
Bird@Edge:
Bird Species Recognition at the Edge

Jonas Höchst∗1, Hicham Bellafkir∗1, Patrick Lampe1, Markus
Vogelbacher1, Markus Mühling1, Daniel Schneider1, Kim Lindner2, Sascha

Rösner2, Dana G. Schabo2, Nina Farwig2, and Bernd Freisleben1

1 Dept. of Mathematics & Computer Science, University of Marburg, Germany
{hoechst, bellafkir, lampep, vogelbacher, muehling, schneider, freisleb}

@informatik.uni-marburg.de
2 Dept. of Biology, University of Marburg, Germany

{kim.lindner, sascha.roesner, dana.schabo, nina.farwig}@biologie.uni-marburg.de

Abstract. We present Bird@Edge, an Edge AI system for recognizing
bird species in audio recordings to support real-time biodiversity mon-
itoring. Bird@Edge is based on embedded edge devices operating in a
distributed system to enable efficient, continuous evaluation of sound-
scapes recorded in forests. Multiple ESP32-based microphones (called
Bird@Edge Mics) stream audio to a local Bird@Edge Station, on which
bird species recognition is performed. The results of several Bird@Edge
Stations are transmitted to a backend cloud for further analysis, e.g.,
by biodiversity researchers. To recognize bird species in soundscapes, a
deep neural network based on the EfficientNet-B3 architecture is trained
and optimized for execution on embedded edge devices and deployed
on a NVIDIA Jetson Nano board using the DeepStream SDK. Our ex-
periments show that our deep neural network outperforms the state-
of-the-art BirdNET neural network on several data sets and achieves a
recognition quality of up to 95.2% mean average precision on soundscape
recordings in the Marburg Open Forest, a research and teaching forest
of the University of Marburg, Germany. Measurements of the power
consumption of the Bird@Edge components highlight the real-world ap-
plicability of the approach. All software and firmware components of
Bird@Edge are available under open source licenses.

Keywords: Bird Species Recognition · Edge Computing · Passive
Acoustic Monitoring · Biodiversity

1 Introduction

The continuous loss of biodiversity is particularly evident from the sharp decline
of bird populations in recent decades. Birds are important for many ecosystems,
since they interconnect habitats, resources, and biological processes, and thus
serve as important early warning bioindicators of an ecosystem’s health. Thus,
changes in bird species in time and space should be detected as early as possible.

∗These authors contributed equally.

https://orcid.org/0000-0002-7326-2250
https://orcid.org/0000-0002-6233-0959
https://orcid.org/0000-0001-7391-264X
https://orcid.org/0000-0002-2798-4973
https://orcid.org/0000-0002-6766-1546
https://orcid.org/0000-0002-0554-5128
https://orcid.org/0000-0002-7205-8389
mailto:hoechst@informatik.uni-marburg.de
mailto:bellafkir@informatik.uni-marburg.de
mailto:lampep@informatik.uni-marburg.de
mailto:vogelbacher@informatik.uni-marburg.de
mailto:muehling@informatik.uni-marburg.de
mailto:schneider@informatik.uni-marburg.de
mailto:freisleb@informatik.uni-marburg.de
mailto:kim.lindner@biologie.uni-marburg.de
mailto:sascha.roesner@biologie.uni-marburg.de
mailto:dana.schabo@biologie.uni-marburg.de
mailto:nina.farwig@biologie.uni-marburg.de

2 Höchst and Bellafkir et al.

Traditionally, this is achieved by human experts who walk around a natural
habitat to look at birds and listen to bird sounds, identify bird species present
in the sounds, and take notes of their occurrence. In recent years, this is often
supported by placing microphones in the natural habitats of birds and recording
their sounds. The audio data recorded in this way is then evaluated either man-
ually by human experts or by means of automatic analysis methods to recognize
bird species in soundscapes. The disadvantages of this approach are: (a) there
is a potentially large amount of recorded audio data that can usually only be
evaluated after the end of the recording time, and (b) there is an inherent time
delay between recording the audio data and delivering the recognition results.

In this paper, we combine Edge Computing and Artificial Intelligence (AI)
to present Bird@Edge, an Edge AI system for recognizing bird species in audio
recordings to support real-time biodiversity monitoring. Bird@Edge is based on
embedded edge devices operating in a distributed system to enable efficient,
continuous evaluation of soundscapes recorded in forests. Multiple microphones
based on ESP32 microcontroller units (called Bird@Edge Mics) stream audio to
a local Bird@Edge Station, on which bird species recognition is performed. The
recognition results of different Bird@Edge Stations are transmitted to a backend
cloud for further analysis, e.g., by biodiversity researchers.

To recognize bird species in soundscapes, a deep neural network based on
the EfficientNet-B3 architecture is trained and optimized for execution on em-
bedded edge devices and deployed on a NVIDIA Jetson Nano board using the
DeepStream SDK. Our experimental results show that our deep neural network
model outperforms the state-of-the-art BirdNET neural network on several data
sets and achieves a recognition quality of up to 95.2% mean average precision
on soundscape recordings in the Marburg Open Forest, a research and teach-
ing forest of the University of Marburg, Germany. Measurements of the power
consumption of a Bird@Edge Station and the Bird@Edge Mics highlight the
real-world applicability of the approach. All software and firmware components
of Bird@Edge are available under open source licenses1. Our contributions are:

– We present a novel Edge AI approach for recognizing bird species in audio
recordings; it supports efficient live data transmission and provides high-
quality recognition results.

– We propose a deep neural network based on the EfficientNet-B3 architecture
optimized for execution on embedded edge devices to identify bird species
in soundscapes.

– We evaluate our Edge AI approach in terms of recognition quality, runtime
performance, and power consumption.

The paper is organized as follows. Section 2 discusses related work. In Sec-
tion 3, the design and implementation of Bird@Edge are presented. Section 4
describes our deep neural network for bird species recognition. Section 5 dis-
cusses experimental results in terms of recognition quality, runtimes, and power
consumption. Section 6 concludes the paper and outlines areas of future work.

1https://github.com/umr-ds/BirdEdge

https://github.com/umr-ds/BirdEdge

Bird@Edge: Bird Species Recognition at the Edge 3

2 Related Work

In this section, we discuss related work with respect to current machine learn-
ing approaches for bird species recognition in audio recordings and edge AI
approaches for biodiversity monitoring.

2.1 Bird Species Recognition

For many years, bird populations were monitored manually by ornithologists
who identified birds visually and acoustically on site. The introduction of au-
tonomous recording units (ARU) opened new possibilities. Although such pas-
sively recorded data does not provide any visual information, the resulting bird
surveys conducted by humans from sound recordings are comparable to tradi-
tional monitoring approaches in the field [2].

Furthermore, machine learning methods, such as Convolutional Neural Net-
works (CNN), are increasingly being used for automatically recognizing bird
species in soundscapes. For example, BirdNET is a task-specific CNN archi-
tecture trained on a large audio data set using extensive data pre-processing,
augmentation, and mixup that achieves state-of-the-art performance [14]. The
audio spectrograms are generated using a Fast Fourier Transform (FFT) with a
high temporal resolution. BirdNet is based on a ResNet [7] architecture and is
capable of identifying 984 North American and European bird species.

More recently, BirdNET-Lite2 has been released. This neural network is op-
timized for mobile and edge devices and can recognize more than 6,000 bird
species. It takes raw audio as its input and generates spectrograms on-the-fly.
Mühling et al. [19] proposed a task-specific neural network created by neural ar-
chitecture search [24]. It won the BirdCLEF 2020 challenge [12]. It also operates
on raw audio data and contains multiple auxiliary heads and recurrent layers.

Recently, Vision Transformers (ViT) achieved great improvements in com-
puter vision tasks [4] and audio event classification[6]. Puget [20] adopted a ViT
architecture for bird song recognition and achieved results comparable to CNNs.
However, the annual birdcall identification challenge (BirdCLEF [13]) is cur-
rently dominated by approaches based on CNNs. The top approaches typically
use ensembles of CNNs and heavy parameter tuning. The winning approach
at BirdCLEF 2021, for example, uses Mel spectrograms, network architectures
based on ResNet-50 [7], and gradient boosting to refine the results using meta-
data. The runners-up Henkel et al. [8] presented an ensemble of nine CNNs.
During training, they used 30 second Mel spectrograms to mitigate the effect
of the weakly labeled training data and applied a novel mixup scheme within
and across training samples for extensive data augmentation. Furthermore, a
binary bird call/no bird call classifier contributed to the final result. However,
combining several machine learning models leads to a considerably increased
computational effort.

2https://github.com/kahst/BirdNET-Lite

https://github.com/kahst/BirdNET-Lite

4 Höchst and Bellafkir et al.

2.2 Edge AI for Biodiversity Monitoring

Executing machine learning algorithms on edge devices leads to a quantitative
increase of data through continuous observation, where previously only individ-
ual data points could be collected with manual effort, often including a bias of
individual experiences depending on, e.g., habitat or bird species. Merenda et al.
[18] survey several approaches based on the execution of machine learning meth-
ods on hardware with limited resources. Gallacher et al. [5] deployed 15 sensors
in a large urban park to process recorded audio data of bats locally, which al-
lowed monitoring their activities for several months. Given that the system has
only been operated in an urban environment, the limitations of this approach
are that network connectivity must be available via WiFi, and that a fixed power
supply must be present. Novel deep learning approaches presented by Disabato
et al. [3] further improved bird song recognition at the edge. These approaches
provide high accuracy while reducing computational and memory requirements,
with limited battery lifetimes of up to 12.4 days on an STM32H743ZI micro-
controller. Likewise, Zualkernan et al. [25] compare different edge computing
platforms based on neural networks using bat species classification as an exam-
ple. While the NVIDIA Jetson Nano is the only device capable of executing a
TensorRT model on its GPU, both the Raspberry Pi 3B+ and the Google Coral
showed good results when executing a reduced TensorFlow-Lite model.

3 Bird@Edge

Bird@Edge is designed as an Edge AI system based on distributed embedded
edge devices to enable efficient, continuous evaluation of soundscapes recorded in
forests. Multiple Bird@Edge Mics stream audio wirelessly to a local Bird@Edge
Station, on which bird species recognition is performed. The recognition results
of different Bird@Edge Stations are transmitted to a backend for further analysis.
The results are stored in a time series database and can be visualized, as shown in
Fig. 1. Using hidden microphones also supports recognizing very elusive species
that are hard to detect while ecologists are present in field to conduct a census.

A Bird@Edge Station consumes significantly more power than a microphone
node, but can run a neural network for bird species recognition for more than
one audio stream. We can feed 1 to 10 audio streams into the neural network and
thus operate a variable number of Bird@Edge Mics at one Bird@Edge Station.
Different numbers of Bird@Edge Mics may be present when a new microphone
node appears (e.g., by switching it on) or leaves (e.g., due to battery shortage).

To generate a list of bird species at a Bird@Edge Station, chunks of an incom-
ing audio stream are passed to the neural network, which may return multiple
results, since we process mixtures of recorded bird songs, i.e., soundscapes. These
potentially multiple results per audio segment are then collected and aggregated
into larger intervals in the time series database in the backend cloud. The size
of the interval can be dynamically changed and visualized in near real-time. In
addition, the status of the microphone nodes and potential problems can be
detected much faster than collecting data only every few days.

Bird@Edge: Bird Species Recognition at the Edge 5

Audio Data
Bird Species Labels
User Requests

Local WiFi

…

…

Local WiFi

…

Web Frontend

Fig. 1: Overview over the Bird@Edge system

3.1 Bird@Edge Hardware

The hardware used for Bird@Edge consists of (a) Bird@Edge Mics, which are
in charge of recording and transmitting audio at the deployed location; (b)
Bird@Edge Stations, which receive audio streams from multiple Bird@Edge Mics
and execute the Bird@Edge processing pipeline. Figure 2 provides an overview
of the hardware components used in Bird@Edge.

A Bird@Edge Mic consists of an Espressif ESP32 microcontroller that has
a dual-core CPU running at 80 MHz, Bluetooth and WiFi connectivity, as well
as multiple input and output options, including an I2S (Inter-IC Sound) bus.
Connected to it is a Knowles SPH0645LM4H microphone capable of recording
audio in the range between 50 Hz and 15 kHz3. A Bird@Edge Mic can be powered
either using single 18650 Li-ion cells or using one of the widely available USB
power banks. The price of a Bird@Edge mic of 22€ to 50€ is composed of the
ESP32, depending on the offer and model 5€ to 15€, the I2S microphone 7 - 12€
and a battery for 10€ - 20€. All components can be placed in a small case of 10
x 10 x 5 centimeters, which does not exceed the weight of 500 grams.

At the heart of a Bird@Edge Station is a NVIDIA Jetson Nano. It allows the
efficient execution of machine learning models in a low power environment. A
Realtek RTL8812BU-based USB WiFi is used to enable wireless networking with

3https://www.knowles.com/docs/default-source/default-document-library/
sph0645lm4h-1-datasheet.pdf

https://www.knowles.com/docs/default-source/default-document-library/sph0645lm4h-1-datasheet.pdf
https://www.knowles.com/docs/default-source/default-document-library/sph0645lm4h-1-datasheet.pdf

6 Höchst and Bellafkir et al.

Bird@Edge Mic

ESP32

Ba!ery Box

Solar
Charger

Solar
Panel

Bird@Edge Station

NVIDIA Jetson Nano

H
D

M
I

 LTE M
odem

WiFi

12V / 5V
Converter

Bird@Edge Mic

ESP32

Bird@Edge Mic

ESP32

Fig. 2: Bird@Edge hardware components

the board and allow connection to the Bird@Edge Mics. In addition, a Huawei
E3372H LTE modem is installed to connect to the Internet in rural areas. The
station is powered by 12V solar battery system connected to the Jetson Board
via a 12V/5V step down converter. The hardware of a Bird@Edge Station costs
about 110€, with 50€ for the Jetson Nano, 20€ for the USB WiFi adapter, and
40€ for the LTE modem. The components of an Bird@Edge Station, including
a solar charge controller, can be fitted into an industrial enclosure measuring 25
x 18 x 12 centimeters, weighing less than 1.5 kilograms in total.

3.2 Bird@Edge Software

Bird@Edge consists of a variety of software components that enable its smooth
configuration and operation. Figure 3 shows these software components, as well
as the data flows and interaction possibilities of the users with the system.

The software for the Bird@Edge Mics is built using components of the Espres-
sif Development Framework (ESP-IDF), i.e., HTTP Server, Multicast DNS Im-
plementation, and I2S drivers. When booting up, the Bird@Edge Mic connects
to the WiFi network (SSID: BirdEdge) with the best signal strength and reports
its own accessibility via the service identifier mDNS. Then, the HTTP server is
started, which provides the audio stream of the microphone for the Bird@Edge
station. To detect connection interruptions, the WiFi connection is also checked

Bird@Edge: Bird Species Recognition at the Edge 7

Bird@Edge Station

Server

Bird@Edge OS

Bird@Edge
Daemon

InfluxDB

Grafana

Storage

OpenSSH

Users

Wi-Fi / Wireguard

systemd

Data Flow

Interaction

Bird@Edge Mic

mDNS Service
Discovery

HTTP Audio
Stream

Bird@Edge Mic

mDNS Service
Discovery

HTTP Audio
Stream

Bird@Edge
Pipeline

…

pymq!util

W
iF

i

Cellular

Fig. 3: Bird@Edge software components

at intervals of one second with the aid of ICMP and, if necessary, the WiFi
connection is re-established. The Bird@Edge Mic software is available online4.

The software running on a Bird@Edge Station is based on the NVIDIA Jetson
Nano Development Kit Operating System, which in turn is based on Ubuntu
Linux. The central component responsible for detecting the Bird@Edge Mics,
executing the processing pipeline and transmitting the results is called birdedged
(Bird@Edge Daemon). It continuously searches for newly connected Bird@Edge
devices and restarts the processing pipeline accordingly when devices are found
or dropped. Bird species recognition results from the processing pipeline are
captured and transmitted to the InfluxDB server system. The server system
that collects data from potentially multiple Bird@Edge implementations runs
Grafana, a dashboard visualization WebUI designed specifically for stream data5.

The operating system running on Bird@Edge Stations is built using pimod
[10] and is available online6. NVIDIA’s licenses do not allow to redistribute
complete operating system images, however pimod allows to reduce the necessary
steps and easily create the images.

4 Recognizing Bird Species in Soundscapes

In this section, we describe our deep learning approach to bird species recognition
in audio recordings including the preprocessing steps, the neural network as well
as its optimization and deployment on the NVIDIA Jetson Nano edge device. The

4https://github.com/umr-ds/BirdEdge/tree/main/BirdEdge-Client
5https://grafana.com
6https://github.com/umr-ds/BirdAtEdge-OS

https://github.com/umr-ds/BirdEdge/tree/main/BirdEdge-Client
https://grafana.com
https://github.com/umr-ds/BirdAtEdge-OS

8 Höchst and Bellafkir et al.

deep neural network model is designed to recognize 82 bird species indigenous
in Germany and background noise that is typical for German forests.

4.1 Audio Preprocessing

We selected 44.1 kHz as the sampling rate and analyzed frequencies up to 22.05
kHz to cover the frequency ranges of the bird song patterns. The task is con-
sidered as a classification problem, aiming to recognize bird species in 5-second
audio snippets. To avoid overfitting and enrich our data set, we randomly select
these 5-second snippets and add randomly selected noise from up to four back-
ground samples. This encourages our model to focus on the patterns that are
important for species recognition. The recognition is based on visual represen-
tations of the frequency spectrum as it changes over time, called spectrograms.
In our case, we use Mel spectrograms that are generated using 128 Mel bands
and an FFT window size of 1,024.

4.2 Neural Network Architecture

Our approach to recognize bird species relies on an EfficientNet-B3 [22] archi-
tecture pre-trained on ImageNet [21]. The model is fine-tuned in two phases to
target domain using the Adam [15] optimizer. In the first phase, we only train
the last, randomly initialized layer for 40 epochs with an initial learning rate
of 0.004, while the remaining layers with pre-trained weights are frozen. In the
second phase, we train all layers of the model until convergence, while reducing
the initial learning rate by a factor of 10. Furthermore, a binary cross-entropy
loss combined with modulation factors motivated by the success of focal loss [16]
in the field of object detection are used to emphasize difficult samples during
the training process. Since the underlying data set is only weakly labeled, we
use positive training samples for one species as negative samples for the others.
Furthermore, samples labeled negative from expert feedback are defined as hard
negatives in the following. Our loss function is defined as follows:

L =

K∑
k=1

l(yk, pk),

l(y, p) =

−αpos(1− p)γ log(p) if y is positive
−αnp

γ log(1− p) if y is negative
−αhnp

γ log(1− p) if y is hard negative
where K is the number of bird classes, pk is the predicted probability for

the k-th class, yk is the k-th ground truth label, αpos is the weighting factor for
positive labels, αn for negative or undefined labels, αhn for hard negative labels
and γ is the focusing parameter.

We implemented our approach using the TensorFlow deep learning frame-
work [1]. For audio processing and especially spectrogram generation, we use
the librosa library [17].

Bird@Edge: Bird Species Recognition at the Edge 9

4.3 Optimizing the Neural Network for Edge Devices

To speed up inference, we optimized our model using the TensorRT7 library.
This library includes an inference optimizer for CUDA-capable target devices
that applies various operations, such as quantization and memory optimization,
to reduce the inference time. In particular, the floating point precision is reduced
by quantizing to FP16 or INT8, while maintaining high accuracy. We optimized
our model by using FP16 quantization in addition to the original FP32 weights,
since the NVIDIA Jetson Nano does not support INT8 computations natively.
Furthermore, we applied target-specific auto-tuning to select the best algorithms
and quantization for each layer.

4.4 Inference

We use the DeepStream SDK8 to deploy our optimized model on the NVIDIA
Jetson Nano board with high throughput rates. DeepStream is based on the
GStreamer framework and provides a pipeline that takes an input stream and
performs hardware accelerated inference on it. An overview of our pipeline com-

Stream
Muxer……

Predictions

Read
HTTP

Stream

Highpass
@120 Hz

NvInferAudio

CNN

NvInferAudio

CNN

Read
HTTP

Stream

Highpass
@120 Hz

Fig. 4: Overview of the Bird@Edge processing pipeline
posed with DeepStream is presented in Figure 4. First, the N HTTP streams
are read and parsed from the WiFi signal. Since the microphone we used (see
Section 3 for details) induces noise in the lowest frequency bands, we apply
a highpass filter that attenuates all frequencies below 120 Hz to each stream.
These frequencies are irrelevant for bird species recognition and can therefore be
neglected. We prefer the Chebyshev highpass filter over the windowed sinc filter,
because it is much faster. Next, we use DeepStream’s stream muxer to bundle
our streams into one batch and forward the data to the NvInferAudio plugin.
This plugin provides inference for audio streams and automatically generates the
respective Mel spectrograms. Finally, the spectrograms are passed to our model
with a batch size of N , and the obtained predictions are retrieved. To be able
to process the streams in real-time with a high temporal resolution, we take 5
second snippets with a stride of one second.

7https://developer.nvidia.com/tensorrt
8https://developer.nvidia.com/deepstream-sdk

https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/deepstream-sdk

10 Höchst and Bellafkir et al.

5 Experimental Evaluation

In this section, we present experimental results in terms of (a) bird species
recognition quality and execution speed, (b) visualization of bird recognition
results, as well as (c) power consumption measurements of a Bird@Edge Station
and a Bird@Edge Mic.

5.1 Bird Species Recognition Quality and Execution Speed

Data Sets. Our neural network models were evaluated and compared to Bird-
NET [14] and BirdNET-Lite2 on data sets collected from three sources. We
recorded a first data set with AudioMoth devices [9] in the Marburg Open For-
est (MOF). The recordings were labeled on a 5 second basis by human experts.
In total, 33 species occur in the MOF data set. Since the amount of labeled data
in the MOF data set is not sufficient to train a deep learning model, we acquired
further data sets by crawling data from the online bird song collections Xeno-
Canto [23] and iNaturalist [11]. The assets included in these data sets have often
higher quality and contain less background noise. In our evaluation, we took up
to 10% of the files of each class. To make sure that we do not feed snippets
without bird calls, we first applied the heuristic used by Kahl et al. [14] and
selected up to three 5 second snippets containing a bird call for each test file.
Table 1 shows an overview of the training and test data.

Data Set MOF Xeno-Canto iNaturalist

Training 4,294 104,989 30,631
Test 913 2,144 1,365

Table 1: Overview of the training and test data.

Quality Metrics. To evaluate the performance of our bird species recognition
approach, we use average precision (AP) as our quality metric. The AP score is
the most commonly used quality measure for retrieval results and approximates
the area under the recall-precision curve. The task of bird call recognition can
be considered as a retrieval problem for each species where the annotated audio
samples represent the relevant documents. Then, the AP score is calculated from
the list of ranked documents as follows:

AP (ρ) =
1

|R ∩ ρN |

N∑
k=1

∣∣R ∩ ρk
∣∣

k
ψ(ik),

with ψ(ik) =

 1 if ik ∈ R

0 otherwise

Bird@Edge: Bird Species Recognition at the Edge 11

where N is the length of the ranked document list (total number of analyzed
audio snippets), ρk = {i1, i2, . . . , ik} is the ranked document list up to rank k, R
is the set of relevant documents (audio snippets containing a bird call),

∣∣R ∩ ρk
∣∣

is the number of relevant documents in the top-k of ρ and ψ(ik) is the relevance
function. Generally speaking, AP is the average of the precision values at each
relevant document. To evaluate the overall performance, the mean AP score is
calculated by taking the mean value of the AP scores from each species.

Method MOF XC iNat

BirdNET[14] 0.833 0.725 0.725
BirdNET-Lite2 0.859 0.737 0.714
EfficientNet-B3 0.952 0.820 0.811
Bird@Edge 0.952 0.816 0.819

Table 2: Results (mAP).

Model Device Inference time (ms)

BirdNET-Lite2 Raspberry Pi-4B 279
Bird@Edge (FP32) Jetson Nano 64
Bird@Edge Jetson Nano 54

Table 3: Model inference runtimes.

Results. First, we evaluated the recognition quality of our models, namely
the original trained model (EfficientNet-B3) as well as the optimized model
(Bird@Edge) and compare the results to BirdNET and BirdNET-Lite. While
EfficientNet-B3 is evaluated with TensorFlow on a workstation, the Bird@Edge
model is run on the NVIDIA Jetson Nano for inference.

BirdNET and BirdNET-Lite take the recording location as additional meta-
data along with the corresponding audio input. As longitude and latitude, we
take the coordinates of the Marburg Open Forest for all data sets, since we only
use bird species resident in this specific forest for evaluation. Since the length of
the audio input of the BirdNET models differs from our approach, the 5 second
samples are split into two 3 second snippets with an overlap of 1 second and the
results are averaged for the final prediction.

Table 2 summarizes the experimental bird species recognition results. Our
original model (EfficientNet-B3) outperforms BirdNET-Lite as well as BirdNET
by roughly 10% in terms of mAP on all data sets considered. While keeping the
recognition quality, the optimized Bird@Edge model achieves an inference run-
time of 64 ms per spectrogram, as shown in Table 3. Adding model quantization
with 16-bit floating point precision where appropriate effectively reduces the in-
ference runtime on the NVIDIA Jetson Nano board by 10 ms. We also compared

12 Höchst and Bellafkir et al.

Fig. 5: Grafana panel (x-axis: clock time; y-axis: recognition confidence) showing
recognized bird species of a certain Bird@Edge Mic, based on Xeno-Canto file
XC706150, recorded by user brickegickel

the runtimes of our models to BirdNET-Lite. Similar to BirdNET-Pi9, we ran
BirdNET-Lite on a Raspberry Pi-4B with 4 CPU threads in parallel. Table 3
reveals that our setting is more than four times faster.

5.2 Visualization of Bird Species Recognition Results

Figure 5 shows a Grafana screenshot of an automatically generated graph of
the recognized bird species of a Bird@Edge station. To generate the figure, the
publicly available soundscape audio file XC706150 from Xeno-Canto10 of the
target area was played back and captured by the Bird@Edge Mic. The clock
time is shown on the x-axis. The confidence of the recognition is plotted on
the y-axis. The data is grouped according to the recognized bird species labels,
distinguished by color. For every Bird@Edge Mic, a separate figure is gener-
ated, and its parameters, e.g., plotted time frame or selection of species, can be
configured.

Some observations can be derived from this simple visualization. First, there
are several recognized occurrences of Coccothraustes coccothraustes (hawfinch)
in two clusters. Picus canus (grey-headed woodpecker) is detected multiple times
over the duration of 12 seconds, and Sitta europaea (Eurasian nuthatch) is de-
tected in two clusters each at the beginning and end of the observation period.

9https://github.com/mcguirepr89/BirdNET-Pi
10https://xeno-canto.org/706150

https://github.com/mcguirepr89/BirdNET-Pi
https://xeno-canto.org/706150

Bird@Edge: Bird Species Recognition at the Edge 13

All three observations indicate that individuals were heard on the recordings
and were in the area at these times. For Loxia curvirostra (red crossbill) and
Dendrocopos major (great spotted woodpecker), only 4 and 2 observations were
made, respectively; these were probably heard only in the background. More so-
phisticated analyses can be performed based on researchers’ requirements, such
as heat maps of the occurrence of species based on their geo-positions, or time-
based plots. This can include both short-term considerations, such as the time
of day at which certain species are active, or long-term aspects, such as during
which period a particular species is particularly active.

5.3 Power Consumption

An important aspect for the applicability of Bird@Edge in real applications is
its power consumption. Therefore, we measured the power consumption of a
Bird@Edge Station and a Bird@Edge Mic.

To measure the power consumption of a Bird@Edge Station, we used the
internal power monitors of the NVIDIA Jetson Nano, since these enable the
differentiation between CPU, GPU, and total power consumption. The power
measurements were performed in different profiles: a) the 10 Watt maximum
performance profile (default), b) the 5 Watt low power profile from NVIDIA,
and c) a custom low power profile created for Bird@Edge. In this custom power
profile, only 2 of the 4 CPU cores were used, running at a maximum frequency
of 614 MHz, and the GPU was limited to a maximum of 230 MHz. As a baseline,
the power consumption is measured with 5 connected Bird@Edge mics, and only
the measured values while the pipeline is running are averaged. In this setup, the
maximum performance mode requires 4.86 W, the low power profile 4.19 W and
the custom low power mode only requires 3.16 W, i.e., roughly 35% compared to
the maximum performance mode with no performance degradation observable.
Our observations during the execution of the experiments suggest that the GPU’s
dynamic frequency scaling algorithm tends to be too conservative to permanently
lower the clock and thus prevents the possible lower power consumption.

Figure 6 shows the power consumption of a Bird@Edge station in a short sce-
nario with a changing number of connected Bird@Edge Mics. At the beginning,
the system is switched on, but the neural network for bird species is not running;
the system needs 2.1 W in this state. At t=0, the neural network is started with
a Bird@Edge Mic already connected to the station. The neural network model is
loaded into memory from t=6, for which the CPU requires up to 0.59 W. From
time t=36, i.e., 30 seconds after the start of the pipeline, the neural network
model runs and forwards results to the backend. In this phase, the Bird@Edge
station requires an average of 3.18 W. At t=120 and t=180, 4 and 5 additional
Bird@Edge Mics are switched on, which first connect to the Bird@Edge Station
via WiFi, then are discovered via mDNS, which results in the reconfiguration
of the processing pipeline and its restart. In both cases, the reboot took about
35 seconds, with 5 seconds for WiFi connection and discovery, and 30 seconds
for pipeline reboot. With 5 and 10 Bird@Edge Mics connected, the Bird@Edge
Station requires 3.16 W and 3.13 W, respectively. Particularly noteworthy is

14 Höchst and Bellafkir et al.

0 50 100 150 200 250

0

500

1000

1500

2000

2500

3000

0

20

40

60

80

100 CPU Power
GPU Power
Total Power
GPU Utilization

Time (s)

Po
w

er
 C

on
su

m
pt

io
n

(m
W

)

U
ti
liz

at
io

n
(%

)

Start Pipeline Running Power Mic 2-5 Power Mic 6-10

Fig. 6: Power consumption of a Bird@Edge Station in a dynamic scenario.

the station’s lower power consumption when a larger number of Bird@Edge
Mics are connected. Figure 6 indicates that GPU utilization is lower with many
Bird@Edge Mics connected, compared to smaller numbers of Bird@Edge Mics
(98% with 1 client, 88% with 5 clients, 80% with 10 clients). This is probably
due to internals of the DeepStream SDK and may be influenced by the imple-
mentation, e.g., with respect to the handling of unused streams.

The magnitude of the Bird@Edge Station’s power consumption necessitates
the use of an LFP, VRLA or AGM battery, which at 12 Volts typically have a
capacity of 50 to 200 Ah. The available 60 to 2400 Wh allow the operation of
a Bird@Edge Station from 7 up to 31 days. In combination with a solar panel
between 50 and 100 watt, a continuous operation is also possible during periods
of weak sunlight.

To measure the power consumption of a Bird@Edge Mic, we used a Mon-
soon High Voltage Power Monitor11 and connected the ESP32 using the 3.3 volt
input. The measurements of a Bird@Edge Mic show a power usage of 665 mW
whenever the stream is activated and data is sent to the station. The power mea-
surements were performed with three different off-the-shelf ESP32 boards, since
the additional electronics present on the boards can have an additional impact
on power consumption. The three boards differed only slightly in terms of power
consumption: 0.452 W was needed by the Adafruit HUZZAH32, 0.452 W by the
Joy-IT NodeMCU ESP32, and 0.421 W by the SparkFun ESP32 Thing Plus.
The latter12 is the board of choice for our application, due to the lowest power
consumption, a direct LiPo battery connector, and an external WiFi antenna.

To get a realistic estimation of the battery life of a Bird@Edge Mic, further
measurements were performed with 3.7 Volt via the corresponding connectors for

11https://www.msoon.com/high-voltage-power-monitor
12https://www.sparkfun.com/products/15663

https://www.msoon.com/high-voltage-power-monitor
https://www.sparkfun.com/products/15663

Bird@Edge: Bird Species Recognition at the Edge 15

LiPo batteries. The SparkFun board required 0.468 W or 126.6 mA in operation,
whereas the Adafruit board required 132.9 mA, or 0.492 W. LiPo batteries are
available in a wide range of capacities, from 100 mAh to over 30000 mAh. Typical
capacities, as they are found in smartphones and can be purchased cheaply, are
around 3500 mAh, which allow a runtime of 27.6 hours. In combination with a
small solar panel of around 10 Watts, continuous operation is thus easily feasible.

6 Conclusion

We presented Bird@Edge, an Edge AI system for recognizing bird species in au-
dio recordings to support real-time biodiversity monitoring. Bird@Edge is com-
posed of embedded edge devices, such as ESP32-based microphones and NVIDIA
Jetson Nano boards, operating in a distributed system to enable efficient, contin-
uous evaluation of soundscapes recorded in forests. We presented a deep neural
network based on the EfficientNet-B3 architecture and optimized for execution
on a NVIDIA Jetson Nano board to recognize bird species in soundscapes. It
outperforms the state-of-the-art BirdNET neural network on several data sets
and achieves a recognition quality of up to 95.2% mean average precision on
soundscape recordings in the Marburg Open Forest, a research and teaching
forest of the University of Marburg, Germany. Measurements of the power con-
sumption of Bird@Edge Station and Bird@Edge Mics show that the system has
an acceptable demand of 3.18 W plus 0.492 W for each Bird@Edge Mic, which
can be covered by reasonably sized batteries and solar panels, highlighting the
real-world applicability of the approach. All software and firmware components
of Bird@Edge are available under open source licenses13.

There are several areas for future research. For example, self-supervised learn-
ing could be used to leverage the vast amount of unlabeled data and to improve
the recognition quality on the target domain. Furthermore, continual and fed-
erated learning of machine learning models at the edge are interesting future
research topics. Finally, a real-world test of several Bird@Edge deployments
should be performed to identify potential problems in harsh environments.

Acknowledgments

This work is funded by the Hessian State Ministry for Higher Education, Re-
search and the Arts (HMWK) (LOEWE Natur 4.0, LOEWE emergenCITY,
and hessian.AI Connectom AI4Birds), the German Academic Exchange Service
(DAAD) (Transformation Partnership Program; Project OLIVIA), and the Ger-
man Research Foundation (DFG, Project 210487104 - Collaborative Research
Center SFB 1053 MAKI).

13https://github.com/umr-ds/BirdEdge

https://github.com/umr-ds/BirdEdge

16 Höchst and Bellafkir et al.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015),
https://www.tensorflow.org/

2. Darras, K., Batáry, P., Furnas, B., Celis-Murillo, A., Van Wilgenburg, S.L.,
Mulyani, Y.A., Tscharntke, T.: Comparing the sampling performance of sound
recorders versus point counts in bird surveys: A meta-analysis. Journal of Applied
Ecology 55(6), 2575–2586 (2018). https://doi.org/10.1111/1365-2664.13229

3. Disabato, S., Canonaco, G., Flikkema, P.G., Roveri, M., Alippi, C.: Birdsong de-
tection at the edge with deep learning. In: 2021 IEEE International Conference on
Smart Computing (SMARTCOMP). pp. 9–16. IEEE (2021)

4. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale. In:
9th Int. Conference on Learning Representations, ICLR 2021, Austria (2021)

5. Gallacher, S., Wilson, D., Fairbrass, A., Turmukhambetov, D., Mac Aodha, O.,
Kreitmayer, S., Firman, M., Brostow, G., Jones, K.: Shazam for bats: Internet of
things for continuous real-time biodiversity monitoring. IET Smart Cities (2021)

6. Gong, Y., Chung, Y., Glass, J.R.: AST: audio spectrogram transformer. In: Inter-
speech 2021. pp. 571–575 (2021). https://doi.org/10.21437/Interspeech.2021-698

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2016). https://doi.org/10.1109/CVPR.2016.90.

8. Henkel, C., Pfeiffer, P., Singer, P.: Recognizing bird species in diverse soundscapes
under weak supervision. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F.
(eds.) Working Notes of CLEF 2021 - Conference and Labs of the Evaluation Fo-
rum, Bucharest, Romania, September 21-24, 2021. CEUR Workshop Proceedings,
vol. 2936, pp. 1579–1586. CEUR-WS.org (2021), http://ceur-ws.org/Vol-2936/
paper-134.pdf

9. Hill, A.P., Prince, P., Snaddon, J.L., Doncaster, C.P., Rogers, A.: Audiomoth: A
low-cost acoustic device for monitoring biodiversity and the environment. Hard-
wareX 6, e00073 (2019). https://doi.org/10.1016/j.ohx.2019.e00073

10. Höchst, J., Penning, A., Lampe, P., Freisleben, B.: PIMOD: A Tool for Config-
uring Single-Board Computer Operating System Images. In: 2020 IEEE Global
Humanitarian Technology Conference (GHTC 2020). pp. 1–8. Seattle, USA (Oct
2020). https://doi.org/10.1109/GHTC46280.2020.9342928

11. iNaturalist: A community for naturalists, https://www.inaturalist.org/
12. Kahl, S., Clapp, M., Hopping, W.A., Goëau, H., Glotin, H., Planqué, R., Vellinga,

W., Joly, A.: Overview of birdclef 2020: Bird sound recognition in complex acoustic
environments. In: Cappellato, L., Eickhoff, C., Ferro, N., Névéol, A. (eds.) Working
Notes of CLEF 2020 - Conference and Labs of the Evaluation Forum, Thessaloniki,
Greece, September 22-25, 2020. CEUR Workshop Proceedings, vol. 2696. CEUR-
WS.org (2020), http://ceur-ws.org/Vol-2696/paper_262.pdf

https://www.tensorflow.org/
https://doi.org/10.1111/1365-2664.13229
https://doi.org/10.21437/Interspeech.2021-698
https://doi.org/10.1109/CVPR.2016.90.
http://ceur-ws.org/Vol-2936/paper-134.pdf
http://ceur-ws.org/Vol-2936/paper-134.pdf
https://doi.org/10.1016/j.ohx.2019.e00073
https://doi.org/10.1109/GHTC46280.2020.9342928
https://www.inaturalist.org/
http://ceur-ws.org/Vol-2696/paper_262.pdf

Bird@Edge: Bird Species Recognition at the Edge 17

13. Kahl, S., Denton, T., Klinck, H., Glotin, H., Goëau, H., Vellinga, W., Plan-
qué, R., Joly, A.: Overview of birdclef 2021: Bird call identification in sound-
scape recordings. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F.
(eds.) Working Notes of CLEF 2021 - Conference and Labs of the Evaluation Fo-
rum, Bucharest, Romania, September 21-24, 2021. CEUR Workshop Proceedings,
vol. 2936, pp. 1437–1450. CEUR-WS.org (2021), http://ceur-ws.org/Vol-2936/
paper-123.pdf

14. Kahl, S., Wood, C.M., Eibl, M., Klinck, H.: Birdnet: A deep learning solu-
tion for avian diversity monitoring. Ecological Informatics 61, 101236 (2021).
https://doi.org/10.1016/j.ecoinf.2021.101236

15. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Bengio,
Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
(2015), https://arxiv.org/abs/1412.6980

16. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object
detection. 2017 IEEE International Conference on Computer Vision (ICCV) (Oct
2017)

17. McFee, B., Raffel, C., Liang, D., Ellis, D.P., McVicar, M., Battenberg, E., Nieto,
O.: librosa: Audio and music signal analysis in python. In: Proceedings of the 14th
python in science conference. vol. 8 (2015)

18. Merenda, M., Porcaro, C., Iero, D.: Edge Machine Learning for AI-enabled IoT
devices: A Review. Sensors 20(9), 2533 (2020)

19. Mühling, M., Franz, J., Korfhage, N., Freisleben, B.: Bird species recognition via
neural architecture search. In: Cappellato, L., Eickhoff, C., Ferro, N., Névéol, A.
(eds.) Working Notes of CLEF 2020 - Conference and Labs of the Evaluation Fo-
rum, Thessaloniki, Greece, September 22-25, 2020. CEUR Workshop Proceedings,
vol. 2696. CEUR-WS.org (2020), http://ceur-ws.org/Vol-2696/paper_188.pdf

20. Puget, J.F.: Stft transformers for bird song recognition. In: Working Notes of
CLEF 2021 - Conference and Labs of the Evaluation Forum, Bucharest, Romania,
September 21-24, 2021. CEUR Workshop Proceedings, vol. 2936. CEUR-WS.org
(2021), http://ceur-ws.org/Vol-2936/paper-137.pdf

21. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. International journal of computer vision 115(3), 211–252 (2015)

22. Tan, M., Le, Q.V.: Efficientnet: Rethinking model scaling for convolutional neural
networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA. Proceedings of Machine Learning Research, vol. 97, pp.
6105–6114. PMLR (2019). https://doi.org/1905.11946

23. Xeno-canto: Sharing bird sounds from around the world, https://www.
xeno-canto.org/

24. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In:
5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings (2017)

25. Zualkernan, I., Judas, J., Mahbub, T., Bhagwagar, A., Chand, P.: An aiot
system for bat species classification. In: 2020 IEEE International Conference
on Internet of Things and Intelligence System (IoTaIS). pp. 155–160 (2021).
https://doi.org/10.1109/IoTaIS50849.2021.9359704

http://ceur-ws.org/Vol-2936/paper-123.pdf
http://ceur-ws.org/Vol-2936/paper-123.pdf
https://doi.org/10.1016/j.ecoinf.2021.101236
https://arxiv.org/abs/1412.6980
http://ceur-ws.org/Vol-2696/paper_188.pdf
http://ceur-ws.org/Vol-2936/paper-137.pdf
https://doi.org/1905.11946
https://www.xeno-canto.org/
https://www.xeno-canto.org/
https://doi.org/10.1109/IoTaIS50849.2021.9359704

	Bird@Edge: Bird Species Recognition at the Edge
	Introduction
	Related Work
	Bird Species Recognition
	Edge AI for Biodiversity Monitoring

	Bird@Edge
	Bird@Edge Hardware
	Bird@Edge Software

	Recognizing Bird Species in Soundscapes
	Audio Preprocessing
	Neural Network Architecture
	Optimizing the Neural Network for Edge Devices
	Inference

	Experimental Evaluation
	Bird Species Recognition Quality and Execution Speed
	Visualization of Bird Species Recognition Results
	Power Consumption

	Conclusion

