters, (b) replacing the SoftMax
classification method by other methods to improve the classi-
fication, and (c) training the network with subflows of varying
lengths to use our approach for nearly real-time classification
after observing only a few seconds of the packet stream.

ACKNOWLEDGMENT

This work is funded by the LOEWE initiative (Hes-
sen, Germany) within the NICER project and the Deutsche
Forschungsgemeinschaft (DFG, SFB 1053 - MAKI).

TABLE II: Classification quality

precision recall F1 score
videostream 0.47 0.80 0.59
upload 1.00 0.85 0.92
livestream 0.86 0.67 0.75
browsing 0.91 0.50 0.65
download 0.80 0.80 0.80
call 0.87 1.00 0.93
interactive 0.71 0.60 0.65
avg/total 0.80 0.75 0.76

REFERENCES

[1] C. J. Bernardos, A. De La Oliva, P. Serrano, A. Banchs, L. M. Contreras,
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TABLE I: Manually extracted classes

Class Principal feature Example mobile application

Browsing ephemeral Wikipedia, Spiegel, Heise
Interactive long lasting Online Games, Facebook, Twitter
Download large downstream Updates, Dropbox
Livestream constant bitrate Streaming, iTunes Webradio
Videostream periodic buffering Youtube, Vimeo, Facebook, Twitch
Call low iat, symmetric Skype, Apple FaceTime, Google

Hangouts, WhatsApp
Upload large upstream YouTube, Facebook, WhatsApp

autoencoders is a model that is trained to reconstruct an
original input vector from a smaller representation. It is trained
using the squared reconstruction error as its cost function.

The classification approach consists of multiple steps. First,
the feature vector is normalized using the standard score.
While this seems to be the preferred mode, mean-only, stan-
dard deviation-only and no standardization are also evaluated
in our approach, to potentially save computational overhead.
The resulting vector is mainly used to train the autoencoder
and afterwards only for feature encoding. Then, the Softmax
(normalized exponential) function is applied to the encoded
values. The actual class is then determined by selecting the in-
dex of the greatest element in the Softmax vector. This method
is a rather modest classification method with the advantage of
producing highly differing cluster sizes. Our autoencoder is
trained using the summed squared error in combination with
the Adaptive Moment Estimator (Adam)[18].

C. Cluster Labeling

The obtained clusters from the previous step need to get a
semantic label. Therefore, we use a semi-automatic method
comparable to Zhang et al. [9] and Vladutu et al. [15]. Both
labeling methods obtain a ground truth set of labeled flows.
Zhang et al.[9] use application layer protocols, while Vladutu
et al. [15] use generated traffic and thus the applications’
names as the ground truth. Both methods have disadvantages
in generalizing their classification approach, since only cherry-
picked protocols are investigated.

To overcome these disadvantages, we have defined our
own set of classes, based on the clusters extracted by the
neural autoencoder and popular application categories. These
7 classes, their main features and examples of mobile appli-
cations, namely Browsing, Interactive, Download, Livestream,
Videostream, Call and Upload, are presented in Table I.

Figure 1a shows an example of a flow from the Call class.
The primary features of a low inter arrival time and relatively
low but varying packet sizes are visible in the figure. While
the backward bandwidth is continuously above 5 kB/s, the
forward bandwidth keeps dropping to very low values.

In Figure 1b, an example flow of browsing Twitter is
presented. Peaks in backward bandwidth of up to 200 kB/s
are visible, while the forward bandwidth stays pretty low.
This graph is typical for user interactions with either social
networks or even remote server management, e.g., via SSH. A
relatively small amount of input data, e.g., scrolling, clicking,

entering a command, leads to a back flow of data.
The last example is presented in Figure 1c. It shows the flow

properties of a buffered video stream. In modern audio/video
streaming protocols (e.g., Apple HLS, MPEG DASH), seg-
ments of the stream are delivered as individual files. If the
local buffer runs low, another segment is downloaded.

IV. IMPLEMENTATION

In this section, the implementation of our network traffic
classification approach is presented.

A. Data Capture
The data used in our work was captured in an office network

used by roughly 10 users including 5 frequent users with an
overall count of roughly 25 devices.

The data was captured in two phases. In the first phase,
traffic was captured on both wireless interfaces with 12.7
GB used over the 2.4 GHz network and 36.8 GB transferred
via the 5 GHz network over a three months period. In the
second phase, all traffic was captured, explicitly including
wired machines. Local traffic was excluded from all sets,
resulting in 30 GB over a one month period.

B. Data Processing
In the first step, the tool pkt2flow1 splits up the input file

to one pcap per flow before the statistical values of flows are
computed. The cluster labeling is implemented in the same
way as proposed by Zhang et al. [9] and Vladutu et al. [15].

C. Neural Autoencoder and Classification
To implement the presented neural autoencoder, the open

source library TensorFlow2 is used. The labeled data is clus-
tered using the already trained network. The cluster then gets
assigned the most frequent label from the previously labeled
data. If there are clusters that contain no labels, no cluster label
is assigned and the cluster may need further manual inspection.

V. EXPERIMENTAL EVALUATION

In this section, the proposed method is evaluated.
a) Aggregation Method: Two aggregation methods were

examined. The cumulative method (cum) is around 15% worse
than using the non-cumulative version (noncum), where the
flow is separated into multiple segments and the statistical
values are computed individually.

b) Number of Clusters: The number of clusters is defined
by the number of hidden nodes of our neural autoencoder. In
our parameter scan, we evaluated 10, 15, 20, 30, 40, 60, 80 and
100 clusters. The experiment shows (Fig. 2) that a sweet spot
can be identified when 60 clusters are used, since the averaged
results are not significantly better when more clusters are used.

c) Scaler: The scaler has a major impact on the classi-
fication results. While average precision and recall are only
at roughly 50% when no scaler is used, the standard scaler
improves average precision and recall up to around 60%.

1https://github.com/jonashoechst/pkt2flow
2https://www.tensorflow.org

(a) Audio call (b) Website interaction (c) Buffered videostream

Fig. 1: Traffic utilization and packet sizes of example flows.

and even host history inclusion have been presented [11], [7] to
classify traffic into 10 classes, such as INTERACTIVE, MAIL,
WWW or MULTIMEDIA. Moore et al. [6] use Bayesian
analysis techniques with 248 per-flow features to reach a
basic classification accuracy of 65%. By improving the basic
methods, 95% classification accuracy is reached.

Kim et al. [12] criticize the high variability in data sources
and classification targets. The authors propose to use overall
accuracy, precision, recall and F-Measure as performance
metrics, as well as 4 different publicly available datasets
created between 2004 and 2006. They also compare different
machine learning approaches and reach 94.2%-97.8% accuracy
using a Support Vector Machine (SVM) [13].

Semi-supervised methods have been proposed [7] to find
clusters of traffic flows using the K-means algorithm [14].
The clusters are labeled afterwards using a small set of
labeled flows. The authors also propose a real-time classifica-
tion method where multiple layers offer classifications based
on packet milestones. Vladutu et al. [15] present a semi-
supervised framework for flow classification using generated
traffic and thus the resulting semantic categories.

Zhang et al. [9] present an unsupervised clustering algorithm
based on statistical properties of flows as well as payload-
based clustering. The authors use 13 different classes as their
ground truth, made up of different protocols, such as HTTP
and SSH. The flows are clustered using several configurations
of the K-means algorithm.

The majority of methods proposed in the literature are based
on supervised learning methods. Using unsupervised clustering
instead, the methods do not rely on the ground truth of the
labeling mechanisms. Clearly, at some point labels have to be
attached to be able to compare the mechanisms, but the actual
learning is independent of pre-labeled flows that are hard to
obtain in good quality and/or high numbers [2], [9].

III. A NEURAL AUTOENCODER FOR TRAFFIC FLOW
CLASSIFICATION

This section presents the design of the proposed neural
autoencoder for traffic flow classification.

A. Feature Vector Construction
We try to keep the number of statistical features low to

reduce computational demands and memory usage. In addi-

tion to statistical features, such as number of packets/bytes,
avg./stdev. packet size and inter-arrival time etc., the median
of the Differentiated Services Codepoint (DSCP) field is used.
This IP header field is a successor of the Type-of-Service (ToS)
field and is used to indicate network demands of packets.

All features are computed in each flow direction, namely
forward (client to server) and backward (server to client). For
TCP flows, clients and servers are defined by the connection
handshake. Since UDP is a connection-less protocol, a UDP
flow is defined as a repeated exchange of packets between the
same sender IP/port and recipient IP/port combination.

In Figure 1, three examples of network flows are presented.
The red and blue lines show the forward and backward traffic.
Each red and blue dot stands for a single TCP forward
or backward packet, respectively. Comparing the presented
examples, great differences in bandwidth consumption, inter-
arrival times and packet sizes can be observed.

For Figure 1a and Figure 1c, the most important criteria
for clustering are available after a short period of time. This
perception can be used to improve flow clustering, in particular
with respect to future online classification. To use this knowl-
edge, the feature vector is constructed using exponentially
growing time periods for statistical flow property computation.
In this way, information from the beginning of flows is less
reduced compared to information from the later parts. Using
this method, it is also possible to constitute the duration
information of flows while using a fixed length feature vector,
as required by most machine learning algorithms. The feature
vector used in this paper is constructed using exponentially
growing intervals of up to 2048 seconds.

There are two possible computation methods. In the cumula-
tive method, the interval boundaries range from the beginning
of the flow until the end boundary. The used values are
statistical properties up to the current time. The second method
is non-cumulative and therefore each interval only contains the
statistical information of packets handled in the interval itself.

In total, each feature vector has 216 features: 2 half flows
* 12 intervals * 9 statistical features.

B. Clustering via a Neural Autoencoder

Neural autoencoders [16], [17] are useful for dimension
reduction and classification. The general approach of neural


