Virtual October 29 - November 1, 2020

IEEE Global Humanitarian Technology Conference www.ieeeghtc.org

PIMOD: A Tool for Configuring Single-Board Computer Operating System Images

Connectivity and Communication 3: Image Enhancement Techniques Jonas Höchst Sat, Oct 31 2020

CELEBRATING 10 YEARS OF ADVANCING TECHNOLOGY FOR HUMANITY

PIMOD: A Tool for Configuring Single-Board Computer Operating System Images

Jonas Höchst, Alvar Penning, Patrick Lampe and Bernd Freisleben

Advancing Technology for Humanity

Technology Prototyping in the Humanitarian Sector

How does your research project prototype new ideas?

Logos: ALLNET GmbH Computersysteme, Libre Computer, Raspberry Pi Foundation, NVIDIA CORPORATION, Xunlong Software Co., Limited

Setting Up Single-Board Computers (for Research)

The manual approach: iterate configuration for every device.

Setting Up Single-Board Computers (for Research)

Replicate a configured operating system: configure once, use often.

Setting Up Single-Board Computers (for Research)

First-boot self-configuration: add scripts to configure device on first boot

Configuration Scripts

- * Software is installed on every device independently, overhead
- * System needs to be online

Introducing PIMOD

Enhance OS images using virtualization

- * Image generation on a generic x86 server
- * No manual process required (e.g., SD card swapping)
- * Install-once, replicate everywhere
- * Simple dedicated configuration language

Pifile

TENTH ANNIVERSARY

Pifile

1.

PIMOD Design

The language

- Simple language inspired by Docker
- Line-based commands written in caps:
 - a) FROM <source> [partition]
 - b) TO <destination image>
 - c) INPLACE <image>
 - d) PUMP <bytes>
 - e) PATH <location>
 - f) RUN <cmd>
 - g) INSTALL [mode] <source>
 <destination>
 - h) HOST <cmd>

5 INSTALL id_rsa.pub /home/pi/.ssh/ authorized_keys

Listing 1: PIMOD example 1: upgrade Raspbian and enable the serial console.

- Fast execution
 - No full system emulation
 - No guest operating system booting, no accidental first boot script execution
- QEMU-based system emulation
- Support for ELF binaries of different instruction set architectures
- Support for continuous integration approaches
 - Allow developers to build OS images asynchronously and reproducibly
- Host system support
 - Integrate into workflows on the host machine, e.g., building software with a native cross-compiler

PIMOD Implementation

Staged execution of a Pifile-based operating system configuration

Tenth anniversary

Fig. 1: Stages of PIMOD: preparation, commands, and post-processing.

PIMOD Implementation

Demo

PIMOD Evaluation

Reaching design goals

Usability

- Large advantage compared to regular configuration schemes
- Utilization of more powerful hardware and/or network connection
- Modern software development with continuous integration

General applicability

- Support for various Linux distributions:
- Raspbian, Ubuntu Server, OpenWRT, CentOS, Fedora, Kali, OpenSUSE, ...
- Support for multiple hardware platforms:
- Libre computer boards ALL-H3- CC, AML-S805X-AC and ROC-RK3328-CC,
- RaspberryPi (all models), BananaPi M4, OrangePi 3, RockPi 4,
- Nvidia Jetson Nano (AI development board),
- ODROID C2 and N2,

ROCKPI

PIMOD Evaluation

Virtualization costs & benefits

Evaluation setup:

- Raspberry Pi 3 Model B V1.2
- 4 x 1.2 GHz, 1 GB Ram, 32 GB microSD class U1
- Mid-End build server
 - 2 x 16 x 2.6 GHz, 256 GB Ram, NVMe drive

Results

- Faster execution of network and IO-bound tasks
- Fast server network connection
- Fast NVMe drive
- Overhead through non-native computations
 - Cryptographic operations, such as hashing, signing, ...
 - Limited by single-core performance and emulation overhead

Fig. 2: Example executions times of different commands using a Raspberry Pi compared to PIMOD.

PIMOD Evaluation

Extensibility examples

	<pre>FROM http://downloads.openwrt.org/ releases/18.06.5/targets/brcm2708/ bcm2710/openwrt-18.06.5-brcm2708- bcm2710-rpi-3-ext4-factory.img.gz</pre>	HTTP Image Source
Host Environment Variable	2 3 # Derive block device from environment 4 TO \$DEVICE	
	5 6 <i># Include wifi configuration</i> 7 source modules/wifi.Pifile	Modularization of Redundant Parts
LINIX Pines	<pre>8 9 # Add local public ssh key 0 RUN tee -a /etc/dropbear/ authorized keys <\$HOME/.ssh/id rsa.</pre>	
UNIXTIPES	pub 1 2 # Set DHCP client mode for eth0	
	<pre>3 RUN tee -a /etc/config/network <<eof 'bridge'<="" 'lan'="" 4="" 5="" config="" interface="" option="" pre="" type=""></eof></pre>	Here Documents
	6 option ifname 'eth0' 7 option proto 'dhcp' 8 EOF	
Integration of Host Cross-compiler	<pre>% % % # Cross-compile local software % % HOST GOOS=linux GOARCH=arm GOARM=5 go % build -o dtn7d ./dtn7-go/cmd/dtnd % % % % % % % % % % % % % % % % % % %</pre>	
• * * E	2 INSTALL /55 dtn/d /usr/bin/dtn/d Listing 2: PIMOD example 2: advanced scripting with Bash features.	

PIMOD Applications

Why we built and how we use PIMOD

Ç

Nature 4.0 Sensing Biodiversity

Search or jump to	Pull requests Issues Marketplace Explore		4• 🌒 •
Nature40 / Sensorboxes	s-Images	⊙ Watch ▾ 6 🖧 Star	0 V Fork 0
<> Code ① Issues 8	Pull requests • Actions Projects • Wiki	🛈 Security 🖂 Insights 🛛 🕅	🕄 Settings
Vorkflows New workflow	All workflows		
All workflows	Q Filter workflows		
ද _o Build Images	30 results	Event - Status - E	Branch - Actor -
	 Merge branch 'master' of github.com:Natur Build Images #30: Commit 7f11fbf pushed by jonashoechst 	0.28	 ☐ 4 months ago ♂ 41m 48s
	× added snd-i2s_rpi kernel module for i2s mic Build Images #29: Commit ad1f699 pushed by jonashoechst	0.28	⊟ 4 months ago ⊘ 18m 29s
	 updated pysensorproxy for lighttrap Build Images #28: Commit 0c366ae pushed by jonashoechst 	0.27	☐ 4 months ago ঔ 39m 29s

PIMOD Applications

Why we built and how we use PIMOD

Nature 4.0 Sensing Biodiversity

Fig. 3: Raspberry Pi Image configurations used for the Nature 4.0 Project

Future Work & Acknowledgements

- Reproducible builds: Bit-identical builds require further adjustments:
 - Timestamps
 - Reproducibility of installed software itself
- Caching and staged builds
 - Only execute changed parts of a Pifile
 - Efficient implementation using snapshot filesystems

Testing & Evaluation in the wild and in other use cases Questions and discussion:

- Right now via GHTC Stream
- via Mail: <u>hoechst@mathematik.uni-marburg.de</u>

DFG Collaborative Research Centre 1053 - MAKI

References

- L. Baumgärtner, A. Penning, P. Lampe, B. Richerzhagen, R. Steinmetz, and B. Freisleben, "Environmental monitoring using low-cost hardware and infrastructureless wireless communication," in 2018 IEEE Global Humanitarian Technology Conference (GHTC). IEEE, 2018, pp. 1–8.
- [2] L. Baumgärtner, J. Höchst, P. Lampe, R. Mogk, A. Sterz, P. Weisen- burger, M. Mezini, and B. Freisleben, "Smart street lights and mobile citizen apps for resilient communication in a digital city," in 2019 IEEE Global Humanitarian Technology Conference (GHTC), 2019, pp. 1–8.
- [3] C. Baun, "Mobile clusters of single board computers: an option for providing resources to student projects and researchers," SpringerPlus, vol. 5, no. 1, p. 360, 2016.
- [4] F. Bellard, "QEMU, a fast and portable dynamic translator." in USENIX Annual Technical Conference, FREENIX Track, vol. 41, 2005, p. 46.
- [5] M.Beller,G.Gousios,andA.Zaidman, "Oops,mytestsbrokethebuild: An explorative analysis of Travis CI with GitHub," in 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR). IEEE, 2017, pp. 356–367.
- [6] D. Bonasera. (2016) PiShrink: Make your Pi images smaller! [Online]. Available: https://github.com/Drewsif/PiShrink
- [7] K. Daigle. (2018, October) GitHub Actions: built by you, run by us. GitHub.
- [8] F. Fainelli, "The OpenWRT embedded development framework," in Proceedings of the Free and Open Source Software Developers European Meeting, 2008, p. 106.
- [9] D. Ferguson. (2016) PiBakery: Easily customise Raspbian. [Online]. Available: https://www.pibakery.org/index.html
- [10] N. Friess, J. Bendix, M. Brändle, R. Brandl, S. Dahlke, N. Farwig, B. Freisleben, H. Holzmann, H. Meyer, T. Müller et al., "Introducing Nature 4.0: A sensor network for environmental monitoring in the Marburg Open Forest," Biodiversity Information Science and Standards, 2019.
- [11] J. Gottwald, R. Zeidler, N. Friess, M. Ludwig, C. Reudenbach, and T. Nauss, "Introduction of an automatic and open-source radio-tracking system for small animals," Methods in Ecology and Evolution, vol. 10, no. 12, pp. 2163–2172, 2019.
- [12] L. Hochstein and R. Moser, Ansible: Up and Running: Automating configuration management and deployment the easy way. O'Reilly Media, Inc., 2017.
- [13] B. Hosmer, "Getting started with Salt Stack the other configuration management system built with Python," Linux journal, vol. 2012, no. 223, p. 3, 2012.
- [14] S. J. Johnston, P. J. Basford, C. S. Perkins, H. Herry, F. P. Tso, D. Pezaros, R. D. Mullins, E. Yoneki, S. J. Cox, and J. Singer, "Commodity single board computer clusters and their applications," Future Generation Computer Systems, vol. 89, pp. 201–212, 2018.

- [15] A. Kairiukstis. (2012) BuildRaspbianImage: Build (and cross- compile) your own image for Raspberry Pi. [Online]. Available: <u>https://github.com/andrius/build-raspbian-image/</u>
- [16] R. Kumar and M. P. Rajasekaran, "An IoT based patient monitoring system using Raspberry Pi," in 2016 International Conference on Com- puting Technologies and Intelligent Data Engineering (ICCTIDE'16). IEEE, 2016, pp. 1–4.
- [17] J. Loope, Managing infrastructure with puppet: Configuration manage- ment at scale. O'Reilly Media, Inc., 2011.
- [18] D. Merkel, "Docker: Lightweight Linux containers for consistent de- velopment and deployment," Linux Journal, vol. 2014, no. 239, p. 2, 2014.
- [19] A. Penning, L. Baumgärtner, J. Höchst, A. Sterz, M. Mezini, and B. Freisleben, "DTN: An open-Source disruption-tolerant networking implementation of Bundle Protocol 7," in International Conference on Ad-Hoc Networks and Wireless (AdHoc-Now 2019). Luxembourg, Luxembourg: Springer, 2019, pp. 196–209.
- [20] C. P. Quitevis and C. D. Ambatali, "Feasibility of an amateur radio transmitter implementation using Raspberry Pi for a low cost and portable emergency communications device," in 2018 IEEE Global Humanitarian Technology Conference (GHTC). IEEE, 2018, pp. 1– 6.
- [21] C. Ramey, "What's GNU: Bash The GNU Shell," Linux Journal, vol. 1994, no. 4es, p. 13, 1994.
- [22] Raspberry Pi Foundation. (2014) Raspbian: A free operating system based on Debian optimized for the Raspberry Pi hardware. [Online]. Available: https://www.raspberrypi.org/downloads/raspbian/
- [23] ——. (2016) pi-gen: Tool used to create the raspberrypi.org Raspbian images. [Online]. Available: https://github.com/RPi-Distro/pi-gen
- [24] M. Srinivasan, A. V. AJ, A. N. Victor, M. Narayanan, S. R. SP, V. Vija- yaraghavan et al., "GreenEduComp: Low cost green computing system for education in Rural India: A scheme for sustainable development through education," in 2013 IEEE Global Humanitarian Technology Conference (GHTC). IEEE, 2013, pp. 102–107.
- [25] S. Truitt, T. D. Gage, B. E. Vincent, and S. Chun, "Low-cost remote monitoring system for small-Scale UPS installations in developing countries," in 2019 IEEE Global Humanitarian Technology Conference (GHTC), 2019, pp. 1–6.
- [26] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, "Quality and productivity outcomes relating to continuous integration in GitHub," in Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, 2015, pp. 805–816.
- [27] N. S. Yamanoor and S. Yamanoor, "High quality, low cost education with the Raspberry Pi," in 2017 IEEE Global Humanitarian Technology Conference (GHTC). IEEE, 2017, pp. 1–5.

