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Introduction: Vertical Handovers Today

§ Handovers are performed reactively:
§ Based on weak RSSI or high packet loss

§ Change of default gateway
§ Application has to deal with connection loss

§ Multipath-TCP enables seamless handovers
§ Multiple subflows on all available network interfaces

§ Drawback: energy usage, use of limited data plans
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Introduction: Contributions

§ Novel data-driven, proactive approach for seamless 
vertical Wi-Fi/cellular handovers

§ Multiple heterogeneous smartphone sensors to predict 
Wi-Fi connection loss

§ Multipath-TCP based seamless connection handover

§ Experimental evaluation based on Quality of Experience

§ Open demo implementation and experimental artifacts
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Conceptual Overview
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Smartphone Sensor Readings

Wi-Fi Properties       Linear Acceleration

Spatial Orientation      Ringer Mode

Wi-Fi Access Points      Power State

Magnetic Field Audio State

Step Counter     Bluetooth Neighborhood

Gravity     Atmospheric Pressure
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Sensor Data Example
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Data Collection

§ 20 GB of sensor data from five different users
§ Running for the whole day – daily lives of users

§ 900,000 unique samples, collected in three months

§ Training and test set
a) Random split of all available samples (70:30)

b) User-based split: learn with some users, test with the 
others
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Feature Selection: Observation & Prediction
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Feature Selection: Input Vectors

§ Full Feature Vector
§ All 25 available sensors, 25 x 60 = 1500 features

§ Reduced Feature Vector

§ Atmospheric pressure, linear acceleration, power,
step counter, gravity, Wi-Fi (frequency, speed, RSSI)
8 x 60 = 480 features

§ Ground Truth
§ Wi-Fi RSSI > -70 dBm, shifted
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Machine Learning: Random Forest

§ Requires equally distributed samples:
down-sampling, 10 random trees

Figure 2: Different sensors leading to an early (p1) and an ideal
(p2) prediction of Wi-Fi connection loss, based on a trained
model with randomly split data.

Reduced Feature Vector: Many of the sensors, like linear
acceleration and gyroscope, described in Section III-A share
underlying features due to their physical properties. The
number of sensors can be reduced by leaving aside these
sensors. For the Reduced Feature Vector, we used the follow-
ing sensors: Atmospheric pressure: delta; Linear acceleration:
length; Step counter: delta; Power: is charging; Gravity: z;
Wi-Fi: frequency, speed, RSSI .

C. Sensor Data Example
Figure 2 shows an example of several sensor data values

collected by a smartphone. The figure shows the computed
ground truth and a prediction probability value of a neural
network based on the Full Feature Vector, i.e., a probability
value < 50% means that a Wi-Fi connection loss is predicted
and vice versa. The graphical representation of the sensor
values shows that no obvious correlation between one of the
sensors and the prediction ground truth exists. Nevertheless,
each of the sensors shows some information that could be
useful. For example, the atmospheric pressure sensor rises
from t = 100 to t = 115, which could be caused by changing
the floor in order to leave the building or by a changing
ventilation. In combination with the step counter delta, the
first option is more likely, also resulting in a higher likelihood
for a Wi-Fi connection loss. Another example is the gravity
sensor’s z axis that reports about 9.81 for the time period
from t = 20 until t = 35, which together with the linear
acceleration sensor is a good sign for laying flat on a table.
This again reduces the likelihood of a Wi-Fi connection loss
event.

For the neural network shown on the bottom in Figure 2,
a 60 seconds observation window has to be filled before
the first prediction is performed at pstart. The classification
ends at pend, since the operating system reports that Wi-Fi
is unavailable. Since Wi-Fi becomes unavailable at loss, the
ground truth is 0 from p2 ongoing, matching the 15 seconds
prediction window. The neural network classifier matches the

Table I: Reduced Feature Vector, random forest (10 trees),
randomly split data.

Event Prec. Recall F1-score Support

Loss 0.86 0.98 0.91 52503
No Loss 1.00 0.98 0.99 438772

Total 0.98 0.98 0.98 491275

Table II: Reduced Feature Vector, randomly split data, different
learners and configurations.

Metric Forest NN 1 NN 2 NN 3

Loss Prec. 0.89 0.95 0.97 0.97
Loss Recall 0.98 0.94 0.95 0.95

F1-score 0.93 0.94 0.96 0.96

ground truth quite well, with the exception of p1, where the
classifier predicts the loss slightly too early. This example
shows that the combination of sensors available on today’s
smartphones can lead to an effective prediction of Wi-Fi
connection loss.

D. Machine Learning Results

This section presents results of training different methods
with the data to predict Wi-Fi connection loss: (a) a random
forest classifier [8], and (b) a multi-layer neural network.
In particular, we use the MLPClassifier and RandomForest
implementations of scikit-learn [16].

Random forest: Since random forest learning depends on
equally distributed samples, the data is down-sampled accord-
ingly to match this criterion. The random forest consists of 10
random trees, learned using the Gini criterion. The overall
performance of the random forest is satisfactory, since all
values are greater than 0.97. However, the precision of the Wi-
Fi connection loss class was not very high (0.86), ultimately
resulting in triggering early or unnecessary handovers.

RSSI-only neural network: Another basic learning ap-
proach is to limit the learner to only use the timeseries of RSSI
values, as presented in Section II. During our experiments,
different configurations of the neural network were evaluated.
The overall performance is comparable to the performance
presented in the related work. The classification quality of the
Wi-Fi connection loss class did not exceed an F1-score of
0.95.

Random Data Split: The results for neural networks
learned with randomly split data depend on the neural network
architectures. Table II provides an overview of different clas-
sifier approaches with the Reduced Feature Vector. Classifier
NN 1 consists of 100 hidden neurons, NN 2 of (300, 200, 100)
neurons, and NN 3 of 5 hidden layers containing (400, 400,
400, 400, 400) neurons. All results were achieved using 70%
of the data set exclusively for learning and the remaining 30%
for testing. In our experiments, NN 1 can reach a classification
quality comparable to the random forest classifier. The F1-
score of the Wi-Fi connection loss class reaches up to 0.94,

Table: Random Data Split, Reduced Feature Vector
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Machine Learning: Neural Networks

§ Input Layer: up to 1500 neurons, depending on 
feature vector

§ Hidden Layers in different configurations:
§ NN 1: 1 hidden layer of (100) neurons

§ NN 2: 3 hidden layers of (300, 200, 100) 

§ NN 3: 5 hidden layers of (400, 400, 400, 400, 400) 

§ Output Layer: 1 neuron, indicating loss probability
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Model Evaluation: Random Data Split

Table: Reduced Feature Vector, Random Data Split

Figure 2: Different sensors leading to an early (p1) and an ideal
(p2) prediction of Wi-Fi connection loss, based on a trained
model with randomly split data.

Reduced Feature Vector: Many of the sensors, like linear
acceleration and gyroscope, described in Section III-A share
underlying features due to their physical properties. The
number of sensors can be reduced by leaving aside these
sensors. For the Reduced Feature Vector, we used the follow-
ing sensors: Atmospheric pressure: delta; Linear acceleration:
length; Step counter: delta; Power: is charging; Gravity: z;
Wi-Fi: frequency, speed, RSSI .

C. Sensor Data Example
Figure 2 shows an example of several sensor data values

collected by a smartphone. The figure shows the computed
ground truth and a prediction probability value of a neural
network based on the Full Feature Vector, i.e., a probability
value < 50% means that a Wi-Fi connection loss is predicted
and vice versa. The graphical representation of the sensor
values shows that no obvious correlation between one of the
sensors and the prediction ground truth exists. Nevertheless,
each of the sensors shows some information that could be
useful. For example, the atmospheric pressure sensor rises
from t = 100 to t = 115, which could be caused by changing
the floor in order to leave the building or by a changing
ventilation. In combination with the step counter delta, the
first option is more likely, also resulting in a higher likelihood
for a Wi-Fi connection loss. Another example is the gravity
sensor’s z axis that reports about 9.81 for the time period
from t = 20 until t = 35, which together with the linear
acceleration sensor is a good sign for laying flat on a table.
This again reduces the likelihood of a Wi-Fi connection loss
event.

For the neural network shown on the bottom in Figure 2,
a 60 seconds observation window has to be filled before
the first prediction is performed at pstart. The classification
ends at pend, since the operating system reports that Wi-Fi
is unavailable. Since Wi-Fi becomes unavailable at loss, the
ground truth is 0 from p2 ongoing, matching the 15 seconds
prediction window. The neural network classifier matches the

Table I: Reduced Feature Vector, random forest (10 trees),
randomly split data.

Event Prec. Recall F1-score Support

Loss 0.86 0.98 0.91 52503
No Loss 1.00 0.98 0.99 438772

Total 0.98 0.98 0.98 491275

Table II: Reduced Feature Vector, randomly split data, different
learners and configurations.

Metric Forest NN 1 NN 2 NN 3

Loss Prec. 0.89 0.95 0.97 0.97
Loss Recall 0.98 0.94 0.95 0.95

F1-score 0.93 0.94 0.96 0.96

ground truth quite well, with the exception of p1, where the
classifier predicts the loss slightly too early. This example
shows that the combination of sensors available on today’s
smartphones can lead to an effective prediction of Wi-Fi
connection loss.

D. Machine Learning Results

This section presents results of training different methods
with the data to predict Wi-Fi connection loss: (a) a random
forest classifier [8], and (b) a multi-layer neural network.
In particular, we use the MLPClassifier and RandomForest
implementations of scikit-learn [16].

Random forest: Since random forest learning depends on
equally distributed samples, the data is down-sampled accord-
ingly to match this criterion. The random forest consists of 10
random trees, learned using the Gini criterion. The overall
performance of the random forest is satisfactory, since all
values are greater than 0.97. However, the precision of the Wi-
Fi connection loss class was not very high (0.86), ultimately
resulting in triggering early or unnecessary handovers.

RSSI-only neural network: Another basic learning ap-
proach is to limit the learner to only use the timeseries of RSSI
values, as presented in Section II. During our experiments,
different configurations of the neural network were evaluated.
The overall performance is comparable to the performance
presented in the related work. The classification quality of the
Wi-Fi connection loss class did not exceed an F1-score of
0.95.

Random Data Split: The results for neural networks
learned with randomly split data depend on the neural network
architectures. Table II provides an overview of different clas-
sifier approaches with the Reduced Feature Vector. Classifier
NN 1 consists of 100 hidden neurons, NN 2 of (300, 200, 100)
neurons, and NN 3 of 5 hidden layers containing (400, 400,
400, 400, 400) neurons. All results were achieved using 70%
of the data set exclusively for learning and the remaining 30%
for testing. In our experiments, NN 1 can reach a classification
quality comparable to the random forest classifier. The F1-
score of the Wi-Fi connection loss class reaches up to 0.94,
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Model Evaluation: Example
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Online Prediction: Mobile Application

On-Device Model Execution

DASH.js Video Playback

MPTCP Handovers
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Online Prediction: DASH.js Video

§ Dynamic Adaptive Streaming over HTTP(s)
§ Configuration: BOLA adaptation algorithm, 10 s buffer

§ H.264 video, AAC audio

§ Segments of 2 seconds

§ Available bandwidths: 1, 2, and 4 Mbit/s

§ Base metrics: Stalls, Bitrate, Adaptations, Buffer levels

Open Movie: 
Elephants Dream

https://orange.blender.org/
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Online Prediction: MPTCP Handovers

§ Toggle LTE state based on online prediction

§ MPTCP kernel implementation (v0.86) for Android

§ MultipathControl (De Coninck et al.)

§ Video server: MPTCP v0.92
§ redundant scheduler

§ fullmesh path manager

https://multipath-tcp.org/pmwiki.php/Users/Android
https://github.com/umr-ds/seamcon-mptcpcontol
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Experimental Evaluation: Scenarios

§ Four scenarios:
§ Leaving the office (1) 

§ Visiting a colleague (2) 

§ Using the staircase (3) 

§ Wi-Fi roaming support (4)

§ Three connectivity modes: 
§ Android, MPTCP, Seamless 

§ Nexus 5, Android 4.4.2
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Online Prediction

Demo
https://youtu.be/E0CFLk82s6s

https://youtu.be/E0CFLk82s6s
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Experimental Evaluation
Table III: Overview of Experimental Results

(a) Scenario 1: Leaving

Mode # St. ? St. # A. HQ ? TD

Stock 3 1.46 s 23 87 % 21.75 MB
MPTCP 0 0 s 20 89 % 41.32 MB
Seamless 0 0 s 27 88 % 36.11 MB

(b) Scenario 2: Colleague

Mode # St. ? St. # A. HQ ? TD

Stock 0 0 s 10 92 % 0 MB
MPTCP 0 0 s 10 91 % 9.98 MB
Seamless 0 0 s 17 92 % 9.59 MB

(c) Scenario 3: Staircase

Mode # St. ? St. # A. HQ ? TD

Stock 3 2.06 s 49 80 % 0 MB
MPTCP 0 0 s 32 87 % 33.92 MB
Seamless 0 0 s 28 85 % 16.81 MB

(d) Scenario 4: Wi-Fi Roaming

Mode # St. ? St. # A. HQ ? TD

Stock 18 14.98 s 42 53 % 0.89 MB
MPTCP 0 0 s 38 86 % 71.99 MB
Seamless 15 5.47 s 23 84 % 15.50 MB

Figure 4: MOScombined values grouped to connectivity modes
and scenarios.

When looking at the buffer levels, video stream quality and
the used bandwidth, it can be seen that based on the prediction
of Seamless, the cellular subflow is established proactively,
resulting in a seamless handover and thus no video stalling.

Apart from improvements of these technical values, our
approach improves QoE for users, as expressed in the
MOScombined. Figure 4 shows the MOScombined on the
y-axis and the different connectivity modes on the x-axis,
grouped by scenario. For the stock tests, the MOScombined

is between about 2.5 (poor) and 3.5 (fair), indicating that
the playback is not totally unsatisfactory, but far away from
a great experience. Seamless, on the other hand, achieves a
MOScombined of almost 4, indicating a good QoE, as high as
in MPTCP tests.

Scenario 2: As shown in Table IIIb, all tests are com-
parable for all metrics, showing that our approach does not
introduce any negative effects in already good situations. The
transferred amount of data over cellular in Seamless is about
as high as in the MPTCP tests. This is because the classifier
predicts a Wi-Fi connection loss due to the movement of the
smartphone and thus switches to the cellular network, even
though this is not necessary.

Neither the technical metrics like buffer level or used
bandwidth, nor the MOS values differ in the these experiments,
thus they are not further evaluated here, again indicating that
our approach does not worsen the situation by any means.
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Figure 5: Stock and Seamless in Scenario 3

Scenario 3: As shown in Table IIIc, the stock tests
performed worst with 3 stallings and an average stalling time
of about 2 seconds. Additionally, with 49 adaptations and only
80% of the time at the highest achieved quality, the stock tests
perform badly. MPTCP and Seamless do not stall at all. With
28 and 30 adaptations and 85% of the time at the highest
achieved quality, the results of our approach are as good as
in the MPTCP tests, again showing significant improvements
over the stock implementation. The data usage over cellular
shows the same behavior as in Scenario 1.

Figures 5a and 5b show bandwidth and buffer level for
Scenario 3. In the stock tests, the maximum distance is shown
in the used bandwidth around seconds 150 and 210. Seamless
improves this situation and establishes a cellular connection
in a timely manner resulting in no stallings. MOScombined

during the stock tests shows again a relatively bad QoE with
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Scenario 3: As shown in Table IIIc, the stock tests
performed worst with 3 stallings and an average stalling time
of about 2 seconds. Additionally, with 49 adaptations and only
80% of the time at the highest achieved quality, the stock tests
perform badly. MPTCP and Seamless do not stall at all. With
28 and 30 adaptations and 85% of the time at the highest
achieved quality, the results of our approach are as good as
in the MPTCP tests, again showing significant improvements
over the stock implementation. The data usage over cellular
shows the same behavior as in Scenario 1.

Figures 5a and 5b show bandwidth and buffer level for
Scenario 3. In the stock tests, the maximum distance is shown
in the used bandwidth around seconds 150 and 210. Seamless
improves this situation and establishes a cellular connection
in a timely manner resulting in no stallings. MOScombined

during the stock tests shows again a relatively bad QoE with

Overview of Experimental Results
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Experimental Evaluation: QoE Results

MOScombined values grouped to connectivity modes and scenarios
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§ Novel data-driven approach for Wi-Fi loss prediction
§ Precision of up to 0.97; Recall of up to 0.98

§ Promising results with MPTCP-based handovers
§ QoE improvements of 2.7 to 3.8 in certain scenarios

§ Lower cellular data usage (50%) compared to traditional 
MPTCP handovers

Conclusion
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§ Enlarge sensor variety: from contextual sensors to domain 
specific sensors, i.e., to detect high network load

§ Online learning on smartphones
§ User-specific models, e.g., user / access point combinations

§ Multi-RAT handover predictions (Wi-Fi, 3G, LTE, 5G, …)

§ Hardware / low-level implementations
§ Smartphone sensor hub, lightweight neural networks

Future Work
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One more thing…

https://umr-ds.github.io/seamcon/

https://umr-ds.github.io/seamcon/
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The End

Time for

Questions
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Model Evaluation: User-based Data Split

§ Full Feature Vector: 0.91, 0.72, and 0.68 precision in 
the Wi-Fi loss class

§ Reduced Feature Vector: 0.93, 0.92, and 0.79 
precision in the Wi-Fi loss class  

§ Neural networks are capable of predicting Wi-Fi loss.
§ The Reduced Feature Vector generalizes better;

§ per-user training significantly improves the results.

§ Overall best performance: NN 3 with the Reduced Feature Vector
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Experimental Evaluation

Mean Opinion Score as QoE Metric
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Experimental Evaluation: QoE Results

Stock and Seamless in Scenario 3

a) Stock Android b) Seamless
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Experimental Evaluation: Power consumption

Power consumption across different connectivity modes


