
Smart Distributed Sensing in
Adaptive Wireless Networks

Dissertation

zur Erlangung des Doktorgrades der Naturwissenschaften

(Dr. rer. nat.)

dem Fachbereich Mathematik und Informatik

der Philipps-Universität Marburg

vorgelegt von

Master of Science (M.Sc.)

Jonas Höchst
geboren in Gießen

Marburg, im Juli 2022

Vom Fachbereich Mathematik und Informatik der Philipps-Universität Marburg (Hochschul-

kennziffer 1180) als Dissertation am 25. Juli 2022 angenommen.

1. Gutachter: Prof. Dr.-Ing. Bernd Freisleben, Philipps-Universität Marburg

2. Gutachter: Prof. Dr.-Ing. Matthias Hollick, Technische Universität Darmstadt

Tag der Einreichung: 20. Juli 2022

Tag der mündlichen Prüfung: 11. Oktober 2022

Dieses Werk bzw. Inhalt steht unter der Creative Commons Na-

mensnennung (BY),Weitergabe unter gleichen Bedingungen (SA)

3.0 Deutschland:

https://creativecommons.org/licenses/by-sa/3.0/de/

https://creativecommons.org/licenses/by-sa/3.0/de/

Eidesstattliche Erklärung

Ich versichere, dass ich meine Dissertation selbstständig, ohne unerlaubte Hilfe angefertigt und

mich dabei keiner anderen als der von mir ausdrücklich bezeichnetenQuellen und Hilfen be-

dient, sowie alle vollständig oder sinngemäß übernommenen Zitate als solche gekennzeichnet

habe. Die Dissertation wurde in der jetzigen oder einer ähnlichen Form noch bei keiner ande-

ren in- oder ausländischen Hochschule anlässlich eines Promotionsgesuchs oder zu anderen

Prüfungszwecken eingereicht.

Datum Unterschrift

iii

Abstract

In the recent past, great progress has been made in three technological areas of computer

science: sensing, softwarization of networks, and machine learning. Currently, a large variety of

sensors is available in many devices, and sensors are getting smaller and more energy-efficient.

Software-defined networks are becoming more widespread, achieving low latency and high

throughput for emerging applications. Machine learning is very successful in creating and

improving services in numerous applications at the edge and in the cloud. There is a great

potential in the overlap of these areas: (a) smart processing of sensor data using machine

learning methods makes potentially huge amounts of data manageable; (b) adaptive networks

support the immediate availability of sensor data in several application areas, and (c) sensor

data and machine learning methods are already used in the field of adaptive networks to

improve the quality of service.

In this thesis, approaches are presented to improve the quality of service, the quality of ex-

perience, and the quality of results of algorithms, protocols, and applications using different

sensors and sensor sources. The information analysis cost and the achievable quality of different

approaches within the same domain are compared, and a novel classification of smart systems

is presented. The main challenge is to balance the information analysis cost generated by

additional communication, computation, and storage with the quality improvement achievable

by the novel methods. This challenge is addressed by presenting different approaches, algo-

rithms, and systems in the areas of environmental monitoring, adaptive disruption-tolerant

networking, and transitional wireless networking.

In the area of smart environmental monitoring, flexible single-board computers are used to

realize improvements of various sensing tasks, especially spatial movement and visual / acoustic

observation of bats, as well as automated recognition of bird species in audio recordings.

In the area of smart adaptive disruption-tolerant networking, different implementations of

disruption-tolerant networks, systems for opportunistic execution of functions and workflows,

and novel sensor-based routing algorithms are presented.

Insights from the two areas will be used to develop novel approaches in the area of smart

transitional wireless networks for classifying network traffic flow using machine learning, for

dynamic announcement intervals in service discovery, and for Wi-Fi connection loss prediction

to perform seamless Wi-Fi/cellular handovers.

iv

Deutsche Kurzfassung

In der Vergangenheit sind in drei Technologiebereichen der Informatik große Fortschritte erzielt

worden: Sensorik, Softwarisierung von Netzen und maschinelles Lernen. Eine Vielfalt an Sen-

soren ist mittlerweile in zahlreichen Geräten verfügbar, und Sensoren werden immer kleiner und

energieeffizienter. Software-definierte Netze haben sich immer weiter verbreitet, um niedrige

Latenzen und hohe Durchsätze für neuartige Anwendungen zu erreichen. Maschinelles Lernen

wird sehr erfolgreich in zahlreichen Anwendungen innerhalb der Edge und in der Cloud zur

Schaffung und Verbesserung von Diensten eingesetzt. In der Überschneidung dieser Gebiete

gibt es große Potenziale: (a) Die intelligente Verarbeitung von Sensordaten mit Hilfe von Metho-

den des maschinellen Lernens macht riesige Datenmengen überhaupt erst nutzbar. (b) Adaptive

Netze ermöglichen die unmittelbare Verfügbarkeit von Sensordaten in vielen Einsatzgebieten.

(c) Im Bereich adaptiver Netze werden Sensordaten und Methoden des maschinellen Lernens

zur Verbesserung der Dienstgüte bereits eingesetzt.

In dieser Arbeit werden Ansätze präsentiert, um die Dienstgüte, die wahrgenommene Er-

fahrungsgüte und dieQualität der Ergebnisse von Algorithmen, Protokollen und Anwendungen

mit Hilfe unterschiedlicher Sensoren und Sensordatenquellen zu verbessern. Die Kosten der

Informationsanalyse und die erreichbare Qualität unterschiedlicher Ansätze innerhalb des-

selben Bereiches werden verglichen, und eine neuartige Klassifikation smarter Systeme wird

präsentiert. Die größte Herausforderung besteht darin, die durch zusätzliche Kommunika-

tion, Berechnungen oder Speicherung erzeugten Kosten der Informationsanalyse abzuwägen

hinsichtlich der durch die neuartigen Methoden erreichbaren Qualitätssteigerungen. Diese

Herausforderung wird durch unterschiedliche Ansätze, Algorithmen und Systeme in den Bere-

ichen Umwelt-Monitoring, adaptive unterbrechungstolerante Netze und transitionsbasierte

drahtlose Netze adressiert.

Im Bereich des smarten Umwelt-Monitorings werden flexible Single-Board Computer einge-

setzt, um die Verbesserung verschiedener Sensorik-Aufgaben, insbesondere die räumliche

Bewegung und die optische / akustische Beobachtung von Fledermäusen, sowie die automa-

tisierte Erkennung von Vogelarten in akustischen Aufnahmen, zu realisieren.

Im Bereich der smarten adaptiven unterbrechungstoleranten Netze werden unterschiedliche

Implementierungen von unterbrechungstoleranten Netzen, Systeme zur opportunistischen Aus-

führung von Funktionen und Workflows, sowie neuartige sensorbasierte Routing-Algorithmen

vorgestellt.

Die gewonnenen Erkenntnisse in den beiden Bereichen werden genutzt, um im Bereich der

smarten transitionsbasierten drahtlosen Netze neuartige Ansätze für die Klassifizierung des

Netzverkehrsflusses mit Hilfe von maschinellem Lernen, für dynamische Ankündigungsinter-

valle bei der Ermittlung von Diensten, sowie für die Vorhersage vonWi-Fi-Verbindungsverlusten

zur Durchführung nahtloser Übergänge zwischen Wi-Fi und Mobilfunk, zu entwickeln.

v

Acknowledgments

First of all, I would like to thank my mentor and motivator, Prof. Dr. Bernd Freisleben, for his

support during my dissertation. His challenging and motivating nature, as well as his support

in various research areas have both motivated me initially to start a doctorate and carried

me through many lows. I am grateful for the insights into many different areas and various

projects.

I would like to thank Prof. Dr. Matthias Hollick from TU Darmstadt for taking the time to

review this work and for the opportunity to work with him and his research group in the SFB

MAKI.

I would like to thank all my colleagues of the Distributed Systems Group at the University

of Marburg for the fruitful discussions, the productive and often entertaining environment,

the open communication, and the great collaboration in paper writing, teaching, project, and

administrative work. Over the last seven years, these have been (in alphabetical order): Hicham

Bellafkir, Dr. Pablo Graubner, Mechthild Kessler, Nikolaus Korfhage, Matthias Leinweber, Dr.

Markus Mühling, Alvar Penning, Falk Schellenberg, Nils Schmidt, Daniel Schneider, Stefan

Schulz, Michael Schwarz, Dr. Roland Schwarzkopf, Markus Sommer, Christian Uhl, and Markus

Vogelbacher.

During the work on my thesis, I was financially supported by two research projects. I am very

grateful for this financial support.

The DFG SFB 1053 MAKI provided an excellent environment for basic research in the area of

the future internet. I would especially like to thank the co-authors of my contributions in this

area, and the people who made this research environment possible (in alphabetical order): Dr.

Michaela Bock, Dr. Alexander Frömmgen, Dr. Patrick Felka, Prof. Dr. Anja Klein, Dr. Katharina

Keller, Franz Kuntke, Dr. Manisha Luthra, Julia Müller, Prof. Dr. Mira Mezini, Dr. Tobias Meuser,

Prof. Dr. Ralf Steinmetz, and Dr. Denny Stohr.

The LOEWE Nature 4.0 project, funded by the Hessian Ministry of Science and Art (HMWK),

introduced me to the topic of nature conservation monitoring and provided exciting tasks,

challenges and especially a motivating use case. I would like to thank my co-authors and other

team members from Nature 4.0 for their unusual ideas, comprehensive explanations of the

tasks in their respective domains and their energy in the many different joint projects (in

alphabetical order): Prof. Dr. Nina Farwig, Dr. Nicolas Friess, Dr. Patrick Lieser, Kim Lindner,

Prof. Dr. Thomas Nauss, Dr. Christoph Reudenbach, Dr. Sascha Rösner, Dr. Dana G. Schabo,

Prof. Dr. Bernhard Seeger, and Julian Zobel. In particular, I would like to thank Jannis Gottwald,

who introduced me to the exciting field of bat research.

I would especially like to thank Dr. Lars Baumgärtner. His creativity and improvisational spirit

have always been an example to me in my ideas and projects and have ignited my passion for

practical research.

I would also like to very much thank Patrick Lampe and Artur Sterz for our time together at the

University of Marburg. Since the first semester, we have gone our ways together, experienced

many things together, suffered together with our bachelor theses, moved into our first office,

vi

and experienced so many things together away from our work. Without both of you by my

side, the professional collaboration and the mutual support, I certainly wouldn’t have made it

through the time of my doctorate.

Finally, I would like to thank my family, my friends, and my partner. Thank you for making

this path possible for me, for supporting me in bad times and for sharing my joy in good

times. Thank you Lea, for the open ear, for learning to reflect on myself, for the motivation

and strength you give me, and also for the mirror you sometimes held up to me.

vii

My Contributions

I am very grateful to have had the opportunity to work with a variety of people that have

fueled my research in different ways and from different perspectives. In the field of distributed

systems, computer networks, and ultimately in the development of methods in the ecological

field, research is a joint effort of many researchers involved. Publications are created in joint

work, implementations are envisioned and developed together, and intellectual capacities are

pooled to develop novel concepts and ideas and to discuss results. In addition, students play an

important role in implementing ideas or assisting in the evaluation of experiments. Therefore,

it is not always possible to attribute the successes to an individual contributor. Since this

thesis contains content of original publications, often in verbatim form, it also includes joint

and sometimes practically indivisible contributions from colleagues. Therefore, I highlight my

specific contributions below.

Chapter 3 presents solely my views and ideas for the research topics addressed in this thesis.

Chapter 4 is based on four joint publications with colleagues of the Nature 4.0 project. The

concept of the work presented in Section 4.1 is genuinely my work and was published in

publication [Höc+20b]. The design, as well as the implementation of the system was created

jointly by Alvar Penning and myself. The evaluation of the system was done by myself. Prof.

Dr. Bernd Freisleben and Patrick Lampe reviewed the paper and suggested improvements. The

idea behind the open-source software for reliable VHF wildlife tracking [Höc+21] presented in

Section 4.2 emerged from discussions of Jannis Gottwald, Patrick Lampe, and myself. Jannis

Gottwald contributed the requirements engineering based on his domain knowledge and

experience in field work. The design and implementation of the software system was done by

myself, the hardware design is based on prior work and was improved by Patrick Lampe and

Jannis Gottwald. Julian Zobel implemented the LoRa communications module and provided

suggestions for improvements. The evaluation was done jointly by Jannis Gottwald and myself.

Both Jannis Gottwald and I contributed equally. Prof. Dr. Thomas Nauss, Prof. Dr. Ralf Steinmetz,

and Prof. Dr. Bernd Freisleben reviewed the paper and provided improvements with respect

to the writing. The concept, design, and evaluation of BatRack [Got+21] presented in Section

4.3 was done by Jannis Gottwald and Patrick Lampe. Jannis Gottwald proposed, planned,

coordinated, and conducted the field campaign and led the writing of the manuscript. The

implementation of the system was initially done by Patrick Lampe and later on co-developed

and evaluated by Patrick Lampe and myself. Julia Maier, Lea Leister, Tobias Richter, and Betty

Neumann deployed BatRack in the field. Prof. Dr. Bernd Freisleben, Dr. Nicolas Friess, and

Prof. Dr. Thomas Nauss critically revised the different versions of the system and contributed

to its optimization. Bird@Edge [Höc+22b] presented in 4.4 was jointly designed by Hicham

Bellafkir, Patrick Lampe, Markus Vogelbacher, Markus Mühling, Daniel Schneider, and myself.

The system software and hardware design was done by myself with contributions from Hicham

Bellafkir and Patrick Lampe. The neural network architecture design, training, evaluation,

and embedded implemnetation were led by Hicham Bellafkir and Markus Vogelbacher with

contributions by Markus Mühling and Daniel Schneider. The experimental evaluation of the

system was done by myself. Kim Lindner, Dr. Sascha Rösner, Dr. Dana G. Schabo, and Prof.

viii

Dr. Nina Farwig provided domain knowledge and together with Prof. Dr. Bernd Freisleben

reviewed the paper and provided valuable feedback for further improving the manuscript.

Chapter 5 is based on six joint publications. The evaluation of the Serval DTN [Bau+16]

presented in Section 5.1 system was lead by Dr. Lars Baumgärtner. Patrick Lampe, Nils Schmidt,

Stefan Schulz, Artur Sterz, and myself contributed equally to the evaluation of the system,

although the contributions were in different areas. My contribution was mainly the analysis

of the experimental data. Pablo Graubner contributed the energy-related evaluation. Prof.

Dr. Paul Gardner-Stephen, Dr. Jeremy Lakeman, and Prof. Dr. Bernd Freisleben reviewed the

paper and provided improvements with respect to the writing. The concept of ONF-DTNs

[Gra+18a] presented in Section 5.2 is the work of Dr. Pablo Graubner. I designed and conducted

the experiments presented in Section 5.2.6. OPPLOAD [Ste+19] presented in Section 5.3 is

the work of Artur Sterz, with Dr. Lars Baumgärtner providing feedback. I contributed the

evaluation of the system together with Artur Sterz and helped to write the paper. Section 5.4 is

based on publication [Pen+19], which was initially conceptualized by Dr. Lars Baumgärtner

and myself. Alvar Penning designed and implemented the system in his bachelor’s thesis,

which was supervised by myself. Artur Sterz and myself contributed the evaluation of the

resulting system and wrote the paper. The publication was intensively discussed with Prof.

Dr. Mira Mezini and Prof. Dr. Bernd Freisleben before submission. Section 5.6 is based on

publications [Höc+20a] and [Höc+22a]. The concept is genuinely my work, the design and

implementations of individual components were contributed by different people. Dr. Lars

Baumgärtner contributed the implementation of the rf95modem firmware. Alvar Penning

implemented the DTN7 integration. The development of the BlueRa mobile application was

done by Artur Sterz. The evaluation of the system was lead by myself, with contributions

by Alvar Penning, Franz Kuntke, and Artur Sterz. ProgDTN presented in Section 5.5 is based

on publication [Som+22]. The initial concept was conceptualized by me and improved and

extended by Markus Sommer and Artur Sterz. The design and implementation was done by

Markus Sommer in his master’s thesis, which was supervised by myself. Alvar Penning helped

with the implementation. The evaluation was done by Artur Sterz and Markus Sommer. Prof.

Dr. Bernd Freisleben reviewed, commented, and edited the publication before submission.

Chapter 6 is based on three joint publications with colleagues of the MAKI project. Section 6.1

is based on publication [Höc+17] which was conceptualized by Prof. Dr. Bernd Freisleben and

Dr. Lars Baumgärtner. The design, implementation, and evaluation was done by myself. Dr. Lars

Baumgärtner provided various feedback and helped writing the manuscript. The publication

was intensively discussed with Prof. Dr. Matthias Hollick and Prof. Dr. Bernd Freisleben. The

approach presented in Section 6.2 was conceptualized by Dr. Lars Baumgärtner and published in

publication [Bau+17]. I contributed parts of the implementation, and designed and supervised

the experiments and the evaluation. The energy-related evaluation was contributed by Dr.

Pablo Graubner. The paper was intensively discussed with and reviewed by Prof. Dr. Anja

Klein and Prof. Dr. Bernd Freisleben. Artur Sterz, Dr. Alexander Frömmgen, Dr. Denny Stohr,

and myself jointly developed the concept presented in Section 6.3, which was also published

in publication [Höc+19]. The design, implementation, and evaluation of the data collection,

data preparation, and implementation of the machine learning model was done by myself,

while Artur Sterz aided the design. Artur Sterz contributed the design, implementation, and

execution of the evaluation, while I provided helpful feedback. Prof. Dr. Ralf Steinmetz and

Prof. Dr. Bernd Freisleben suggested improvements of the paper.

ix

Contents

Abstract iv

Deutsche Kurzfassung v

Acknowledgments vi

My Contributions viii

Table of Contents xiv

1 Introduction 1
1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Contributions of this Thesis . 2

1.4 Publications . 4

1.5 Open Source Software Contributions . 7

1.6 Organization of this Thesis . 8

2 Fundamentals 9
2.1 Smart Systems . 9

2.2 Smart Distributed Sensing . 11

2.3 Adaptive Wireless Networks . 12

2.4 Quality of Service / Experience / Result . 13

3 Categorizing Smart Systems 15
3.1 DeterminingQuality and Information Analysis Cost 15

3.2 Environmental Monitoring . 17

3.3 Adaptive Disruption-tolerant Networking . 19

3.4 Transitional Wireless Networking . 21

4 Smart Environmental Monitoring 25
4.1 PIMOD: A Tool for Configuring Single-board Computer Operating System Images 26

4.1.1 Introduction . 26

4.1.2 Related Work . 28

4.1.3 PIMOD Design . 29

4.1.4 Implementation . 32

4.1.5 Experimental Evaluation . 34

4.1.6 Summary . 40

4.2 tRackIT OS: Open-source Software for Reliable VHF Wildlife Tracking 40

4.2.1 Introduction . 40

4.2.2 Related Work . 42

4.2.3 tRackIT OS . 42

4.2.4 Experimental Evaluation . 50

4.2.5 Summary . 54

xi

Contents

4.3 BatRack: An Open-source Multi-sensor Device for Wildlife Research 55

4.3.1 Introduction . 55

4.3.2 Related Work . 56

4.3.3 Materials and Methods . 56

4.3.4 Experimental Evaluation . 60

4.3.5 Summary . 61

4.4 Bird@Edge: Bird Species Recognition at the Edge 63

4.4.1 Introduction . 63

4.4.2 Related Work . 64

4.4.3 Bird@Edge . 66

4.4.4 Recognizing Bird Species in Soundscapes 69

4.4.5 Experimental Evaluation . 71

4.4.6 Summary . 76

5 Smart Adaptive Disruption-tolerant Networking 79
5.1 An Experimental Evaluation of Delay-Tolerant Networking with Serval 81

5.1.1 Introduction . 81

5.1.2 Related Work . 82

5.1.3 Serval . 83

5.1.4 Experimental Evaluation . 85

5.1.5 Summary . 95

5.2 Opportunistic Named Functions in Disruption-tolerant Emergency Networks 96

5.2.1 Introduction . 96

5.2.2 Related Work . 97

5.2.3 Opportunistic Named Functions . 98

5.2.4 Opportunistic Named Functions in Disaster Scenarios 103

5.2.5 Implementation . 104

5.2.6 Experimental Evaluation . 107

5.2.7 Summary . 112

5.3 Offloading Computational Workflows in Opportunistic Networks 113

5.3.1 Introduction . 113

5.3.2 Related Work . 114

5.3.3 OPPLOAD’s Design . 116

5.3.4 Implementation . 118

5.3.5 Experimental Evaluation . 119

5.3.6 Summary . 126

5.4 DTN7: An Open-Source Disruption-tolerant Networking Implementation of

Bundle Protocol 7 . 127

5.4.1 Introduction . 127

5.4.2 Related Work . 128

5.4.3 Bundle Protocol Version 7 . 129

5.4.4 DTN7 . 132

5.4.5 Experimental Evaluation . 134

5.4.6 Summary . 139

5.5 ProgDTN: Programmable Disruption-tolerant Networking 139

5.5.1 Introduction . 139

xii

Contents

5.5.2 Related Work . 140

5.5.3 ProgDTN Design . 142

5.5.4 ProgDTN Implementation . 144

5.5.5 Experimental Evaluation . 147

5.5.6 Summary . 153

5.6 LoRa-based Device-to-Device Smartphone Communication 154

5.6.1 Introduction . 154

5.6.2 Related Work . 156

5.6.3 Design . 157

5.6.4 Implementation . 160

5.6.5 Experimental Evaluation . 166

5.6.6 Summary . 182

6 Smart Transitional Wireless Networking 183
6.1 Unsupervised Traffic Flow Classification Using a Neural Autoencoder 184

6.1.1 Introduction . 184

6.1.2 Related Work . 186

6.1.3 A Neural Autoencoder for Traffic Flow Classification 187

6.1.4 Implementation . 190

6.1.5 Experimental Evaluation . 192

6.1.6 Summary . 195

6.2 On Dynamic Announcement Intervals in Wireless On-demand Networks . . . 196

6.2.1 Introduction . 196

6.2.2 Related Work . 197

6.2.3 Dynamic Announcement Intervals . 199

6.2.4 Implementation . 202

6.2.5 Experimental Evaluation . 203

6.2.6 Summary . 210

6.3 Learning Wi-Fi Connection Loss Predictions for Seamless Vertical Handovers

Using Multipath TCP . 212

6.3.1 Introduction . 212

6.3.2 Related Work . 213

6.3.3 Conceptual Overview . 214

6.3.4 Learning Wi-Fi Loss Predictions . 216

6.3.5 Experimental Evaluation . 220

6.3.6 Summary . 227

7 Conclusion 229
7.1 Summary . 229

7.2 Future Work . 230

7.2.1 Smart Environmental Monitoring . 230

7.2.2 Smart Adaptive Disruption-tolerant Networking 231

7.2.3 Smart Transitional Networking . 232

List of Figures 233

List of Tables 237

xiii

Contents

Bibliography 239

Curriculum Vitae 267

xiv

1
Introduction

In recent years, technical development, miniaturization, and advancements in energy efficiency

have lead to the pervasiveness of sensing applications. Smartphones, smart watches, and other

wearable devices are already ubiquitous. Other use cases, such as smart homes and sensing in

industrial environments, impressively show the emerging deployment of sensing applications.

In these use cases, data from heterogeneous sources are used to maximize the quality of sensing

applications for users.

A second major achievement is the reconfigurability and softwarization of networks in general

and research in the field of adaptive wireless networks in particular. Modern smartphone

devices often support multiple radio access technologies (Multi-RAT), which can be used by

networked applications for increased service quality in terms of both latency and bandwidth.

Adaptations of network properties, however, require information about multiple aspects of

protocol internals, network state, and context information, hence there are heterogeneous

sensing requirements.

A third driver of modern technology are the improvements in machine learning methods,

as well as their deployment in resource-constrained systems. There are many applications

in which machine learning is a central component or significantly improves the quality of

service. Every major technology company offers digital assistants, e.g., Apple Siri, Microsoft

Cortana, Google Assistant, or Amazon Alexa. Car driving assistants and autonomous driving

in general are only feasible using a combination of image processing algorithms and prediction

mechanisms based on machine learning.

1.1 Motivation

The impact of the ubiquity of sensor data and machine learning methods is already influencing

the reconfigurability of adaptive networks, although the potentials have so far not been

sufficiently exploited. Classical Internet protocols, such as Ethernet, IP, or TCP, mostly use the

sensor data that arises from their domain and limit their control capability in favor of lower

complexity. For optimal service quality, however, the sensor sources from other domains or

network layers can also be used to further improve service quality. There is already an emerging

trend to not only align the configuration of a network with domain-specific information, but

also to include other data sources.

Edge computing and fog computing use statistical information about the service usage to bring

certain parts of services closer to the users and thus increase service quality. Other areas and

1

1 Introduction

technologies have not yet made use of the broad sensor information available today, or have

done so only to a very limited extent. For example, in the area of video streaming, various

properties of a video stream, such as the number of buffered blocks, transmission time of a

block, and latency are considered, but sensor information of the environment, such as the

change of network conditions due to movement of the user, are not yet included in the buffer

size or selected video quality. Especially in non-static application areas, such as moving users,

temporary infrastructure availability or crisis situations, positive effects can be expected from

the aid of additional sensor data.

1.2 Problem Statement

The goal of this thesis is to improve the quality of algorithms, protocols, and applications using

different kinds of sensor data and sources. The underlying technical challenges, limitations,

and general applicability of this approach will be studied. This goal can be approached by using

sensor data from sources outside of their common contexts. Using sensor data effectively and

efficiently outside of their common contexts leads to several research questions that need to

be addressed.

The first research question is how the great flexibility of single-board computers can be

facilitated for smart distributed sensing. Configuration and deployment of such systems either

introduces overhead by executing scripts on multiple devices or requires deeper technical

understanding when building operating system images for such small computers from scratch.

A particular field of interest is environmental sensing, particularly the tracking of small animals,

since many of the common challenges occur in this field, i.e., energy constraints and limited

communication resources.

The second research question is how to adapt networks, protocols, and applications dynamically

with respect to sensed data. Peer-to-peer, delay- and disruption-tolerant networks are applied

in the areas of environmental monitoring, and especially in disaster scenarios and emergency

response applications. In particular, it must be investigated which network technologies are

suitable for which use cases, and which adaptation options can be implemented with these

technologies.

The third research question is how sensor data from different sources can be used for adapta-

tions in networks. In particular, the concept of mechanism transitions [Frö+16; Alt+19] allows

transitioning between different functionally identical mechanisms used by an application. A

transition decision can be made with the help of the many available data sources and thus

supports the overall goal of increasing service quality.

1.3 Contributions of this Thesis

In this thesis, the following contributions are presented.

First, advances in smart distributed sensing, in particular in the field of environmental moni-

toring, are presented:

2

1.3 Contributions of this Thesis

• PIMOD is presented, a novel software tool and configuration language for configuring

operating system images for single-board computer systems. In smart distributed sensing,

the configuration and deployment of single-board computer systems can be improved by

developing a simple yet comprehensive configuration language and providing a software

tool for configuring operating system images.

• For environmental monitoring, the open-source software system tRackIT OS for reliable

VHF radio tracking of (small) animals in their wildlife habitat is proposed. It records,

stores, analyzes, and transmits detected VHF signals and their descriptive features, e.g.,

to calculate bearings of signals emitted by VHF radio tags mounted on animals or to

perform animal activity classification.

• BatRack is presented, a novel hardware/software system that allows researchers to

recognize individual bats andmonitor their behavioral patterns to obtain detailed insights

into the behavioral ecology of bats.

• Bird@Edge is presented, a novel Edge AI system for recognizing bird species in audio

recordings to support real-time biodiversity monitoring. Bird@Edge is based on em-

bedded edge devices operating in a distributed system to enable efficient, continuous

evaluation of soundscapes recorded in forests.

Second, various improvements in terms of performance and opportunistic function execution

in adaptive disruption-tolerant networks are presented:

• An in-depth experimental evaluation of Serval, an open-source, delay-tolerant, wireless

ad-hoc networking systems, is presented. The system can be used to establish a disaster-

response communications network spontaneously formed by mobile phones and/or

battery powered wireless routers.

• A novel approach to operate information-centric disruption-tolerant networks during

emergencies is discussed. Affected people and first responders use their mobile devices

to specify their interests in particular content and/or application-specific functions that

are then executed in the network on the fly, either partially or totally, in an opportunistic

manner.

• OPPLOAD is presented, a novel framework designed for offloading computational work-

flows in opportunistic networks that provide support for communication in challenging

situations. The individual tasks forming a workflow can be assigned to particular remote

execution platforms, called workers, either preselected ahead of time or decided just in

time where a matching worker will automatically be assigned for the next task in the

workflow.

• A novel open source DTN implementation, called DTN7, of the recently released Bundle

Protocol Version 7, is presented. DTN7 is written in Go and provides features like memory

safety and concurrent execution.

• ProgDTN is presented, a novel approach to support programmable disruption-tolerant

networking by allowing network operators to implement and adapt routing algorithms

without knowledge of a router’s interior workings.

3

1 Introduction

• A novel approach to long-range device-to-device communication via smartphones in

crisis scenarios is facilitated through a custom firmware for low-cost LoRa capable micro-

controller boards, called rf95modem. Common devices for end users can be enabled to

use LoRa through a Bluetooth, Wi-Fi, or serial connection.

Third, insights from sensing and sensor data processing are applied to transitional wireless

networks, and consequently improved service quality is achieved.

• A novel approach to unsupervised traffic flow classification using statistical properties of

flows and clustering based on a neural autoencoder is presented. In contrast to previous

work, the neural autoencoder is used to automatically cluster traffic flows, e.g., into

downloads, uploads, or voice calls, independent of the particular network protocols, such

as FTP or HTTP(S), used for performing these tasks.

• Several approaches to realize dynamic announcement intervals that facilitate fast recep-

tion from at least one other node while keeping the overall communication overhead as

low as possible are presented.

• A novel data-driven approach to perform smooth Wi-Fi/cellular handovers on smart-

phones is presented. The approach relies on data provided by multiple smartphone

sensors (e.g., Wi-Fi RSSI, acceleration, compass, step counter, barometric pressure) to

predict Wi-Fi connection loss and uses Multipath-TCP to dynamically switch between

different connectivity modes.

1.4 Publications

During the work on this thesis, the following papers were published:

1. Jonas Höchst, Lars Baumgärtner, Franz Kuntke, Alvar Penning, Artur Sterz, Markus

Sommer, and Bernd Freisleben. “Mobile Device-to-Device Communication for Crisis

Scenarios Using Low-cost LoRa Modems.” in: Disaster Management and Information
Technology: Professional Response and Recovery Management in the Age of Disasters. ed. by
Hans Jochen Scholl, Eric E. Holdeman, and F. Kees Boersma. Springer Nature, 2022

[Höc+22a]

2. Patrick Lampe, Markus Sommer, Artur Sterz, Jonas Höchst, Christian Uhl, and Bernd

Freisleben. “Unobtrusive Mechanism Interception: Teaching an Old Dog New Tricks.” in:

2022 IEEE 47th Conference on Local Computer Networks (LCN 2022). Edmonton, Canada,

Sept. 2022. doi: 10.1109/LCN53696.2022.9843536 [Lam+22b]

3. Patrick Lampe, Markus Sommer, Artur Sterz, Jonas Höchst, Christian Uhl, and Bernd

Freisleben. “ForestEdge: Unobtrusive Mechanism Interception in Environmental Moni-

toring.” in: 2022 IEEE 47th Conference on Local Computer Networks (LCN 2022). Edmonton,

Canada, Sept. 2022. doi: 10.1109/LCN53696.2022.9843426 [Lam+22a]

4. Jonas Höchst, Hicham Bellafkir, Patrick Lampe, Markus Vogelbacher, Markus Mühling,

Daniel Schneider, Kim Lindner, Sascha Rösner, Dana G. Schabo, Nina Farwig, and

Bernd Freisleben. “Bird@Edge: Bird Species Recognition at the Edge.” in: International

4

https://doi.org/10.1109/LCN53696.2022.9843536
https://doi.org/10.1109/LCN53696.2022.9843426

1.4 Publications

Conference on Networked Systems (NETYS). Springer. May 2022. doi: 10.1007/978-3-0
31-17436-0_6 [Höc+22b]

5. Markus Sommer, Jonas Höchst, Artur Sterz, Alvar Penning, and Bernd Freisleben.

“ProgDTN: Programmable Disruption-tolerant Networking.” in: International Conference
on Networked Systems (NETYS). Springer. May 2022. doi: 10.1007/978-3-031-17436-
0_13 [Som+22]

6. Jonas Höchst, Jannis Gottwald, Patrick Lampe, Julian Zobel, Thomas Nauss, Ralf Stein-

metz, and Bernd Freisleben. “tRackIT OS: Open-source Software for Reliable VHFWildlife

Tracking.” in: 51. Jahrestagung der Gesellschaft für Informatik INFORMATIK 2021, Berlin,
Germany. LNI. GI, Sept. 2021. doi: 10.18420/informatik2021-035 [Höc+21]

7. Julian Zobel, Paul Frommelt, Patrick Lieser, Jonas Höchst, Patrick Lampe, Bernd Freis-

leben, and Ralf Steinmetz. “Energy-efficient Mobile Sensor Data Offloading via WiFi

using LoRa-based Connectivity Estimations.” in: 51. Jahrestagung der Gesellschaft für
Informatik, INFORMATIK 2021, Berlin, Germany. LNI. GI, Sept. 2021. doi: 10.18420/inf
ormatik2021-037 [Zob+21]

8. Jannis Gottwald, Patrick Lampe, Jonas Höchst, Nicolas Friess, Julia Maier, Lea Leister,

Betty Neumann, Tobias Richter, Bernd Freisleben, and Thomas Nauss. “BatRack: An

Open-source Multi-sensor Device for Wildlife Research.” in: Methods in Ecology and
Evolution (July 2021). doi: 10.1111/2041-210X.13672 [Got+21]

9. Johnny Nguyen, Karl Kesper, Gunter Kräling, Christian Birk, Peter Mross, Nico Hofeditz,

Jonas Höchst, Patrick Lampe, Alvar Penning, Bastian Leutenecker-Twelsiek, Carsten

Schindler, Helwig Buchenauer, David Geisel, Caroline Sommer, Ronald Henning, Pascal

Wallot, Thomas Wiesmann, Björn Beutel, Gunter Schneider, Enrique Castro-Camus, and

Martin Koch. “Repurposing CPAP Machines as Stripped-down Ventilators.” in: Scientific
Reports 11.1 (June 2021), pp. 1–9. doi: 10.1038/s41598-021-91673-7 [Ngu+21]

10. Lars Baumgärtner, Alexandra Dmitrienko, Bernd Freisleben, Alexander Gruler, Jonas
Höchst, Joshua Kühlberg, Mira Mezini, Richard Mitev, Markus Miettinen, Anel Muha-

medagic, Thien Duc Nguyen, Alvar Penning, Dermot Pustelnik, Filipp Roos, Ahmad-Reza

Sadeghi, Michael Schwarz, and Christian Uhl. “Mind the GAP: Security & Privacy Risks of

Contact Tracing Apps.” in: 2020 IEEE 19th International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom). vol. 1. IEEE. Dec. 2020, pp. 458–467.
doi: 10.1109/TrustCom50675.2020.00069 [Bau+20]

11. Jonas Höchst, Alvar Penning, Patrick Lampe, and Bernd Freisleben. “PIMOD: A Tool for

Configuring Single-Board Computer Operating System Images.” in: 2020 IEEE Global
Humanitarian Technology Conference (GHTC 2020). Seattle, USA, Oct. 2020, pp. 1–8. doi:
10.1109/GHTC46280.2020.9342928 [Höc+20b]

12. Jonas Höchst, Lars Baumgärtner, Franz Kuntke, Alvar Penning, Artur Sterz, and Bernd

Freisleben. “LoRa-based Device-to-Device Smartphone Communication for Crisis Sce-

narios.” in: 17th International Conference on Information Systems for Crisis Response and
Management (ISCRAM 2020). Blacksburg, Virginia, USA, May 2020 [Höc+20a]

5

https://doi.org/10.1007/978-3-031-17436-0_6
https://doi.org/10.1007/978-3-031-17436-0_6
https://doi.org/10.1007/978-3-031-17436-0_13
https://doi.org/10.1007/978-3-031-17436-0_13
https://doi.org/10.18420/informatik2021-035
https://doi.org/10.18420/informatik2021-037
https://doi.org/10.18420/informatik2021-037
https://doi.org/10.1111/2041-210X.13672
https://doi.org/10.1038/s41598-021-91673-7
https://doi.org/10.1109/TrustCom50675.2020.00069
https://doi.org/10.1109/GHTC46280.2020.9342928

1 Introduction

13. Lars Baumgärtner, Jonas Höchst, and Tobias Meuser. “B-DTN7: Browser-based Dis-

ruption-tolerant Networking via Bundle Protocol 7.” in: 2019 International Conference
on Information and Communication Technologies for Disaster Management (ICT-DM’19).
Paris, France, Dec. 2019. doi: 10.1109/ICT-DM47966.2019.9032944 [BHM19]

14. Alvar Penning, Lars Baumgärtner, Jonas Höchst, Artur Sterz, Mira Mezini, and Bernd

Freisleben. “DTN7: An Open-Source Disruption-tolerant Networking Implementation of

Bundle Protocol 7.” in: 18th International Conference on Ad Hoc Networks and Wireless
(ADHOC-NOW 2019). Esch-sur-Alzette, Luxemburg, Oct. 2019. doi: 10.1007/978-3-030
-31831-4_14 [Pen+19]

15. Jonas Höchst, Artur Sterz, Alexander Frömmgen, Denny Stohr, Ralf Steinmetz, and

Bernd Freisleben. “Learning Wi-Fi Connection Loss Predictions for Seamless Vertical

Handovers Using Multipath TCP.” in: 2019 IEEE 44th Conference on Local Computer
Networks (LCN 2019). Best Paper Award. Osnabrück, Germany, Oct. 2019. doi: 10.110
9/LCN44214.2019.8990753. url: https://umr-ds.github.io/seamcon [Höc+19]

16. Artur Sterz, Lars Baumgärtner, Jonas Höchst, Patrick Lampe, and Bernd Freisleben.

“OPPLOAD: Offloading Computational Workflows in Opportunistic Networks.” in: 2019
IEEE 44th Conference on Local Computer Networks (LCN 2019). Osnabrück, Germany, Oct.

2019. doi: 10.1109/LCN44214.2019.8990775 [Ste+19]

17. Lars Baumgärtner, Patrick Lampe, Jonas Höchst, Ragnar Mogk, Artur Sterz, Pascal

Weisenburger, Mira Mezini, and Bernd Freisleben. “Smart Street Lights and Mobile

Citizen Apps for Resilient Communication in a Digital City.” in: 2019 IEEE Global Hu-
manitarian Technology Conference (GHTC 2019). Seattle, USA, Oct. 2019. doi: 10.1109
/GHTC46095.2019.9033134 [Bau+19]

18. Manisha Luthra, Boris Koldehofe, Jonas Höchst, Patrick Lampe, Ali Haider Rizvi, and

Bernd Freisleben. “INetCEP: In-Network Complex Event Processing for Information-

Centric Networking.” in: 15th ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS 2019). Cambridge, UK, Sept. 2019. doi: 10.1109/ANCS.2
019.8901877 [Lut+19]

19. Pablo Graubner, Patrick Lampe, Jonas Höchst, Lars Baumgärtner, Mira Mezini, and

Bernd Freisleben. “Opportunistic Named Functions in Disruption-tolerant Emergency

Networks.” in: ACM International Conference on Computing Frontiers 2018 (ACM CF 2018).
Ischia, Italy: ACM, May 2018. doi: 10.1145/3203217.3203234 [Gra+18a]

20. Jonas Höchst, Lars Baumgärtner, Matthias Hollick, and Bernd Freisleben. “Unsupervised

Traffic Flow Classification Using a Neural Autoencoder.” in: 42nd Annual IEEE Conference
on Local Computer Networks (LCN 2017). Singapore, Oct. 2017. doi: 10.1109/LCN.2017
.57 [Höc+17]

21. Lars Baumgärtner, Pablo Graubner, Jonas Höchst, Anja Klein, and Bernd Freisleben.

“Speak Less, Hear Enough: On Dynamic Announcement Intervals inWireless On-demand

Networks.” in: 13th Conference on Wireless On-demand Network Systems and Services
(WONS 2017). Jackson Hole, USA, Feb. 2017. doi: 10 . 1109 / WONS . 2017 . 7888768
[Bau+17]

6

https://doi.org/10.1109/ICT-DM47966.2019.9032944
https://doi.org/10.1007/978-3-030-31831-4_14
https://doi.org/10.1007/978-3-030-31831-4_14
https://doi.org/10.1109/LCN44214.2019.8990753
https://doi.org/10.1109/LCN44214.2019.8990753
https://umr-ds.github.io/seamcon
https://doi.org/10.1109/LCN44214.2019.8990775
https://doi.org/10.1109/GHTC46095.2019.9033134
https://doi.org/10.1109/GHTC46095.2019.9033134
https://doi.org/10.1109/ANCS.2019.8901877
https://doi.org/10.1109/ANCS.2019.8901877
https://doi.org/10.1145/3203217.3203234
https://doi.org/10.1109/LCN.2017.57
https://doi.org/10.1109/LCN.2017.57
https://doi.org/10.1109/WONS.2017.7888768

1.5 Open Source Software Contributions

22. Lars Baumgärtner, Paul Gardner-Stephen, Pablo Graubner, Jeremy Lakeman, Jonas
Höchst, Patrick Lampe, Nils Schmidt, Stefan Schulz, Artur Sterz, and Bernd Freisleben.

“An Experimental Evaluation of Delay-Tolerant Networking with Serval.” in: 2016 IEEE
Global Humanitarian Technology Conference (GHTC). Seattle, USA, Oct. 2016. doi: 10.11
09/GHTC.2016.7857262 [Bau+16]

23. Lars Baumgärtner, Jonas Höchst, Matthias Leinweber, and Bernd Freisleben. “How to

Misuse SMTP over TLS: A Study of the (In) Security of Email Server Communication.” in:

Trustcom/BigDataSE/ISPA, 2015 IEEE. vol. 1. IEEE. 2015, pp. 287–294. doi: 10.1109/Trus
tcom.2015.386 [Bau+15]

1.5 Open Source Software Contributions

During the work on this thesis, the following software was co-developed and released under

permissive open source licenses:

1. Bird@Edge OS, an operating system image for Bird Species Recognition at the Edge

[Höc+22b]. Available at https://github.com/umr-ds/BirdEdge.

2. ProgDTN, a novel approach to support programmable disruption-tolerant networking,

based on dtn7-go [Som+22]. Available at https://github.com/umr-ds/dtn7-go/tr
ee/progdtn.

3. tRackIT OS, an open-source software for reliable VHF radio tracking of (small) animals

in their wildlife habitat [Höc+21]. Available at https://github.com/Nature40/tRac
kIT-OS.

4. BatRack OS, an operating system image for the BatRack multi-sensor device for wildlife

research [Got+21]. Available at https://github.com/Nature40/BatRack.

5. PIMOD, a tool for reconfiguring Raspberry Pi images with an easy, Docker-like configu-

ration file [Höc+20b]. Available at https://github.com/Nature40/pimod.

6. BlueRa, a cross-platform app for connecting to an RF95 modem for chatting over LoRa

[Höc+20a; Höc+22a]. Available at https://github.com/umr-ds/bluera.

7. rf95modem, a modem firmware for microcontroller boards with a RF95 compatible radio

module [Höc+20a; Höc+22a]. Available at https://github.com/umr-ds/rf95modem.

8. dtn7-go, a delay-tolerant networking software suite and library based on the Bundle

Protocol Version 7 [Pen+19]. Available at https://github.com/dtn7/dtn7-go.

9. Seamless Connectivity Demo Application that demonstrates the feasibility of the ap-

proach presented in publication [Höc+19]. Available at https://github.com/umr-ds/
seamcon-SeamlessDemo.

7

https://doi.org/10.1109/GHTC.2016.7857262
https://doi.org/10.1109/GHTC.2016.7857262
https://doi.org/10.1109/Trustcom.2015.386
https://doi.org/10.1109/Trustcom.2015.386
https://github.com/umr-ds/BirdEdge
https://github.com/umr-ds/dtn7-go/tree/progdtn
https://github.com/umr-ds/dtn7-go/tree/progdtn
https://github.com/Nature40/tRackIT-OS
https://github.com/Nature40/tRackIT-OS
https://github.com/Nature40/BatRack
https://github.com/Nature40/pimod
https://github.com/umr-ds/bluera
https://github.com/umr-ds/rf95modem
https://github.com/dtn7/dtn7-go
https://github.com/umr-ds/seamcon-SeamlessDemo
https://github.com/umr-ds/seamcon-SeamlessDemo

1 Introduction

1.6 Organization of this Thesis

This thesis is organized as follows:

Chapter 2 introduces topics fundamental for the research in this thesis.

Chapter 3 gives an overview of the work presented in this thesis. A categorization of smart

systems as well as challenging areas covered in the following chapters are explained.

Chapter 4 includes research results obtained to provide efficient and effective implementations

in smart environmental monitoring. A software tool for configuring single-board computer

systems and an approach for tracking bats are discussed. A novel software-defined radio-based

approach for automated signal detection of VHF radio tracking tags, and an open-source

multi-sensor device are proposed. Finally, an approach for bird species recognition at the edge

is presented.

Chapter 5 presents work to achieve smart adaptive disruption-tolerant networking. The eval-

uation of delay- and disruption-tolerant network approaches are discussed, and various im-

provements, such as opportunistic offloading and workflow scheduling in such networks, are

presented. An approach to support programmable disruption-tolerant networking is proposed.

The versatility and adaptivity of long range wireless communication is explored, and hybrid

DTN/LoRa approaches are presented.

Chapter 6 presents approaches to improve service quality in smart transitional wireless network-

ing. Unsupervised traffic flow classification as a decision basis for transitions, implementations

of dynamic announcement interval algorithms, and a machine-learning approach to Wi-Fi

connection loss predictions are discussed.

Chapter 7 concludes the thesis and discusses possible areas of future work.

8

2
Fundamentals

In this chapter, fundamental concepts and technologies that are used throughout this thesis

are discussed. First, the term smart systems is introduced. Then, the term adaptive wireless
networks and the related subcategory of transitions are discussed. Finally, different quality
metrics based on results, service quality, and user-perceived quality are described.

2.1 Smart Systems

In his visionary article, Mark Weiser describes ‘The Computer for the 21st Century’ [Wei91] as

the foundation for today’s research field of ubiquitous computing.

‘The real power of the concept comes not from any one of these devices; it emerges
from the interaction of all of them. The hundreds of processors and displays are not a
‘user interface’ like a mouse and windows, just a pleasant and effective ‘place’ to get
things done [Wei91].’

Ubiquitous computing touches various fields of computer science and information and commu-

nication technology (ICT), including distributed systems, (wireless) sensor networks, context-

aware systems, and artificial intelligence.

In the context of ubiquitous computing, Poslad defines a smart entity of a system as ‘active,

digital, networked, operating to some extent autonomously, is reconfigurable and has local

control of the resources it needs such as energy, data storage, etc.‘ [Pos11]. In Figure 2.1, three

device trends are identified and that lead to smarter devices, environments, and interactions,

and ultimately led to the rise of ubiquitous computing. With the dawn of the smartphone era,

smart devices entering people’s homes, and smart cities solving infrastructure tasks with the

help of smart digital devices, we are seeing these predictions to come true.

In more recent years, the term smartness has been used in various contexts and is particularly

familiar in smart homes and smart cities, where it is used to describe the use of smart devices

to make the lives of people more convenient. Furthermore, the terms smart industry and smart

service systems have entered the literature to consider the use of cyber-physical systems and

even people within such systems. From a systematic literature review, Romero et al. derive the

specifics of a smart system [Rom+20]:

9

2 Fundamentals

1.4 Architectural Design for UbiCom Systems: Smart DEI Model

Three basic architectural design patterns for ubiquitous ICT system: smart devices, smart
environment27 and smart interaction are proposed (Figure 1.5). Here the concept smart simply
means that the entity is active, digital, networked, can operate to some extent autonomously, is
reconfigurable and has local control of the resources it needs such as energy, data storage, etc. It
follows that these three main types of system design may themselves contain sub systems and
components at a lower level of granularity that may also be considered smart, e.g., a smart
environment device may consist of smart sensors and a smart controller, etc. There is even smart
dust (Section 2.2.3.2). An illustrative example of how these three types of models can be deployed
is given in Figure 1.5.
These are many examples of sub types28 of smarts for each of the three basic types of smarts which

are discussed in detail in the later chapters of this book. The three main types of smart design also
overlap, they are not mutually exclusive. Smart devices may also support smart interaction. Smart
mobile start devices can be used for control in addition to the use of static embedded environment
devices. Smart devices may be used to support the virtual viewpoints of smart personal (physical
environment) spaces in a personal space that accompanies the user wherever they are.
Satyanarayanan (2001) has also postulated different architectures and paths for developing

UbiCom systems, first, to evolve from distributed systems, mobile distributed systems into ubiqui
tous computing and, second, to develop UbiCom systems from smart spaces characterised by

Increasing capability to
manufacture low power,
micro, more complex devices

Use more complex, multi-
functional, mobile, personalised
(& private) smart devices to
ease access to & embody
services rather than just to
virtualise them
e.g., phone is also a
camera, music player, is
also a printer??

Increasing capability to
embed devices in the
physical environment

Device Trends

Increasing capability for
more interoperable
distributed mobile devices

Use more service access
devices with simpler
functions and allow them to
interoperate –- smarter
interaction between devices

e.g., camera can interconnect
to phone to share recordings,
direct to printer to print

Ubiquitous Computing

e.g., walls can sense camera
is recording and modify
lighting to improve
recording

Use smarter environments
to sense and react to events
such as people, with mobile
devices, entering & leaving
controlled spaces

Figure 1.5 Three different models of ubiquitous computing: smart terminal, smart interaction, and smart
infrastructure

27Note: some people just consider the smart environment model to comprise ubiquitous computing but here
ubiquitous computing is also considered to comprise the smart device model, e.g., mobile communicators, and
smart interaction model.
28 Further levels of granularity of the sub types of smarts could be added, e.g., sub types of smart embedded
environments devices such as implants but these are not indicated in order to simplify Figure 1.6.

26 Ubiquitous Computing: Basics and Vision

Figure 2.1: Three different models of ubiquitous computing: smart terminal, smart interaction,

and smart infrastructure, as defined by Poslad [Pos11].

‘Smart systems [. . .] are able to self-organise and be aware of the context, to
provide communication between their elements. Moreover, they are able to learn,
reason, perceive themselves and their surroundings, control their environment, and
have embedded knowledge to be used for making decisions [Rom+20].’

Medina-Borja [Med15] defines smart service systems in the editorial column of the Journal of

Service Science using a definition of the NSF [Fou14]:

‘A ‘smart’ service system is a system capable of learning, dynamic adaptation,
and decision making based upon data received, transmitted, and/or processed to
improve its response to a future situation. The system does so through self-detection,
self-diagnosing, self-correcting, self-monitoring, self-organizing, self-replicating, or
self-controlled functions. These capabilities are the result of the incorporation of
technologies for sensing, actuation, coordination, communication, control, etc. The
system may exhibit a sequence of features such as detection, classification, and
localization that lead to an outcome occurring within a reasonable time [Fou14].’

Based on this definition, further definitions in the literature, and an analysis of a large selection

of examples, Alter derives four categories of smartness, which are further broken down into 23

dimensions [Alt20]. Within the dimensions, a continuous scale is applied, which is described

by five levels of smartness: not smart at all, scripted execution, formulaic adaptation, creative

adaptation, and unscripted or partially scripted invention. Figure 2.2 shows the categories and

dimensions according to the definition of smartness in Alter’s paper.

In the context of this thesis, we will use the definition of smartness based on Medina-Borja’s

definition. Hence, a smart system in the context of this thesis is one that is capable of learning,

dynamic adaptation, and decision making based upon data. In addition to this, Alter’s scale for

smartness is used as an inspiration for the classification system presented in Chapter 3.

10

2.2 Smart Distributed Sensing

workarounds or other unscripted or partially scripted re-
sponses to conditions that make it difficult to fulfill organiza-
tional or personal goals (e.g., see theory of workarounds –
Alter (2014)). Totally automated invention is far beyond cur-
rent capabilities of most totally automated systems except in
rare niche areas such as drug discovery.

4.1 Dimensions of Smartness

By the definition above, the smartness of a device, totally
automated system, or sociotechnical system is described as a
set of dimensions that are continuous variables going from not
at all smart to somewhat smart to extremely smart. Figure 1
shows the four categories of smartness from Table 1 along
with a set of dimensions related to each category. For example,
self-monitoring is one of the dimensions under the category
internal regulation. As a reminder of the general range of
possibilities for each dimension, the bottom of Fig. 1 shows
not smart at all plus the four levels of smartness in column 1
of Table 1. Tables 2, 3, 4, and 5 expand on Fig. 1 by providing

highly summarized descriptions of the “somewhat” and “ex-
treme” parts of the dimensions for each of the categories.

The next section will illustrate that the dimensions in those
tables might be used as an aid for thinking about different
ways to make a device or system smarter or less smart, either
of which might be more advantageous for specific purposes
and/or specific stakeholders.

The dimensions in Table 2 are the six aspects of au-
tomated information processing (Alter 2006) i.e., captur-
ing, transmitting, storing, retrieving, manipulating, and
displaying information. Most of the smart things listed
in this paper’s introduction (e.g., smart glasses, smart
locks, smart meters, and smart cities) capture information
and then use that information to perform their primary
functions. Some of them transmit, store, or retrieve in-
formation; some do not. Most of them manipulate infor-
mation, e.g. performing calculations using the informa-
tion or changing the format of the information. Many
entities are somewhat smart along one or more of the
six dimensions. Few are extremely smart along any of
those dimensions.

Information Processing*

Capture information
Transmit information
Store information
Retrieve information
Manipulate information
Display information

Action in the world*

Sensing
Actuation
Coordination
Communication
Control
Physical action

Internal Regulation*

Self-detection
Self-monitoring
Self-diagnosis
Self-correction
Self-organization

Knowledge Acquistion*

Sensing or discovering
Classifying
Compiling
Inferring or extrapolating
from examples

Inferring or extrapolating
from abstractions

Testing and evaluating

SMARTNESS

Categories

dimensions

Scripted
execution

Not smart
at all

Formulaic
adaptation

Creative
adaptation

Unscripted or
partially scripted
invention

* Every dimension in all four categories is a continuous variable extending from not smart at all to
extremely smart. Each dimension potentially covers the following range, although very few existing

systems achieve anything close to the higher levels of smartness.

Fig. 1 Dimensions of smartness for systems, services, and devices

Inf Syst Front (2020) 22:381–393386

Figure 2.2: Dimensions of smartness for systems, services, and devices, as defined by Alter

[Alt20]

2.2 Smart Distributed Sensing

According to the common definition by Tanenbaum [VT02], a distributed system is a system

whose components are distributed on different networked devices that communicate with each

other and coordinate their actions by message passing. The term smart distributed sensing is

defined in this thesis as follows.

Smart distributed sensing is the combination of a number of autonomously

operating devices and sensors that perform a sensing task in a coordinated manner.

The systems covered by the term can have a tendency towards a smart system,

i.e., be autonomous and only contribute to a distributed system through individ-

ual aspects, or be comparatively non-smart, however contribute to the sensing

task through the distributed aspects. Particularly noteworthy is the interplay be-

tween sensing as the task of the systems under consideration and the concept of

smartness, in which sensors and information from the local device itself enable

adaptation.

11

2 Fundamentals

Smart distributed sensing is one of the building blocks of the Nature 4.0 research project, which

is funded by the Hessian Ministry of Science and Art (HMWK):

‘The project combines expert surveys by nature conservationists, remote sensing,
and a network of environmental sensors, which are integrated into stationary units as
well as attached to unmanned aerial vehicles, rovers, or animals. By utilizing powerful
data integration and analysis methods, Nature 4.0 will enable researchers to effectively
observe landscapes through a set of diverse lenses. [. . .] Nature 4.0 will establish new
methods and protocols in the field of comprehensive environmental monitoring by
combining traditional sampling, remote sensing, and automated measurement stations
[Fri+19].’

2.3 Adaptive Wireless Networks

In recent years, Software-defined (Wireless) Networking (SD(W)N) has gained considerable

attention, especially because rapid reconfiguration of networks allows the use of novel protocols

[Xia+14]. In addition to common implementations of SDN concepts, i.e. OpenFlow, more

unconventional concepts such as delay- and disruption-tolerant networking, Long Range

(LoRa) and decentralized networks are also experiencing softwarization and thus increased

adaptivity.

The concept of mechanism transitions in communications systems was developed by the

Collaborative Research Center Multi-Mechanism Adaptation for the Future Internet (MAKI)

funded by the German National Science Foundation [Frö+16; Alt+19]. While many protocols

used in networks and on the Internet already function adaptively and adapt to their environment

at runtime, the adaptation of the protocol or mechanism itself to another more suitable

mechanism is usually not possible. The goal of MAKI is to explore techniques for transitioning

between mechanisms at runtime to provide additional flexibility and adaptivity, especially in

challenging situations. Frömmgen et al. defines a transition inside a communications system

as follows:

‘A (mechanism) transition is the functional replacement of a (source) mechanism
by a functionally similar or equivalent other (target) mechanism in a running com-
munication system, without causing an error condition in any dependent mechanism
[Frö+16].’

An illustrative example is a transition between the well-known transport mechanism TCP and

the standard QUIC or HTTP/3, which has become widespread in recent years. If an adaptive

wireless network or system triggers a change of the transport mechanism from TCP to QUIC

or vice versa based on a change of external conditions or internal states, this is a transition.

However, mechanism transitions are not limited to the transport layer, but can be applied to

all seven layers of the ISO OSI model, as well as in other areas of information systems, such as

the calculation or storage of data, both in the selection of the algorithm used and the location

of the calculation or storage [Gra19].

In the context of this thesis, the term adaptive wireless networks describes networks that adapt

by means of conventional adaptation within specific mechanisms or protocols or by means of

12

2.4 Quality of Service / Experience / Result

mechanism transitions. Examples of such networks can be found in the areas of delay- and

disruption-tolerant networks, more specifically in the adaptive allocation of computations of

individual tasks of a workflow (Section 5.3), or in the opportunistic computation of partial

results in information-centric networks (Section 5.2).

2.4 Quality of Service / Experience / Result

Different approaches can be used to evaluate algorithms and systems, which can basically be

divided into three categories. Figure 2.3 provides an overview on the terms.

QoS

Technical metrics,
focus on
communications,
e.g. latency,
throughput, stability…

QoE

User centric,
e.g. video quality,
adaptations, …

QoR

Performance metrics,
focus on algorithms,
e.g. compression ratio,
precision / recall, …

Figure 2.3: Quality of Result / Service / Experience

The termQuality of Result (QoR) is traditionally used in the field of technological processes,

and will be used in the context of this thesis as a collective term to evaluate the result itself. For

example, QoR refers to the sheer number of available measurement data or their resolutions, e.g.

the accuracy and frequency of a GPS position, or the frequency of a temperature measurement.

Especially in the example of data-driven approaches, such as machine learning, the usual

evaluation criteria, such as precision and recall, as well as f-scores belong to the category of

Quality of Result. In contrast to QoS and QoE, QoR does not evaluate the technical or perceived

availability of a system, but the quality of the system itself.

The development and testing of systems, especially in the academic field, focuses on technical

metrics. The term Quality of Service (QoS) originates from an ITU definition in the field of

telephony, but has since been used in different areas to describe different technical metrics.

Depending on the domain and the specific requirements, the term can refer to a variety of

evaluation functions, all of which are characterized by their technical measurability. These

include the measured throughput or the delay of a connection, the duration of a calculation or

a compression rate when storing data.

The term Quality of Experience (QoE), on the other hand, follows a holistic concept and takes

the user’s perception as the basis for evaluating a system [FHT10]. This broader view creates

a link between user perception and technical background and enables the optimization of a

13

2 Fundamentals

technical system in terms of perceived quality. Especially in the area of video streaming, the

evaluation of quality based on the user experience has become common. Examples of QoE

metrics can be the visual quality of a video, based on resolution and bit rate, but also the

number of stalling / buffering events and the frequency of quality adjustment.

In principle, the three terms can be used differently in different domains and can also merge

into one another depending on the domain, for example when the quality of experience is

approximated using technical QoS metrics. In particular, when smart distributed sensing is

used in adaptive wireless systems, QoR and QoS also serve to distinguish the quality of the

communication system and the sensing system.

14

3
Categorizing Smart Systems

In this chapter, a categorization of smart systems overarching the three areas of environmental

monitoring, adaptive disruption-tolerant networking, and transitional wireless networking is

discussed. First, the basis for determining quality and information analysis cost of systems

in a domain is provided. Then, for each of the three areas, the contributions of this thesis are

classified according to the proposed schema.

3.1 DeterminingQuality and Information Analysis Cost

In principle, the quality of a system or algorithm can be quantified in different ways.Quality of

Service (QoS) describes technical metrics for measuring quality, such as the delay or throughput

in a communication link. Quality of Experience (QoE) describes the experience of a user, e.g.,

the user’s satisfaction with the system.Quality of Result (QoR) describes the quality of the

results of an algorithm, i.e., the objective of the algorithm itself, e.g., the accuracy of a position

finding or the temporal resolution of a measurement series.

On the other hand, there are information analysis costs, i.e., costs occurring in a system or

a solution in order to achieve an increase of quality. These costs can also be represented in a

variety of ways. The most common form are technical metrics, such as the number of CPU

cycles required to calculate a result, or more practically, the computing time required. In

addition to the pure computing time, costs can also be incurred in the area of data storage,

for example, if an entire measurement series must be kept available. Finally, in distributed

systems, the costs of communication must also be considered, e.g., when information from

many participants must first be collected for decision-making.

The consideration of both quality and information analysis cost is usually based on the problem

or problem domain. The comparison of systems on the basis of this consideration is there-

fore only meaningful within the same problem or the same domain. Nevertheless, common

characteristics can be identified across different domains.

Basically, it can be stated that there is a relationship between the use of resources and the

increase in quality of a solution. One challenge is to use additional resources efficiently, i.e., to

achieve a disproportionate improvement of the solution with as little effort as possible.

Figure 3.1 shows an overview of categories for evaluating smart systems based on quality

achieved and resources used. The x-axis shows the information analysis cost, a metric that can

be quantified differently depending on the area of the task. In this figure, it shows the abstract

15

3 Categorizing Smart Systems

Information Analysis Cost

A
ch

ie
va

bl
e
!

al
it

y
(Q

oS
/Q

oE
/Q

oR
)

low

medium

high

low medium high

Conventional (non-smart)

Ineffective

Smart

Smart and Effective

Figure 3.1: Categories of conventional and smart systems emerging from information analysis

cost and achievable quality

costs or effort in the areas of communication, computation, and storage. The y-axis represents

the achievable quality of a solution, i.e., technical (QoS), user-centric (QoE), or result-centric

(QoR) quality metric.

Traditionally, simple algorithms with comparatively low cost have been used in many areas, i.e.,

conventional, non-smart solutions indicated by the yellow area. In particular, the limitations of

hardware and, to some extent, software have led to the emergence of simple solutions with

acceptable quality.

Due to the availability of resources, more andmore smart solutions have emerged in recent years

that use available resources to increase the quality of a solution. Newly available approaches

to algorithms also allow this improvement, such as the use of machine learning and artificial

intelligence. In Figure 3.1, these smart solutions are colored in blue.

A third category is that of ineffective solutions, colored in orange, where additional information

analysis costs are introduced that do little or nothing to improve quality. Some ineffective

16

3.2 Environmental Monitoring

solutions are interesting from an academic perspective, because they contain new approaches to

solving problems that may be further improved. In principle, however, ineffective solutions can

also be a consequence of wrong decisions in technology selection or insufficient development

effort, for example, when a solution does not exploit the available potential, such as in the case

of insufficiently trained machine learning approaches.

The last and most valuable category is that of smart and effective solutions, colored in green.

This category includes solutions that experience a high increase in quality due to a slight

increase of information analysis cost. It usually takes novel approaches and ideas to arrive at

smart and effective solutions. The use of new technologies, additional data, or the use of other

resources may be useful to achieve a high increase of quality.

The quantification of both the information analysis cost and the achievable quality is crucial

for the identification of practical solutions. The baseline for comparing different solutions in

the approach presented here is not just a single metric, but the quotient of cost and quality.

Both cost and quality can be quantified based on different metrics or combinations of different

metrics, but must be quantified in the same way for comparing solutions.

3.2 Environmental Monitoring

In the area of environmental monitoring, smart distributed sensing can particularly be used to

improve the QoR of systems. Conventional, non-smart sensing systems in the field of environ-

mental monitoring require either the manual acquisition of the measurements themselves, or

at least the manual collection of the measured data. More recent developments include the

use of smart systems that perform demand-oriented measurements or use measurements from

multiple stations to derive high-quality measurements.

Figure 3.2 compares achievable quality and information analysis cost of the presented systems

in Chapter 4.

First, tRackIT OS is a smart distributed sensing system that allows monitoring and observation

of bats based on Very High Frequency (VHF) tags attached to individual bats (Section 4.2).

Compared to manual VHF telemetry, which is the de-facto standard for VHF telemetry, tRackIT

OS uses a combination of wireless sensor nodes and a wireless network to perform the analysis.

The information analysis cost of tRackIT OS is higher compared to manual telemetry in terms

of computation, since the detection of signals requires local computation and communication

resources, which are accomplished by people in the manual case. The QoR is orders of magni-

tudes better compared to the manual telemetry, since observations are accomplished in seconds

instead of a few observations per night in the manual case. Compared to a similar acquisition

system of the radio-tracking.eu project, called paur, tRackIT OS uses communication and

computing resources to take advantage of an intelligent distributed acquisition system. While

paur collects signals locally to the best of its ability, with signals missing or delayed for up to

minutes, tRackIT OS constantly ensures the correct functionality of all components, supports

detection without delays, and transmits detected signals live to a server system that performs

further calculations on the data, i.e., activity classification, position trilateration, and body

temperature computations. The additional computational cost required to constantly monitor

the individual sensors, as well as the additional effort required to communicate with the server

17

3 Categorizing Smart Systems

Information Analysis Cost

A
ch

ie
va

bl
e
!

al
it

y
(Q

oS
/Q

oE
/Q

oR
)

low

medium

high

low medium high

BatRack: Multi-Sensor
Wildlife Research

[Methods in Ecology’21]

Computation

Communication

Storage

QoS

QoE

QoR

tRackIT: VHF Wildlife
Tracking [GI’21]

Bat Call Analysis

Bird@Edge: Bird Song
Recognition at the
Edge [NETYS’22]

Manual VHF
Telemetry

Simple Camera Traps

Automated Bird Song
Recognition

radio-tracking.eu
paur

Figure 3.2: Information analysis cost and achievable quality of smart environmental monitoring

systems presented in this thesis

system, increase the QoR on the one hand, but also the QoE, since researchers have direct

insights into the data and do not have to work with possibly erroneous data months later.

Second, there is BatRack, a hardware/software system that uses VHF signals, ultrasonic audio

recordings, and video camera recordings to trigger audio and video recordings of bats to support

the direct observation of marked individuals (Section 4.3). BatRack combines three functions

that were previously performed independently of each other. The observations with the help

of the VHF technology are realized as in tRackIT OS and offer similar advantages as already

described above. Acoustic observations of bats have so far been carried out either manually, i.e.,

by people at a remote site, or with the aid of recording devices that record at fixed time intervals

or are triggered by sounds at specific frequencies. The latter method is used for the audio

recordings in BatRack. Until now, optical observations were only possible by human observers or

by simple photo traps, which, however, have the disadvantage of comparatively poor precision,

because they are based on simple motion detectors. Continuous video recordings can be

realized for a few locations, but they require immense storage capacities and are therefore

only scalable to a limited extent. Through the combination of all three different observation

methods, BatRack can be used to monitor and observe bats directly without the need for a

human observer and without large overheads in terms of storage and computational power,

18

3.3 Adaptive Disruption-tolerant Networking

e.g., by storing or processing video files without observations. BatRack continuously evaluates

the two data sources VHF signals and ultrasonic audio. As soon as bats are detected in one

way or another, audio and video recordings are started, and the data is recorded for further

analysis by researchers. The combination of these three observation methods leads to much

better QoR compared to the non-smart approaches, i.e., more actual observations of bats and

less data without meaningful content.

Finally, Bird@Edge is presented, where Edge Computing and Artificial Intelligence (AI) is

combined for recognizing bird species in audio recordings to support real-time biodiversity

monitoring (Section 4.4). The task of recognizing bird species is conventionally performed by

researchers in the field, but there are also systems that have automated the recognition of

bird species. Bird@Edge is a smart distributed sensing system that consists of three different

components. Multiple Bird@Edge mics record audio data and transmit it to a Bird@Edge

station where the actual audio analysis is performed. The results are then transmitted to a server

system for further analysis by researchers. A specific improvement of Bird@Edge compared to

other automatic bird species recognition systems is the reduction of acquisition costs, since

only one Bird@Edge station is needed for up to 10 survey sites (i.e., Bird@Edge mics). The

Bird@Edge information analysis cost in terms of storage is reduced, since recorded files do not

need to be saved, which is required in conventional field recording approaches. Computational

cost is neither reduced nor increased, since the analysis is shifted from the server side to the

edge. Cost in terms of communication is also reduced, since the audio files themselves are not

transferred over larger distances, but only locally. Besides these cost reductions, the QoR is

improved, since larger quantities of data and observation locations become feasible. Also, QoS

and likewise QoE are improved, since the data is processed in real-time, and no manual data

collection step is required.

3.3 Adaptive Disruption-tolerant Networking

One aspect of smart distributed sensing is in-network processing, where data is processed by

a network consisting of smart sensors. In-network processing first requires a network layer,

which is suitable for the processing of data. In this thesis, adaptive networks and especially

delay- and disruption-tolerant networks (DTNs) are used as network layers, namely the two

approaches Serval and DTN7, as presented in Chapter 5. Built on top of DTNs, two approaches

of in-network processing are designed, implemented, and evaluated.

First, opportunistic named functions in disruption-tolerant networks are shown, which rely on

user-defined interests and on locally optimal decisions based on battery lifetimes and device

capabilities, as discussed in Section 5.2. The system allows data sinks to specify interests for

data or executed functions on this data. Data sources provide data to the network. The network

has the task of executing the function calls partially or completely on the provided data and

delivering them to the data sinks. Conventionally, the data would be processed at either the

source or the sink, and the DTN would only handle the transmission. However, by performing

the functions within the network, there are some advantages, such as the ability to transmit

intermediates up to certain points in the network when multiple functions are concatenated

and the interests of different data sinks partially match. In addition, participants can decide

opportunistically and based on their own capacities which functions they perform and when

19

3 Categorizing Smart Systems

Information Analysis Cost

A
ch

ie
va

bl
e
!

al
it

y
(Q

oS
/Q

oE
/Q

oR
)

low

medium

high

low medium high

Computation

Communication

Storage

QoS

QoE

QoR

ProPHET

DTLSR

Offloading Computational
Workflows in Opportunistic

Networks [IEEE LCN’19]

Opportunistic Named
Functions in ICN-DTNs

[ACM CF’18]

ProgDTN: Programmable
Disruption-tolerant

Networking [NETYS’22]

Epidemic

Binary Spray

Delay-tolerant
Networking + Function

Execution

Remote-
Procedure Calls

Figure 3.3: Information analysis cost and achievable quality of smart adaptive disruption-

tolerant networking approaches presented in this thesis

they only provide forwarding. The function execution usually reduces the amount of data

to be transmitted over the network. Even if it is domain-specific, the interests of a data sink

are usually very specific, such as the recognized faces on an image, or as in the example of

environmental monitoring, a recognized bird species. This reduction in the amount of data

transmitted reduces the load on the system and ultimately improves the quality of service,

since the transmission of less data is faster. The QoS is increased by the system, since only

data of interest is forwarded. Compared to a simple approach based on DTN and regular

function execution, the cost in terms of communications is lower, due to the function execution

happening earlier in the network. On the other hand, the computational effort can also be

reduced, since interests that are requested twice do not have to be completed multiple times

on the target computers, but only once in the network.

Second, offloading of computational workflows formed by individual tasks to the opportunistic

network is discussed in Section 5.3. The systemworks in such away that a clientmakes a request

to the network for the calculation of a workflow, which consists of several individual tasks.

It can be selected whether the individual tasks are to be distributed before the calculation or

dynamically to individual workers. The system implements the communication and calculations

and, in particular, takes care of error handling if one or more nodes cannot perform the

20

3.4 Transitional Wireless Networking

calculations, for example, because they are no longer part of the network. Conventionally,

such a task could be implemented with remote procedure calls. However, this requires a

permanent connection between the client and the worker, which cannot be assumed, especially

in opportunistic networks. A lower information analysis cost is achieved by handling workflow

scheduling and status management in the network instead of in the client. Higher quality is

mainly achieved by running individual tasks of a workflow in stages and implementing error

handling options between those tasks. Workflows that would fail, due to network losses or

worker clients leaving the network, are handled by the network and allow successful termination

even in disrupted networks.

Third, ProgDTN is presented, a novel approach to support programmable disruption-tolerant

networking by allowing network operators to implement and adapt routing algorithms (Section

5.5). Such a routing algorithm can use arbitrary information shared by adjacent nodes to

make routing decisions, hence higher cost in terms of communication and storage is required

compared to routing algorithms not using contextual information. However, higher QoS is

achieved, since the routing algorithm can be adjusted to match the scenario the network is

used in, e.g., an emergency response scenario or a smart distributed sensing scenario.

Compared to classical DTN routing approaches, a much better QoS is achieved, since unneces-

sary transmissions are prevented and congestion and transmission delays are reduced. The

primary cost metric is the bundle overhead, i.e., the percentage of metadata bundles. Due to

the nature of the approach, the actual improvements depend on the implementation of the

network operator. However, for the scenario presented in the section, several improvements

can be identified: Regarding information analysis cost, since Epidemic Routing and Binary

Spray do not require any additional communication, there is an overhead of 0. As shown in

Figure 3.3, while the overall QoS of DTLSR is higher than the other approaches, the costs are

disproportionately high. ProgDTN and PRoPHET are comparable in both QoS and cost, as we

can draw from the experimental evaluation that ProgDTN reaches an almost 100 % delivery

rate compared to about 70 % for PRoPHET while the median delivery time only differs by

a few nanoseconds. Depending on the task the QoS weighting may be different, e.g., for a

smart distributed sensing scenario only delivery might be important, while for an emergency

response scenario both metrics are equally important. In essence, the approach of ProgDTN

allows network operators to trade-off information analysis cost for QoS depending on their

scenario.

3.4 Transitional Wireless Networking

The third area in which smart distributed sensing is beneficial is the field of transitional wireless

networking, where transitions between different network mechanisms are used to improve

network performance. The concept of smart distributed sensing is used for transition decisions

in many transitional wireless networking systems and algorithms, since multiple sensor sources

of different abstraction levels often are superior compared to domain-specific single sources.

Figure 3.4 shows the information analysis cost and achievable quality of the presented three

different transitional wireless networking systems of Chapter 6.

21

3 Categorizing Smart Systems

Information Analysis Cost

A
ch

ie
va

bl
e
!

al
it

y
(Q

oS
/Q

oE
/Q

oR
)

low

medium

high

low medium high

Android
Handovers

Dynamic Announce-
ment Intervals

[IEEE WONS’17]

Unsupervised Traffic
Flow Classification

[IEEE LCN’17]

Computation

Communication

Storage

QoS

QoE

QoR

Seamless Vertical
Handovers

[IEEE LCN’19]

Port-based Traffic
Classification

Deep Packet
Inspection

Static Peer
Discovery

MPTCP
Handovers

Figure 3.4: Information analysis cost and achievable quality of smart transitional wireless

networking approaches presented in this thesis

First, a novel approach to unsupervised traffic flow classification using statistical properties of

flows and clustering based on a neural autoencoder is presented in Section 6.1. Conventional

alternatives to this approach are port-based classification, which does not allow high quality,

because nowadays different protocols and network tasks are performed over the same port

and protocols, i.e., HTTP(s) for web traffic, video, interactive content, etc. Another alternative

is deep packet inspection (DPI). It aims to identify protocols on the basis of packet headers,

which does not allow sufficient results, e.g., when traffic is encrypted. Compared to port-based

network traffic classification, the information analysis cost of this approach is higher, since the

statistical properties first need to be computed on which the neural network can classify the

traffic. Compared to DPI, the information analysis cost is comparable, however DPI’s cost is

largely dependent on the number of protocols that are inspected. The achievable QoR is higher,

since the network can classify flows based on metadata, which are more independent of single

values, an implementation or even concrete protocols in some cases.

The second presented approach is using dynamic announcement intervals in the application

of peer discovery. In traditional approaches, a static peer discovery interval is used, which

is replaced by a dynamic interval based on the number of peers discovered in the approach

presented in Section 6.2. Especially in networks where individual participants want to quickly

22

3.4 Transitional Wireless Networking

discover a group of participants, for example, when passing by, it is helpful if peer discovery is

designed dynamically. A peer listens to its surroundings and determines how often it announces

itself based on the perceived neighboring participants. The information analysis cost in the

presented approach is higher, since the client needs to be able to determine the number of peers

in proximity. However, the achieved QoS is higher, because while the static announcement

interval may work for one general case, a dynamic interval is more suited to match multiple

scenarios, e.g., a network with only short encounters of peers or a network where single nodes

meet large groups of people.

The last presented approach is realizing seamless vertical handovers by learning Wi-Fi connec-

tion loss predictions, which is presented in Section 6.3. In this approach, the data of various

sensors of a smartphone are used to learn the connection loss between a smartphone and a

Wi-Fi network. The trained model is then applied to trigger proactive transition to cellular

networks, if a connection loss is predicted. Regular vertical handover mechanisms rely on

signal strength measurements. Depending on the implementation, they reactively switch to

cellular networks after the connection loss has happened. The information analysis cost of the

presented approach is higher in terms of computation, since multiple sensors values of various

parts of the smartphone are read and a trained model is executed to predict the connection

loss. The communication costs of the presented approach are lower, since the cellular module

can be switched off when it is not needed, and redundant transmissions made by the MPTCP

underneath can be avoided. Since the mobile data volume is limited for many users by their

contracts, this savings potential is particularly relevant. The QoE is higher, i.e., video stalling

and buffering events, as well as frequent quality adaptations could be reduced. Finally, the

implementation of Wi-Fi loss prediction in this work is not optimized for energy consumption,

although enormous savings can be expected.

23

4
Smart Environmental Monitoring

In this chapter, novel smart distributed sensing approaches in the field of environmental

monitoring are presented.

In smart distributed sensing, the configuration of sensor nodes and networks often requires

deeper technical understanding when building such systems using general-purpose single-

board computers, such as a Raspberry Pi. In Section 4.1, PIMOD is presented, a software tool

for configuring single-board computer systems to allow fast and easy configuration of such

computer systems.

In environmental monitoring, VHF wildlife tracking is a common method of observing small

animals, including birds and bats. In Section 4.2, a novel sensor system is presented. It replaces

manual radio telemetry by distributed sensor nodes built from low-cost commodity-off-the-

shelf hardware to allow fine-grained localization of small animals.

The approach is further extended by the work presented in Section 4.3, in which VHF signals,

ultrasonic audio recordings, and video camera recordings are analyzed to trigger audio and

video recordings of bats to allow direct observation of marked individuals.

Another challenge is real-time biodiversity monitoring, which can be achieved by recognizing

bird species in audio recordings. A smart distributed sensing approach to bird species recogni-

tion in soundscapes in presented in Section 4.4. The Bird@Edge system is based on embedded

edge devices operating in a distributed system to enable efficient, continuous evaluation of

soundscapes recorded in forests.

PIMOD
1
, tRackIT OS2, BatRack3, and Bird@Edge4 are available via GitHub under open-source

licenses.

Figure 4.1 shows the relation of achievable quality and information analysis cost of the con-

tributions presented in this chapter. PIMOD is not shown in the figure, since it is used as a

prerequisite and valuable supporting tool to create the software of the three other approaches.

Since in the field of environmental monitoring the contributions are methodological contri-

butions, the QoR is the subject of improvement. Since these new methods are intended to

replace established, manual methods, especially through smart distributed sensing techniques,

improvements in the area of QoS are also achieved, e.g., through the direct availability of

data.

1https://github.com/Nature40/pimod
2https://github.com/Nature40/tRackIT-OS
3https://github.com/Nature40/BatRackOS
4https://github.com/umr-ds/BirdEdge

25

https://github.com/Nature40/pimod
https://github.com/Nature40/tRackIT-OS
https://github.com/Nature40/BatRackOS
https://github.com/umr-ds/BirdEdge

4 Smart Environmental Monitoring

Information Analysis Cost

A
ch

ie
va

bl
e
!

al
it

y
(Q

oS
/Q

oE
/Q

oR
)

low

medium

high

low medium high

BatRack: Multi-Sensor
Wildlife Research

[Methods in Ecology’21]

Computation

Communication

Storage

QoS

QoE

QoR

tRackIT: VHF Wildlife
Tracking [GI’21]

Bat Call Analysis

Bird@Edge: Bird Song
Recognition at the
Edge [NETYS’22]

Manual VHF
Telemetry

Simple Camera Traps

Automated Bird Song
Recognition

radio-tracking.eu
paur

Figure 4.1: Information analysis cost and achievable quality of the contributions in the field of

environmental monitoring

4.1 PIMOD: A Tool for Configuring Single-board Computer
Operating System Images

4.1.1 Introduction

When applying technology in environmental monitoring or in the humanitarian field, it is

particularly important that the equipment used is available and that the installations are

traceable and maintainable by the user groups. For this reason and for reasons of low cost,

single-board computers (SBCs), such as the Raspberry Pi, are often used as the basis for

research and especially for practical applications. Various use cases have been posted, where

such devices are key enablers for the proposed solutions, be it technical or general education

[Sri+13; YY17], monitoring of technology [Tru+19] or monitoring in the health care sector

[KR16], or various communication technologies [QA18; Bau+19; Bau+18].

When dealing with single-board computers, either for software development or when deploying

hardware based on these boards, there is a lack of support for creating operating system (OS)

images. There are several cases in which readily configured images and use case specific

26

4.1 PIMOD: A Tool for Configuring Single-board Computer Operating System Images

distributions need to be distributed to users or operators. Devices like a Raspberry Pi are

used at home, in applications for multimedia centers or smart homes, but also in challenging

applications such as emergency response, environmental monitoring, Internet-of-Things (IoT),

and smart city infrastructures.

Single-board platforms that do rely on an operating system regularly use images provided

by vendors or third parties. Typically, an image is flashed to an SD card and then booted

in a system. Since there is no installation process, the OSes heavily depend on defaults,

e.g., username, password, installed software, or on scripts executed on the first boot, e.g.,

cryptographic parameters or partition size adjustments. Software can then be installed and

configurations can be adapted in the running system. While this seems to be convenient for

single deployments and fast progress compared classical installation routines, it is not suitable

for larger deployments.

When custom software and additional configurations need to be added to an OS image, this

can either be achieved by a) creating an OS image from scratch, b) adding scripts to be run

on the first boot, or c) create an image from a previously configured system. However, these

methods each have their individual drawbacks. Bootstrapping images from scratch requires

deep technical understanding. When using first boot scripts, a network connection is required

on this first boot. Creating an image from a configured system requires additional steps to

revert OS specific first boot configurations.

In this section, PIMOD, a tool for modifying an existing operating system image by executing

commands described in a configuration file, is presented. In the proposed line-based config-

uration, a Pifile, i.e., a small set of commands, can be used to describe how an image will

be created. These commands are then interpreted by PIMOD and executed accordingly. In

our approach, the target image is based on an existing image, it then can be resized, and files

from the host system can be included in the image. The special RUN command allows running

commands inside the image, so that guest OS specific packet managers and configuration tools

can be used. Our approach can easily be used with continuous integration (CI) systems and

enable reproducible builds of single-board computer operating system images. The software as

described in this section is released under the free and open source GPL-3.0 license
5
and is

available online
6
.

To summarize, we make the following contributions:

• We propose a novel method of configuring single-board computer operating system

images.

• We present a simple yet comprehensive operating system image configuration language.

• We provide a free and open source implementation of PIMOD.

• We conduct an evaluation of PIMOD in terms of user benefits, performance, and language

flexibility.

Parts of this section have been published in Jonas Höchst, Alvar Penning, Patrick Lampe, and

Bernd Freisleben. “PIMOD: A Tool for Configuring Single-Board Computer Operating System

5https://www.gnu.org/licenses/gpl-3.0.html
6https://github.com/nature40/pimod/

27

https://www.gnu.org/licenses/gpl-3.0.html
https://github.com/nature40/pimod/

4 Smart Environmental Monitoring

Images.” in: 2020 IEEE Global Humanitarian Technology Conference (GHTC 2020). Seattle, USA,
Oct. 2020, pp. 1–8. doi: 10.1109/GHTC46280.2020.9342928.

4.1.2 Related Work

In general, single-board computers (SBCs) use operating system images provided by a) the

hardware vendor, b) a third party operating system distributor, or c) a software provider,

bundling up its software and dependencies to create a software-specific distribution. The

images are flashed to a SD card and then booted on a SBC. Since there is no installation

process, the OSes heavily depend on defaults and can only be adapted by running them and

changing software or configurations.

As a first option, use case specific images can be created by using the tools provided by the

SBC vendor, such as pi-gen provided by the Raspberry Pi Foundation[Ras16] or alternative

approaches [Kai12]. The tool is designed to create images from scratch and highly adjusted to

the specific use case. The open source wireless router distribution OpenWRT features its own

build system [Fai08]. This build system is created modularly, and own packages can easily be

integrated into the build process. In addition to build images from scratch, the authors created

an image builder, specifically targeted for OpenWRT, which installs precompiled packages to

an image. However, the image builder is targeted specifically for their operating system and

does not work for others. These tools often result in long execution times, since all components

are installed or even cross-compiled from scratch.

The second available option consists of tools that add custom scripts to be executed on the

devices itself. With PiBakery, a graphical configuration interface for Raspbian is provided,

which then creates scripts that are executed on the first boot or on every boot accordingly

[Fer16]. Some distributions use the first boot for configuration, e.g., ssh keys in the case of

Raspbian, which need to be taken care of manually [Ras14]. These tools have the drawback

that, e.g., requested software needs to be installed on every device independently, which results

in multiple identical installation processes that may lead to high network overheads. The

approach also lacks the possibility of being integrated into Continuous Integration (CI) build

systems.

The third widely available option is to use an existing SD card with installed software and a

finished configuration. While this is a straightforward approach, it can hardly be automated.

To be storage efficient, the copied image, including the partition table and file system, would

need to be shrunk, which requires additional tools, such as PiShrink [Bon16].

When dealing with configuration of systems, Docker is a well known virtualization system,

designed for dependency management and containerization of applications [Mer14]. Docker

features a simple imperative configuration language. A new image is built based on an old image

and extended by copying files, altering a Docker specific configuration or running commands

inside the container. When using Docker to provide and install software, it is necessary to install

Docker and the corresponding software images on the live system. Therefore, this approach

does not overcome the problem of multiple installations on individual devices and does not

offer a full operating system image.

28

https://doi.org/10.1109/GHTC46280.2020.9342928

4.1 PIMOD: A Tool for Configuring Single-board Computer Operating System Images

For configuration management tools like Ansible [HM17], Saltstack [Hos12], and Puppet

[Loo11], the main concept is to have a central server that ships a configuration to every node.

The node then adapts the installed system in the manner defined in the configuration. This

method has the drawback that it uses more network resources because every single node has

to download updates and the installer for itself. Also, the nodes have to be booted so that

the first boot scripts are executed. The possibility of configuring and reconfiguring a running

system is quite helpful, but we focus on the creation of full OS system images with preinstalled

and configured software. Furthermore, the client part has to be installed on every single node,

and the master node has to run when a new node should be configured.

4.1.3 PIMOD Design

The goal of PIMOD is to facilitate the creation of single-board computer operating system

images with custom software in an easy and reproducible manner and simplify the deployment

of such devices. To reach this goal, a simple yet comprehensive configuration language is

provided, which is interpreted to modify a system image. The language should be manageable

through versioning systems to support the overall goal of reproducibility. A generic configura-

tion language cannot rely on distribution-specific configuration parameters and thus should

provide an interface to the distribution’s configuration mechanisms. With PIMOD we target

Linux-based operating systems, which are widespread in several communities using SBCs

[Bau16; Joh+18].

The PIMOD Language

In this section, the PIMOD language used in a Pifile is presented. To reach the goal of easy

learnability, the language was inspired by the Dockerfile language, which is already widely

known. A Pifile is a line-based document where each line may either contain a) an empty

line that may contain white space, b) a comment indicated by a hash symbol, c) a PIMOD

command written in caps followed by parameters.

FROM <source> [partition] The required source parameter declares a base image to be

found in the local file system, a block device to create an image from, or an URL to be down-

loaded and extracted. Optionally, the partition number resized and mounted in the further

process can be declared. It defaults to the second partition, since most operating systems use

one boot as one system partition.

TO <destination image> When a Pifile is executed, the resulting image is written next

to the Pifile and named after the respective Pifile. The image destination can be changed by

running the TO command. When a block device is specified, the defined source is written to

the respective device and further commands are executed directly on the device.

INPLACE <image> Using the INPLACE command, an image can be specified on which the

commands are executed.

29

4 Smart Environmental Monitoring

1 FROM 2020-05-27-raspios-buster.img 2
2 TO raspbian-buster-upgraded.img
3

4 # Increase the image by 100 MB
5 PUMP 100M
6

7 # Enable serial console using built-in configuration tool
8 RUN raspi-config nonint do_serial 0
9

10 # Upgrade the operating system image
11 RUN apt-get update
12 RUN bash -c ’DEBIAN_FRONTEND=noninteractive apt-get -y dist-upgrade’
13

14 # Install an ssh key
15 INSTALL id_rsa.pub /home/pi/.ssh/authorized_keys

Listing 4.1: PIMOD example 1: upgrade Raspbian and enable the serial console.

PUMP <bytes> Using the PUMP command, the image is increased by the given amount of

bytes, SI prefixes such as k, M, G or, T are supported.

PATH <location> By default, the local PATH variable of the host system is used inside the

guest system. With this command, it can be extended by another location.

RUN <cmd> Commands specified using the RUN command are executed inside of the oper-

ating system image. Note that the operating system of the image is not started, but the run

time environment of the target system is modeled.

INSTALL [mode] <source> <destination> Installing custom files from the host system

is especially useful when custom software is used, or for configuration purposes. The source

parameter relates to a file in the host file system, the destination describes a path in the

file system of the target system. The optional mode parameter can be useful when installing

executables, e.g., cross-compiled software.

HOST <cmd> When a command is specified using the HOST command, it is executed on

the local system rather than inside the image. Issuing a local command can especially be useful

for preparing configuration files or cross-compiling software, which later is installed to the

guest system.

In Listing 4.1, a Pifile is presented that features all commands of the PIMOD language. Line 1

defines a source image to be found in the local file system and the partition to be resized and

mounted as the primary system partition. In Line 2, we declare that the file should be written

30

4.1 PIMOD: A Tool for Configuring Single-board Computer Operating System Images

to an alternative location. Line 5, PUMP 100M, causes the image and the second partition to

be increased by 100 mebibytes. In Line 8, a distribution-specific configuration tool is used to

enable the serial console available at the target hardware. Line 11 and 12 are used to upgrade

the operating system by first updating the sources of the packet manager and then running

a distribution update. Note that in Line 12 an environment variable is set by running the

command inside a bash shell. Finally, in Line 15, a ssh public key is copied to allow remote

login.

Linux Support

The Pifile language is designed to be a simple yet comprehensive operating system image

configuration language. To reach this goal, some assumptions were made during the design

phase. First, to enable fast execution of Pifiles, we do not want to use full system emulation,

which would result in booting the guest system kernel. This would have the disadvantage that,

e.g., the first boot scripts of the distribution would be executed and other parameters would be

initialized, such as cryptographic keys, as discussed in the introduction. We decided to use a

QEMU-based system emulation, which allows us to execute Linux ELF binaries across multiple

different instruction set architectures [Bel05]. Second, especially mounting the partitions of the

image according to the distribution requires specific knowledge, which is hard to generalize.

Therefore, we decided to use the file system table defined by the Filesystem Hierarchy Standard,

/etc/fstab, which itself is used bymany Linux operating systems. Third, the executed binaries

are searched according to a path variable, which itself is distribution specific. In PIMOD, this

variable is initialized from the host system and can be extended by using the PATH command

in a Pifile.

Continuous Integration Support

Continuous Integration (CI) is a technique used to overcome integration problems in the

development cycle during software engineering. It has been shown that continuous integration

improves the productivity of project teams and boosts the integration of external contributions

without a reduction in code quality [Vas+15]. When combining version management and

modern CI systems, every commit of a software under development is automatically integrated

into a larger context and tested. PIMOD is designed to be used in combination with CI to

create software-specific operating system images in a reproducible and easy manner.

Host System Support

Another goal of our approach is extensibility, such that it can be integrated into workflows

of the communities using PIMOD. Thus, the configuration language should provide options

to interface the host system. One option to enable interfacing in this manner is the already

described HOST command. In addition, users should be able to use environment variables

defined in the host system and program a control flow.

31

4 Smart Environmental Monitoring

4.1.4 Implementation

The target of modifying system images and executing code inside of a system image can be

achieved best by using system tools. GNU/Linux ships several helpful tools for the individual

tasks implemented by PIMOD. To make use of and integrate existing tools in a simple manner,

PIMOD was implemented using the Bash programming language[Ram94].

OS Image
———————————————————
+ FROM, TO, INPLACE
———————————————————
copy image

———————————————————
+ PUMP
———————————————————
increase image space
enlarge partition
expand file system

loop mount, bind mount, chroot
———————————————————————
+ PATH, RUN, INSTALL
———————————————————————

Stage 1: Setup

Stage 2: Prepare

Stage 3: Chroot

Figure 4.2: Stages of PIMOD: preparation, commands, and post-processing.

The interpretation of a Pifile is implemented in several stages, since some commands can only

be executed after others, as shown in Fig. 4.2. We define three stages to which the commands

are assigned: First, setup, managing the FROM, TO and INPLACE configuration. Second, prepare,
handling changes of the image itself, currently only depicting PUMP. Third, chroot, covering
all commands interacting with the file system of an image, namely RUN, PATH and INSTALL.
During the execution of a Pifile, it is actually executed one time for each stage, only executing

the commands belonging to the individual stage. This mechanism insures that source and

target are defined before resizing an image, which itself needs to happen before modifying

content on the guest.

Stage 1: Setup

In the setup stage, the FROM, TO, and INPLACE commands are executed, checking and setting

source and destination system images. FROM is not only able to handle local images, but can

also download images from a remote location by specifying an HTTP(s) or FTP URL. A local

cache minimizes network load and timely overhead. When no destination is defined via TO, it
is derived from the name of the Pifile. The stage is concluded by copying the source image to

the destination location. In the special case of an identical source and destination path and

when using INPLACE, the modifications are executed in place.

32

4.1 PIMOD: A Tool for Configuring Single-board Computer Operating System Images

Stage 2: Prepare

The stage implements the PUMP command. Enlarging an image requires to a) increase the image

file size, b) enlarge a partition inside the image, and c) expand the file systems to the size

defined by the partition. These subtasks are implemented using the GNU/Linux utilities dd7,
fdisk8, and resize2fs9.

Stage 3: Chroot

Before executing the RUN and INSTALL commands implemented by this stage, some prepara-

tions need to be taken: first, the system image file is associated with a loop device of the host

system. Then, the main partition’s file system is mounted inside the host system. A working

chroot environment requires system interaction, which can easily achieved by importing /dev,
/sys, /proc and /dev/pts using a bind mount. The network interfaces are available through

the host system kernel, the domain name system configuration is done by bind mounting

/etc/resolv.conf. After this step, the statically linked QEMU binaries for the supported

platforms are also bind mounted in the chroot environment. Ultimately, additional partitions

defined in the file system table of the guest system are mounted. INSTALL is implemented by

copying the requested files to the target file system and optionally adjusting the permissions.

Running a command inside the target image is easily achievable using chroot: a command is

executed in a specified root directory and thus using all binaries, libraries and resources of the

mounted image.

Continuous Integration

PIMOD is designed to work in combination with continuous integration services. We provide

an example integration for two different CI services. Travis CI is a free and open source CI

service, which has been shown to be used by a wide variety of software projects [BGZ17].

GitHub Actions is a CI service integrated with GitHub, a software hosting platform, widely

used for Open Source projects [Dai18]. In both integrations, first the dependencies need to be

installed, then the resources, such as a base image are downloaded, and finally the Pifile is

executed. The output of PIMOD is presented inside the web interfaces of the individual service.

Also, both implementations offer the possibility to release the created image in the form of a

downloadable image. Hence, the developers of a use case specific distribution can test their

progress locally and tag a specific git commit. This indeed triggers a cloud build using the

discussed CI integration and uploads an image to the corresponding releases web page. Our

example integration is also available free and open source in a separate repository
10
and can

easily be forked and adapted.

7https://www.gnu.org/software/coreutils/manual/html_node/dd-invocation.html
8https://www.gnu.org/software/fdisk/
9https://linux.die.net/man/8/resize2fs
10https://github.com/nature40/pimod-ci/

33

https://www.gnu.org/software/coreutils/manual/html_node/dd-invocation.html
https://www.gnu.org/software/fdisk/
https://linux.die.net/man/8/resize2fs
https://github.com/nature40/pimod-ci/

4 Smart Environmental Monitoring

4.1.5 Experimental Evaluation

In this section, we evaluate PIMOD. First, the benefits of using PIMOD from the view of a

sensor network operator are discussed. Then, the performance of the approach is evaluated by

comparing execution times of exemplary commands. Third, the generalization of PIMOD is

investigated by testing the software with Linux OS images of different distributions and made

for different hardware.

PIMOD vs. Manual Integration

The first goal of PIMOD is to facilitate the modification of single-board computer operating

system images and thereby simplify deployment. We evaluate this goal by discussing the use

case of deploying nodes in a sensor network scenario. The deployment of such sensor nodes can

be done in different ways. A straightforward approach would be to repeat the deployment on

each node manually. First, a chosen operating system is installed, then the operator connects to

each node, installs dependencies and software, and configures the system. A more complex yet

more efficient way would be to install only one system by the steps presented above and clone

this installation to the other systems. In some cases, the operator would need to manually alter

some configurations, done during the first boot. This, however, requires the appliance to be

connected to a fast Internet connection and checks on every device that the initial scripts did

run correctly. The third alternative for the operator would be to build the system image by him-

or herself and execute the required steps in the process. This would, however, require a deep

understanding of the build process of an operating system, which can take time to understand

and which itself takes a certain time to execute. In addition, some software build systems

require vast amounts of resources, e.g., TensorFlow, a machine learning toolkit. Building the

software requires certain tricks, e.g., swap partitions to allow for larger amounts of memory,

which can be circumvented using more powerful hardware. With PIMOD, the operators can

create a configuration file in which all the required steps can be described. The resulting Pifile

can then be executed either locally resulting in an image to be flashed or integrated into a CI

system, e.g., to build and upload an image to a certain online location. The approach can also

be used to write the resulting image to a SD card, e.g., to write device-specific configuration

files.

Performance Evaluation

To evaluate the performance of PIMOD, multiple example commands are executed on a single-

board computer and using PIMOD. The experiments presented in Table 4.1 were executed on a

Raspberry Pi 3 Model B V1.2 that consists of an ARM-Cortex-A53 with 4 cores of 1,2 GHz and 1

GB RAM. For storage, a Samsung EVO Plus 32 GB microSD of Ultra High Speed (UHS) class U1

was used, which allows read speeds of 95 MB/s and write speeds of 20 MB/s. The experiments

of PIMOD were conducted on a x86_64-based server featuring two Intel Xeon E5-2698 CPUs,

a total of 256 GB RAM. Storage was realized using a NVMe-based Intel SSDPEKKW512G7,

with 512 GB storage and a read and write speed of up to 1775 MB/s and 560 MB/s. All tests

were repeated 5 times and averaged. Although the systems themselves are quite different in

34

4.1 PIMOD: A Tool for Configuring Single-board Computer Operating System Images

Operating System Command tRasPi tPIMOD Overhead

OpenWRT opkg update 2.86 s 3.11 s 8.74 %

opkg install python 19.77 s 32.53 s 64.54 %

wget -O /dev/null
http://host/100m.bin

8.92 s 0.94 s -90.51 %

wget -O /dev/null
https://host/100m.bin

9.29 s 10.55 s 13.56 %

Raspbian apt-get update 19.61 s 14.61 s -25.49 %

apt-get install -y python3 60.73 s 56.38 s -7.16 %

dd if=/dev/urandom
of=/dev/null

2.63 s 0.50 s -80.99 %

dd if=/dev/urandom
of=100m.bin

7.19 s 0.63 s -91.24 %

openssl enc -aes-256-cbc 5.52 s 3.94 s -28.62 %

Table 4.1: Example executions times of different commands using a Raspberry Pi compared to

PIMOD.

terms of performance, we try to mimic a build server that might be running in a continuous

integration pipeline.

In Table 4.1, the runtimes of various commands on different operating systems are presented,

namely OpenWRT and Raspbian Buster. With opkg update and apt-get update, the indi-
vidual packet managers update the list of available packages. The OpenWRT packet manager

introduces a small overhead using PIMOD compared to native execution. Updating the package

list consists of downloading the compressed lists and verifying the signature, especially the

latter requires many ARM instructions to be simulated on the x86_64 hardware and therefore

introduces some overhead. Installing software using opkg is faster on the native hardware

compared to PIMOD, which is mostly related to the used gzip compression executed through

qemu.

When looking at Raspbian Buster’s packet manager apt, PIMOD achieves better runtimes

compared to native execution, for both updating the package. One reason for this is the much

faster write speed of the desktop system compared to the microSD card of the Raspberry

Pi. Since OpenWRT is designed for low footprint systems, such as routers, the packages are

relatively small compared to the respective Raspbian packages, based on Debian and designed

for desktop class computers. For the wget examples, the downloaded data is not written to

disk, and thus only shows the performance of the networking stack. Downloading the file using

HTTP shows the superiority of the build server, only requiring a tenth of the time compared to

native execution. Since most build servers do have larger than 1 GBit/s Internet connections,

the runtimes can be up to 10 times as fast compared to a Raspberry Pi limited to 100 MBit/s.

However, when using the same protocol with TLS encryption, the cost of encryption and

35

4 Smart Environmental Monitoring

Ti
m

e
(s

)

0

10

20

30

40

50

60

70

opkg update
opkg install
http

https
apt-get update
apt-get install
of=/dev/null
of=100m.bin
AES

Raspberry Pi PIMOD

Figure 4.3: Example executions times of different commands using a Raspberry Pi compared to

PIMOD.

decryption adds an overhead of 13.6%. In the examples using dd, 100 MB of random data is read

using the command dd if=/dev/urandom bs=1M count=100. The computations needed to

generate the data happen in the kernel and thus natively on both systems. When discarding

the data using of=/dev/null, no heavy computation is required and PIMOD performs better,

because the main load happens in the kernel of the host. From the runtimes of the second

example presented in the table it becomes evident that for read/write intensive tasks, the disk

is the bottleneck; the overhead gain of 91.24% is comparable to the download task. In the last

example, data is read from /dev/urandom and encrypted using the OpenSSL AES encryption.

The speed advantage of PIMOD fades, since the computationally intensive encryption is

performed through the QEMU emulation layer. Nevertheless, our approach is still around 30%

faster compared to native execution.

Testing Linux Distributions

To test the generalization properties of our approach, two directions are important: hardware

and operating system variety. In our tests using the well known Raspberry Pi, we were able

to use PIMOD for the widespread Debian-based operating systems, such as Raspbian and

Ubuntu Server, as well as OpenWRT, CentOS, Fedora, Kali, and OpenSUSE. Android as well as

NixOS did not implement the Filesystem Hierarchy Standard and therefore do not satisfy our

assumptions. PIMOD can be adapted to work with both distributions, but a generalization is

36

4.1 PIMOD: A Tool for Configuring Single-board Computer Operating System Images

not easily feasible. In addition, we evaluated different hardware platforms using the operating

system recommended and distributed by the vendor. In our tests, we found that PIMOD can

be used with the Libre Computer boards ALL-H3-CC, AML-S805X-AC and ROC-RK3328-CC,

BananaPi M4, Nvidia Jetson Nano (AI development board), ODROID C2 and N2, OrangePi 3,

all models of RaspberryPi, and the RockPi 4. Most of the operating systems distributed by the

vendors are Debian-based and include specific changes for the individual boards.

PIMOD Language Flexibility

One secondary design goal was to support flexibility for the users of PIMOD. The presented

tool is written in the Bash scripting language, a Pifile itself is a script sourced in the individual

stages. Thus, in a Pifile all features available in Bash scripts can be used. PIMOD’s flexibility

features will be discussed by the examples presented in Listing 4.2, the respective output log is

shown in Listing 4.3.

1 FROM http://downloads.openwrt.org/releases/18.06.5/targets/brcm2708/
bcm2710/openwrt-18.06.5-brcm2708-bcm2710-rpi-3-ext4-factory.img.gz

2

3 # Derive block device from environment
4 TO $DEVICE
5

6 # Include wifi configuration
7 source modules/wifi.Pifile
8

9 # Add local public ssh key
10 RUN tee -a /etc/dropbear/authorized_keys <$HOME/.ssh/id_rsa.pub
11

12 # Set DHCP client mode for eth0
13 RUN tee -a /etc/config/network <<EOF
14 config interface ’lan’
15 option type ’bridge’
16 option ifname ’eth0’
17 option proto ’dhcp’
18 EOF
19

20 # Cross-compile local software
21 HOST GOOS=linux GOARCH=arm GOARM=5 go build -o dtn7d ./dtn7-go/cmd/

dtnd
22 INSTALL 755 dtn7d /usr/bin/dtn7d

Listing 4.2: PIMOD example 2: advanced scripting with Bash features.

37

4 Smart Environmental Monitoring

1 ### FROM http://downloads.openwrt.org/ releases /18.06.5/ targets /brcm2708/bcm2710/openwrt−18.06.5−
brcm2708−bcm2710−rpi−3−ext4−factory.img.gz

2 Using cache: /var/cache/pimod/downloads.openwrt.org/releases /18.06.5/ targets /brcm2708/bcm2710/

openwrt−18.06.5−brcm2708−bcm2710−rpi−3−ext4−factory.img.gz

3 ### TO sd.img
4 Moving temporary /tmp/tmp.sv3nxlM9qS to sd.img

5 add map loop0p1 (253:0) : 0 40960 linear 7:0 8192

6 add map loop0p2 (253:1) : 0 524288 linear 7:0 57344

7 ### RUN tee −a / etc /dropbear/ authorized_keys
8 ssh−rsa AAAA.... hoechst@ds

9 ### RUN tee −a / etc / config /network
10 config interface ’lan’
11 option type ’bridge’
12 option ifname ’eth0’
13 option proto ’dhcp’
14 ### HOST pushd dtn7−go
15 / storage /hoechst/pimod−example/dtn7−go /storage/hoechst/pimod−example

16 ### HOST go build −o dtn7d ./ cmd/dtnd
17 ### INSTALL 755 dtn7d /usr /bin/dtn7d
18 ### HOST popd
19 / storage /hoechst/pimod−example

20 umount: /tmp/tmp.ampfPoR8rz/dev/pts unmounted

21 umount: /tmp/tmp.ampfPoR8rz/dev unmounted

22 umount: /tmp/tmp.ampfPoR8rz/sys unmounted

23 umount: /tmp/tmp.ampfPoR8rz/proc unmounted

24 umount: /tmp/tmp.ampfPoR8rz unmounted

25 del devmap : loop0p2

26 del devmap : loop0p1

Listing 4.3: PIMOD example 2 (Listing 4.2) execution log.

Environment Variables

Environment variables can be helpful to adjust the build to the runtime. In the example

presented in Line 5 of Listing 4.2, a block device to work on can be specified through the

environment variable DEVICE. In Line 11, another example is shown, where the ssh public key

from the local user is added to the guest system.

Redirections

Redirections of input and output streams are a key feature in shell programming and can

be helpful in our use cases. The task of adding an ssh key from the host system, presented

in Line 11, is implemented by appending to a file and redirecting the input stream to a file

in the host system. The HOME variable provides the location of the host system user’s home

directory. A second example is presented in Lines 14–19, where a network configuration file is

written by using a here document. When using documents, the configuration resides inside of

the Pifile itself, and is easily understandable. Environment variables are also evaluated inside

of here documents, such that device-specific configuration, e.g., a hostname, can be set using

this mechanism.

38

4.1 PIMOD: A Tool for Configuring Single-board Computer Operating System Images

SSH Interface

Networking Tools

Wireguard VPN

Webserver

Mesh Networking

Base Sensorbox

I2C Bus

I2S Mic Drivers

Camera

Real-Time Clock

Sensor Software

Sensorbox

MariaDB

RTL SDR

Signal Detection

RadioTracking

SPI Bus

RadioHead Library

GPS Drivers

LoRa Gateway

LoRa

Raspbian Buster

Figure 4.4: Raspberry Pi Image configurations used for the Nature 4.0 Project

Cross-Compilation

For some cases, it is beneficial to compile software on the host system, rather than running the

virtualized compiler of the guest system, especially for larger software projects. In the above

example of Line 22, the delay-tolerant routing software DTN7 [Pen+19] is cross-compiled on

the host system by using the HOST command and installed to the guest system afterwards.

Modularization

Individual parts of a Pifile can be extracted into modules, represented as independent files,

that can be reused afterwards. In the example presented above, the Wi-Fi configuration is

included from another Pifile, as presented in Line 8. The file is included by using the source
command, which executes the commands from the file in the current script. Thus, PIMOD

offers a wide variety of interactions with the host systems and can thereby be integrated into

user’s workflows well.

Applications of PIMOD

The goal of the Nature 4.0 project is to develop a modular environmental monitoring system for

high-resolution observation of species, habitats, and processes relevant to nature conservation

[Fri+19]. For this use case, a set of sensor boxes has been designed, each dedicated to sightly

different use cases, following the same principal networking functionalities and the same

software basis, each based on a Raspberry Pi. In Fig. 4.4, the hierarchy derived from the

39

4 Smart Environmental Monitoring

requirements of the project are presented. The first box is the rather generic Sensorbox, which
comes in different configurations, distinguished by the wired sensor set. It includes a camera, a

microphone via the I2S bus, sensors for temperature, humidity, atmospheric pressure, air quality,

spectral brightness, and various others. The second box is the RadioTracking configuration.

This box is dedicated to read and analyze data flows of four software-defined radio devices

per box, which point to the four directions of the compass in order to record signals from

bats tagged with special senders [Got+19]. The last configuration is a LoRa gateway receiving

and forwarding messages of other sensor applications via the well known long range LoRa
protocol. All images are derived from the Raspbian OS, in its Buster version, which is the de

facto standard for Raspberry Pi SBCs. The Base Sensorbox image contains all shared software

and configuration, e.g., an access option via a VPN and a SSH remote shell, a web server for

convenient data retrieval and management in the field, as well as a mesh network configuration

for sensor box interconnection.

PIMOD is used in the project Nature 4.0 for over a year at the date of writing, and integrates

well into the workflow
11
. A software or system developer can get a copy of the project using

the git versioning system, including all sub modules, and can build am image from scratch in

the matter of minutes. Additional software as well as adjustments can be implemented and a

new image can be built and tested locally. After a successful test, the changes are committed,

and a new release is built and using the CI integration mentioned above.

4.1.6 Summary

In this section, PIMOD, a tool for configuring single-board computer operating system images,

was presented. A simple yet comprehensive language for configuring these imageswas proposed,

which offers an interface to operating system specific configuration tools. The implementation

of the proposed language was presented and the staged execution of a Pifile was explained.

PIMOD was evaluated by first discussing the benefits for operators of a sensor network. The

performance of the proposed approach was evaluated by comparing runtimes of exemplary

commands providing an overview of the overhead. Furthermore, it was demonstrated that

PIMOD supports a wide variety of hardware platforms and operating systems.

4.2 tRackIT OS: Open-source Software for Reliable VHF Wildlife
Tracking

4.2.1 Introduction

In an increasingly densely populated and anthropogenically dominated environment, a scientific

analysis of the consequences of human-wildlife interaction is essential for developing evidence-

based guidelines for conservation [KA20]. Understanding the impact of altered habitats on the

spatial distribution of species [Saw+09], the effects of human infrastructures such as roads

[Hot+15; Asc+19], and reasons for increased mortality of endangered species [Lee+19] is crucial

for preserving biodiversity in a crowded world. Movement data of animals generated by recent

11https://github.com/nature40/sensorboxes-images/

40

https://github.com/nature40/sensorboxes-images/

4.2 tRackIT OS: Open-source Software for Reliable VHF Wildlife Tracking

technological advances support more detailed forms of analysis and insights into the behavior

and ecology of threatened species than ever before [Wyc+18; Cag+10; Wal+18].

Wildlife observations can be realized with a variety of technologies. For example, GPS tech-

nology can be used to equip animals and record their movements independently of other

communication infrastructures. However, size, weight, and battery life constraints prevent the

use of GPS for most European songbirds and bats.

Manual radio telemetry is another option for observing small animals. However, it is ex-

tremely labor-intensive, limited to a small number of individuals that can be tracked simulta-

neously [Coh99], and results in spatial and temporal data with poor resolution, which might

not be sufficient for meaningful scientific analyses [Mon+10].

Automated radio telemetry systems can minimize many of these disadvantages [Kay+11;

Wei+16]. In previous work, some of us presented a system based on commodity-off-the-shelf

(COTS) hardware for automatic radio tracking of small animals based on Very High Frequency

(VHF) tags [Got+19] as part of the open source project radio-tracking.eu12. However, three
seasons of long-term stationary operating time of the system in the Marburg Open Forest (i.e.,
the teaching and research forest of the University of Marburg, Germany) revealed several

deficits, such as the lack of failure handling, inadequate interfaces for data transmission and

health-state monitoring, and problems with time synchronization of received signals between

receivers of the same station and among different stations.

In this section, tRackIT OS, an open-source operating system distribution for reliable VHF radio

tracking of small animals, is presented. tRackIT OS runs on a tRackIT station; its basic hardware
design is due to Gottwald et al. [Got+19]. We developed tRackIT OS to provide new software

functionality according to our experiences in studying the movement ecology of both diurnal

and nocturnal wildlife with a network of 15 tRackIT stations in densely forested terrain. In

particular, we present:

• a novel approach for automated signal detection of VHF radio tracking tags,

• means to provide reliable operation of tRackIT stations under harsh conditions,

• efficient live data transmission for monitoring data and detected signals,

• a novel web-based user interface for intuitive configuration of tRackIT stations,

• a comparative evaluation of tRackIT OS compared to the state-of-the-art.

Parts of this section have been published in Jonas Höchst, Jannis Gottwald, Patrick Lampe,

Julian Zobel, Thomas Nauss, Ralf Steinmetz, and Bernd Freisleben. “tRackIT OS: Open-source

Software for Reliable VHF Wildlife Tracking.” in: 51. Jahrestagung der Gesellschaft für Informatik
INFORMATIK 2021, Berlin, Germany. LNI. GI, Sept. 2021. doi: 10.18420/informatik2021-03
5.

12https://radio-tracking.eu

41

https://doi.org/10.18420/informatik2021-035
https://doi.org/10.18420/informatik2021-035
https://radio-tracking.eu

4 Smart Environmental Monitoring

4.2.2 Related Work

Ripperger et al. present a comprehensive overview of existing systems for localizing small

animals using different technologies [Rip+20]. The most recent projects on automated VHF

transmitter tracking are ARTS [Kay+11], Atlas [Wei+16], and Motus (also called SensorGnome)

[Tay+17].

ARTS consisted of towers with a height of 40 meters and top-mounted antenna arrays [Kay+11],

but the system was taken down in 2010 and replaced by camera traps and GPS transmitters.

ARTS was able to determine the position of a tagged individual by triangulation with an

spatial accuracy of 50 meters, but rotating through channels with different frequencies reduces

the time span in which each individual can be observed. tRackIT supports more detailed

observations of movements using a higher number of stations at lower cost and less effort in

construction.

The Atlas project achieves great spatial accuracy by using the time difference of arrival (TOA)
method for direction estimates as seen from the receiver, while costs for the developed tags are

low [Wei+16]. However, implementation of the receiving stations is quite expensive, a fact that

probably explains why the system is only deployed in three areas in the Netherlands, England,

and Northern Israel. tRackIT achieves comparable results with stations built from commodity

off the shelf hardware at a lower price point.

Motus
13
is a globally operating network of VHF receiver stations hosted by different collabora-

tors and supporting researchers [Tay+17]. Despite its open source character, an implementation

of Motus at US$ 3000 for a single SensorGnome
14
receiver with three 9-element Yagi anten-

nas, and US$ 7500 for a Lotek SRX800 receiver station with four 9-element Yagi antennas is

costly [LN18], leading to a trade-off between spatial resolution and coverage. By default, the

implemented radio receiver listens at a single center frequency and can detect pulses from

tags in a narrow band of ±24 kHz around its center frequency. This limits the number of

distinguishable frequencies, i.e., the number of detectable individuals, substantially. Motus

has delivered great insights into the ecology of different species in more than 120 research

projects [Tay+17], but investigating fine-grained spatial movements by triangulation is not

supported by the system. The wide frequency band that can be used by tRackIT supports both

fine-grained temporal resolutions and observations of many individuals.

4.2.3 tRackIT OS

A tRackIT system consists of (a) VHF radio tags mounted on animals, (b) tRackIT stations for
receiving signals emitted by VHF tags, (c) tRackIT OS running on tRackIT stations for detecting
and matching signals received on multiple antennas, (d) tRackIT servers for collecting and

presenting data transmitted from tRackIT stations, and (e) tRackIT analytics modules for deriving
ecological knowledge from the collected data.

In this section, we present design and implementation issues of tRackIT OS, the operating
system distribution for tRackIT stations.

13
Motus Wildlife Tracking System: https://motus.org

14
SensorGnome Project: https://sensorgnome.org

42

https://motus.org
https://sensorgnome.org

4.2 tRackIT OS: Open-source Software for Reliable VHF Wildlife Tracking

Requirements

Our experiences from three seasons of field work have indicated that automatic telemetry can

only be a useful substitute of its manual counterpart if certain requirements are met:

1. Low entry barrier. To make automatic radio telemetry accessible to the widest possible

user community, both hardware and software as well as data processing and analysis

must be conveniently accessible, easy to use, and inexpensive.

2. Reliability. The used equipment must reliably record signals originating from VHF trans-

mitters and minimize the amount of interference. Any component failures caused by

adverse conditions, such as unstable power supplies, fluctuating temperatures, and

hardware-based failures should be detected and handled automatically.

3. Data availability. In many application areas, like mortality studies [Hec20], fast data

availability is highly important. Thus, direct data transmission from the field with the

shortest possible delay between recording and transmission is desirable.

tRackIT Station

To deploy an operational installation in the field, a tRackIT station is equipped with directional

antennas in the four cardinal directions, a solar panel, and a battery box. The basic hardware

design is due to Gottwald et al. [Got+19]. We have slightly adapted the hardware by including

an active USB hub, a better LTE modem, and a LoRa (Long Range Wireless Radio Frequency

Technology
15
) expansion board (LoRa HAT), as shown in Figure 4.5.

The ’brain’ of a tRackIT station is a Raspberry Pi 3 Model B that consists of a quad-core 1.2 GHz

ARM-Cortex-A53 and 1GB of RAM. It offers various input/output options, including Wi-Fi

and 4 USB ports. The system is powered through a 5V USB port and is capable of powering

connected USB devices. The four directional antennas are connected to four software-defined

radios (SDR) (Nooelec NESDR SMArt v4) for signal analysis. Since these SDRs require more

power than provided by the Raspberry Pi, an active 4-port USB hub (Anker 4-port Ultra Slim

USB 3.0 Data Hub, A7518) is used to connect the devices. An LTE modem (Huawei E3372H)

and a local prepaid data plan is used to establish a mobile Internet connection. The battery

box provides a 12 V source that is converted using a step down converter rated for 2× 2.4 A at

5 V. For tRackIT stations relying on LoRa for data publishing, a Dragino SX127X GPS HAT
16
is

used. For receiving and forwarding tRackIT stations, the Dragino PG1301 LoRa Concentrator is

used
17
. The basic hardware of a tRackIT station costs a total of about 200 €, consisting of 35 €

for the Raspberry Pi 3B+, 4 × 35 € for the Nooelec SDRs, 15 € for the active USB hub, and 10 €

for the power supply unit. The optional communication modules cost 50 € in the case of the

Huawei LTE modem and/or 35 € (LoRa HAT) / 110 € (LoRa Concentrator) for the LoRa publish /

receive upgrade.

15
Semtech: https://www.semtech.com/lora/

16
Dragino SX127X: https://www.dragino.com/products/lora/item/106-lora-gps-hat.html

17
Dragino PG1301: https://www.dragino.com/products/lora/item/149-lora-gps-hat.html

43

https://www.semtech.com/lora/
https://www.dragino.com/products/lora/item/106-lora-gps-hat.html
https://www.dragino.com/products/lora/item/149-lora-gps-hat.html

4 Smart Environmental Monitoring

tRackIT Station

RTL-SDR

RTL-SDR

RTL-SDR

RTL-SDR

USB
Hub

Raspberry Pi 3b

 LTE Modem

12V / 5V
Converter

Battery Box

Solar
Charger

Solar
Panel

LoRa HAT

Figure 4.5: The hardware components of a tRackIT station.

tRackIT OS Components

The operating system (OS) plays a crucial role in the reliable autonomous operation of the

presented hardware. We developed a custom distribution of the Raspberry Pi OS, called tRackIT
OS. The primary task of tRackIT OS is to execute a signal detection module, called pyradiotrack-
ing, in a reliable manner. The secondary task is to interface with users (a) interactively while

setting up the station, and (b) continuously during autonomous operation for extended moni-

toring. tRackIT OS is built using PIMOD [Höc+20b], which allows configuration of single-board

computer system images in a reproducible manner. The resources required to build tRackIT OS
as well as the OS image itself are released under a GPL 3.0 license

18
.

In Figure 4.6, the main software components of tRackIT OS are presented. Station-initiated

communication is handled using theMessage Queuing Telemetry Transport (MQTT) protocol,

with mosquitto as an MQTT client and server implementation [Lig17] for message distribution.

It is configured such that incoming messages are forwarded to remote MQTT brokers for

further processing. These brokers are also responsible for detecting and resolving connection

failures.

The core software component for signal detection is called pyradiotracking. The component

reads samples from all four SDRs, as well as detects, filters, and matches signals of VHF tags.

Detected signals are saved to local storage, displayed via a custom web user interface, and

published to a local message bus that is responsible for data distribution. Section 4.2.3 discusses

the implementation details of pyradiotracking.

18tRackIT OS, available online https://github.com/Nature40/tRackIT-OS

44

https://github.com/Nature40/tRackIT-OS

4.2 tRackIT OS: Open-source Software for Reliable VHF Wildlife Tracking

tRackIT Station

Server

tRackIT OS

WestRTL SDR

EastRTL SDR

NorthRTL SDR

SouthRTL SDR

pyradiotracking

mosquitto

pymqttutil

remote
mosquitto

Visualization

Cellular
Storage

OpenSSH
Web Server

sysdweb

Users

Wi-Fi / Wireguard

systemd

Data Flow
Interaction

LoRa Station

mosquitto

pyr-lora

pyr-lora

LoRa

Figure 4.6: Overview of the main software components of a tRackIT OS distribution.

For system monitoring, we implemented a custom tool called pymqttutil in the Python pro-

gramming language. It is released under a GPL 3.0 license
19
. The tool executes configurable

Python statements in a fixed schedule and publishes the corresponding results via MQTT.

It is configured such that relevant system metrics are published in a 5 minute interval, i.e.,

temperature, system uptime, system load, memory usage, CPU frequency, network addresses,

storage utilization, and cellular data usage.

All services are managed by systemd. The WebUI sysdweb20 for systemd is configured to allow

easy log access and service control for (mobile) users. The Caddy web server is used to provide

convenient access to the local storage, pyradiotracking and sysdweb. Finally, OpenSSH provides

direct system access for local and remote users. To allow secure remote access, wireguard is

used as a virtual private network (VPN).

Signal Detection

The signal detection algorithm is implemented in the pyradiotracking Python package, which is

released under a GPL 3.0 license
21
. In Figure 4.7, the stages of signal processing are presented

in a block diagram. First, spectrograms of the incoming IQ samples are created, which are used

to detect signals. The detected signals are then filtered for shadow signals of lower power in

neighboring frequencies and sent to a central signal queue. The detected signals of multiple

antennas are matched by time and written to a local file, published to the MQTT message bus,

and visualized in the local dashboard.

19pymqttutil, available online: https://github.com/Nature40/pymqttutil
20sysdweb, available online: https://github.com/Nature40/sysdweb
21pyradiotracking, available online: https://github.com/Nature40/pyradiotracking

45

https://github.com/Nature40/pymqttutil
https://github.com/Nature40/sysdweb
https://github.com/Nature40/pyradiotracking

4 Smart Environmental Monitoring

rtl-sdr

pyradiotracking

Antenna Signal

SignalAnalyzer

IQ samples

process_samples

extract_signals

spectogramfilter_shadows

signals

SignalAnalyzer
…

SignalAnalyzer

ProcessConnector

MQTTConsumer

CSVConsumer

SignalQueue

SignalMatcher
match

signalmatched
signal

Dashboard
Configuration PaneSignal Visualization

(matched) signals

Figure 4.7: Signal analysis stages implemented in pyradiotracking.

To illustrate how the different stages work, data of the length of one second is used as an

example. An SDR is configured such that a center frequency of 150.150MHz, a sample rate of

300 kHz, and a fixed gain of 49.6 dB are used. A test tag with the frequency of 150.172MHz

and a signal duration of 40ms was placed near to the receiving antenna. In Figures 4.8, 4.9,

and 4.10, three stages of signal processing are visualized.

Figure 4.8 shows the raw IQ samples received by the SDR. Following the example configuration

described above, there are 300,000 samples, hence 600 kilobyte of data collected in one second.

In the time interval of t0 = 0.45 s to t1 = 0.49 s, the IQ samples contain high values, which

appear as a rectangle in the visualization. This rather sharp rectangle indicates that the gain

value is set too high and the signal is clipping. When setting up stations for regular operation,

the gain value must be chosen such that a good compromise of gain and clipping is achieved.

To detect single signals from the received data, a spectrogram is computed and processed further.

This is achieved by applying consecutive Short-time Fourier Transforms (STFT) [All77] to the

data. Figure 4.9 shows the spectrogram computed from the previously presented example

data. The STFTs are computed with 256 samples per Fast Fourier Transform (FFT) and no

overlapping samples. The Hamming window function is applied to smoothen discontinuities at

the start and the end of the processed FFT. In this configuration, the bandwidth of 300 kHz is

divided into 256 bands and a frequency resolution of 1,171 kHz, to achieve a time resolution of

1.0 s/1, 171 = 0.853 ms.

In Figure 4.10, signal detection on individual frequencies is visualized. The signal power (dBW)

in the logarithmic scale is plotted for four example frequencies near the test sender’s frequency,

and the signal emitted by the test sender can be observed in three of those. The gray dashed

46

4.2 tRackIT OS: Open-source Software for Reliable VHF Wildlife Tracking

Time (s)

0.0 0.2
0.4

0.6
0.8

1.0 In-
Ph

ase
 Com

po
ne

nt

1.0
0.5

0.0
0.5

1.0

Qu
ad

ra
tu

re
 C

om
po

ne
nt

1.0

0.5

0.0

0.5

1.0

Figure 4.8: IQ samples of one second, as received by RTL-SDR.

horizontal line indicates the configured signal power threshold of -60 dBW. The gray dotted

vertical lines show scan points used for initial signal detection. The blue arrow marks the total

detected signal length. Signal detection is achieved by (a) iterating through all frequencies and

(b) iterating through time using scan points placed according to the minimal detectable signal

duration of 8 ms in our example. The signal-to-noise ratio (SNR) is calculated using the ratio of

the current power and the average signal power of this frequency. If signal power and SNR at

the scan points are above the configured thresholds, a potential signal is detected. The scan is

then continued by evaluating the thresholds for all neighboring values until the thresholds

are undershot, indicated by the blue arrows. If the duration of the detected signal is within

the set limits, further complementary features are computed and added to a list for further

processing.

After all signals of a spectrogram are extracted, shadow filtering is performed. We define

a shadow signal as a signal that matches another signal in duration and time, but has a

lower detected power. In the example of Figure 4.10, the signals detected at 150.170MHz and

150.172MHz would be shadow signals of the 150.171MHz signal. The shadow signals are

removed and the detected primary signals are added and written to disk, published via MQTT

and sent to pyradiotracking’s main process for signal matching and data presentation.

To improve reliability, a direct control component is introduced. The librtlsdr library used

to retrieve data from an SDR works in such a way that as soon as requested data is available,

a callback method is called. If the system load is too high and the callback method takes

longer than the acquisition of the next samples, individual samples are omitted. Hardware

and library-specific errors may lead to no callbacks at all. The first problem is monitored by

47

4 Smart Environmental Monitoring

0.2 0.4 0.6 0.8
Time (s)

150.00

150.05

150.10

150.15

150.20

150.25

Fr
eq

ue
nc

y
(M

Hz
)

Figure 4.9: Power spectral density (PSD) of samples computed via Short-time Fourier Transform

(STFT).

comparing the actual received samples with the expected number of samples using the system

clock. In this way, dropped samples can be detected, even accumulated over longer periods of

time. The second problem is solved by (re-)setting a periodic alarm, comparable to a dead man’s

switch. If the callback method is not called in time, an alarm is triggered. This terminates the

analysis process, which is then restarted by pyradiotracking’s main process.

Signal Matching

The detected and filtered signals of multiple antennas are consumed by the signal matcher,

which works as follows. In a list, all currently active signal groups are held. When a new signal

is detected, it is compared to each of the active signal groups in time, duration, and frequency.

The SDR devices used in the project do not work synchronously and use individual quartz

crystals as their clock sources, hence time and frequency mismatches are likely to happen.

If all parameters of an active signal group are within the configured thresholds, the signal is

added to the corresponding group. If no corresponding group is found, a new active signal

group with this signal is created and added to the list. After a certain timeout, the active signal

groups are removed from the list and the key features are written to disk and published.

Data Publishing

Detected signals are published directly to disk in CSV format and via MQTT in the CBOR

format, which is a binary format and introduces smaller overheads compared to text-based

formats. The MQTT broker running on a tRackIT station can be configured to forward published

signals to other brokers, such as a central server via a cellular network or other IP-based

networks.

In addition to this IP-based data publishing, LoRa can be used to publish signals. LoRa is a

physical layer protocol based on chirp spread spectrum (CSS) modulation, that is robust against

channel noise, multi-path fading, and the Doppler effect. This allows transmission ranges of a

48

4.2 tRackIT OS: Open-source Software for Reliable VHF Wildlife Tracking

0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 0.51
Time (s)

100

80

60

40

20

0
Si

gn
al

 P
ow

er
 (d

BW
)

150.169 MHz
150.170 MHz
150.171 MHz
150.172 MHz

Figure 4.10: Power spectral densities (PSDs) of selected frequencies, minimal signal power

threshold, and signal power sampling points.

Field Accuracy Size (bit)

Time ms of current min 16

Frequency offset to 150 MHz in kHz 9

Duration ms 6

Signal Availability flags 4

Signals 3-decimals [1− 4]× 17

52− 103

Table 4.2: tRackIT station’s LoRa matched signal payload: fields, accuracy, and sizes.

few kilometers in urban environments and up to 15 kilometers in rural areas, with minimal

power requirements but also only low data rates between 300 bps and 50 kbps [Mdh+17; Pet+17;

Höc+20a].

The LoRa publishing service of tRackIT OS receives signals through the local MQTT broker,

converts the data in a custom data-saving binary format, and sends it via LoRa. Table 4.2

shows the fields used for a matched signal’s payload, including accuracy and required size in

bits. A matched signal contains a minimum of one and a maximum of four signals, depending

on the number of antennas that received the signal, hence the final payload size is 52 up to

103 bits. Zeros are appended to the payload to reach the required byte boundaries, resulting

in messages of 7, 9, 11, and 13 bytes, depending on the number of the contained matched

signals. Compared to the already compact representation in CBOR of a 4-component matched

signal (56 bytes + overhead), a reduction of up to 77% is achieved (13 bytes). In the most robust

LoRa settings (SF:12, BW:250 kHz, CR:4/8), such a shortened message would require 594ms

49

4 Smart Environmental Monitoring

Time-on-Air (ToA) (using Implicit Header mode with a 1-byte sender ID, the total length of the

packet is 14 bytes). Following the duty cycle regulation of a maximum utilization of 1% (10%)

per band, a message could be sent every 59 (5.9) seconds. While these settings do not allow

continuous monitoring of individuals, sparse reporting of single observations are still of value,

when trying to detect tags fallen off or with empty batteries. For stations in closer physical

proximity to the receiving gateway, less robust settings may be chosen. Using a less robust

LoRa setting (SF:8, BW:250 kHz, CR:4/8), the ToA drops down to 45.5ms, allowing messages to

be sent in an interval of 4.6 (0.46) seconds. From previous measurements in the Marburg Open

Forest, signals could be reliably transmitted over 600 meters using this setting.

4.2.4 Experimental Evaluation

In this section, we evaluate tRackIT OS in benchmarking scenarios and in field experiments.

The data of all experiments is publicly available at https://github.com/Nature40/hoechs
t2021tRackIT-eval.

Experimental Scenario

To evaluate tRackIT OS in a realistic manner, we use a system setup in theMarburg Open Forest,
consisting of 15 tRackIT stations; 5 of them are used in our evaluation described below. The

experiments are carried out twice: (a) with the most recent tRackIT OS 0.7.0 and (b) using

the most recent stable operating system version of the radio-tracking.eu22 project [Got+19],
called paur 4.2. We activated a test tag and carried it around in the area of the selected tRackIT
stations together with a GPS receiver to receive ground truth data. The experiment took place

over the course of 0:51:10 h with a VHF sender of 600µW power, 20 ms duration and an interval

of one signal per second, which results in 3,193 sent signals. In Figure 4.11, the GPS trace of

the conducted experiment is presented; stations are marked by the white circles, and the trace

is colored to indicate the time component of the experiment.

Our observations using paur in two seasons of 2019 and 2020 indicated high numbers of falsely

detected signals. We were not able to distinguish between true and false positives through

the information available after signal detection. Thus, we used a power signal threshold. The

paur experiments conducted in this section showed the same low precision, hence all detected

signals with a power lower than -78 dBW were removed for further processing. Using tRackIT
OS, this threshold is not required, since we observed very low numbers of falsely detected

signals.

Signal Delay

A second observation from our previous field seasons in 2019 and 2020 is a delay in signal

detection using paur in the order of seconds to minutes. In Figure 4.12, an example of observed

signal delay is visualized. The dots show the received signal strength measured on multiple

antennas of the same tRackIT station. Every antenna received a series of signals with low

22https://radio-tracking.eu

50

https://github.com/Nature40/hoechst2021tRackIT-eval
https://github.com/Nature40/hoechst2021tRackIT-eval
https://radio-tracking.eu

4.2 tRackIT OS: Open-source Software for Reliable VHF Wildlife Tracking

© Mapbox © OpenStreetMap 00:00 min

51:10 min

Figure 4.11: GPS trace of the experimental evaluation track and the corresponding tRackIT
stations.

variance in signal strength that appear to be a straight line, indicating that the tag is not

moving. However, these straight lines on the individual receivers are offset in time from each

other, which makes further processing of the data difficult and and leads to worse to unusable

bearing calculation. In the experiments of this section, we measured a delay in signal detection

of 8 seconds in paur and no recognizable delay in tRackIT OS.

Signal Detection

In the tRackIT OS experiments, the selected five tRackIT stations detected 30,507 signals, each

on potentially four antennas, resulting in an average of 1,525 signals (47.8%) detected per

antenna. Signal detection depends on various factors, such as geographical and topographical

conditions, the orientation of the antenna, the height of the transmitter above the ground,

air humidity, and forest cover. Figure 4.13 shows the numbers of detected signals by station

and antenna. Due to the positioning of the stations, the orientation of the antennas, and

the selected test area, some of the antennas receive only a very small amount, others a large

amount of the test signals. On the north antenna of station 11, only 95 (3.0%) signals could be

detected, while 2,611 (81.8%) signals where detected on south antenna of station 9.

In addition to this quantitative analysis of signal detection, we evaluated the distances between

the test tag and the tRackIT stations. Figure 4.14 shows the distance of the tag and stations

measured via GPS and the power of the detected signal. While most stations can detect signals

at distances of up to 400 meters, stations 4 and 11 detect signals up to 800 meters away. While

the correlation of signal strength and measured distance is straightforward, a high variance

can be observed from the data and signal strength alone, hence this is not a suitable estimator

for distance in the presented experiment. Initially, the overall performance of the two systems

51

4 Smart Environmental Monitoring

02:24:45
Jul 24, 2020

02:25:00 02:25:15 02:25:30 02:25:45 02:26:00 02:26:15

50

55

60

65

70

75

80

85
Antenna

West
South
North
East

Time

S
ig

na
l P

ow
er

 (
dB

W
 +

 1
00

)

Figure 4.12: Example of signal delay among different receivers observed in the 2020 field season

using paur.

appears comparable, especially for signals with high signal strength. While paur received 2,728

signals usable for bearing calculations, tRackIT OS received 4,438 such signals, an increase

of 62.7%, when applying the same -78 dBW threshold. In addition, tRackIT OS received 1,108

signals of lower signal strength, which corresponds to an effective increase of 103.3% compared

to paur.

Bearing Calculation

To reach the goal of signal triangulation, signals detected on multiple antennas of a station are

used to calculate bearings. We use the method proposed by Gottwald et al. [Got+19] to produce

comparable results for our bearing calculation. First, the pair of neighboring antennas with the

highest and second highest signal strength are selected (sl , sr) and the relative gain difference

δg is computed using the maximum signal strength difference δm: g = sl−sr
δm . Second, the

signal strength is used to calculate the bearing between the antennas following the formula

derived from the cosine theorem ω = π
90 × arccos(δg).

Figure 4.15 shows a histogram of bearing errors in tRackIT OS and paur. Due to an error on

station 4 which was not resolved automatically, signal detection failed on this station in the

paur experiment run, hence no data is presented in the histogram. While tRackIT OS has a

mean bearing error of 23.7° and a standard deviation of 30.7°, paur not only has a lower total

bearing count, but also results in 38.9° mean bearing error with 42.6° standard deviation. These

results indicate that tRackIT OS is superior to paur that represents the current the state of the
art in this field.

52

4.2 tRackIT OS: Open-source Software for Reliable VHF Wildlife Tracking

321

2582 2117

208

1443

789

2148

1936

95

2423

447

1539

2611

1923

1345

1742

1779

2035

1430

1594

mof-rts-00003 mof-rts-00004 mof-rts-00009 mof-rts-00011 mof-rts-00015
0

1000

2000

Antenna
East
North
South
West

Station

N
um

be
r

of
 D

et
ec

te
d

S
ig

na
ls

Figure 4.13: Detected signals on tRackIT stations in the experimental scenario.

0 200 400 600 800
−100

−90

−80

−70

−60

−50

−40

−30
Station

mof-rts-00004
mof-rts-00015
mof-rts-00003
mof-rts-00009
mof-rts-00011

Distance (m)

S
ig

na
l P

ow
er

 (
dB

W
)

a) tRackIT OS

0 200 400 600 800
0

10

20

30

40

50

60

70
Station

mof-rts-00011
mof-rts-00009
mof-rts-00015
mof-rts-00003

Distance (m)

S
ig

na
l P

ow
er

 (
dB

W
 +

 1
00

)

b) paur

Figure 4.14: Signal power and distance to a receiving station.

Power Requirements

To operate stations autonomously and to monitor and transmit data, a stable power supply is

necessary. To get realistic values for the required power, we measured a tRackIT station at the

12 volts input using a Monsoon High Voltage Power Monitor
23
.

Figure 4.16 shows the power demands of paur and tRackIT OS. In contrast to tRackIT OS, paur
does not start signal detection automatically. After all SDRs and signal analysis threads are

running, tRackIT OS consumes an average of 8.23 W (684 mA), while paur consumes an average

of 8.03 W (667 mA), which is an overhead of 2.55%. We also carried out experiments with

varying sample rates (225 kHz – 300 kHz), but did not observe varying power demands. The

systems used in the Marburg Open Forest use 12 V batteries with a capacity of 120 Ah (1440

Wh) of which only 80% should be used to limit wear, which allows a maximum theoretical

runtime of 140 hours, or roughly 5.5 days. To allow a continuous operation, a 300 Watts peak

solar panel is connected via a solar charger that even works during cloud cover. The presented

23
Monsoon Solutions Inc. High Voltage Power Monitor: https://www.msoon.com/online-store/High-V

oltage-Power-Monitor-p90002590

53

https://www.msoon.com/online-store/High-Voltage-Power-Monitor-p90002590
https://www.msoon.com/online-store/High-Voltage-Power-Monitor-p90002590

4 Smart Environmental Monitoring

0 50 100 150
0

100

200

300

400

Station
mof-rts-00004
mof-rts-00015
mof-rts-00003
mof-rts-00009
mof-rts-00011

Bearing Error (°)

co
un

t

a) tRackIT OS

0 50 100 150
0

20

40

60

80

100

Station
mof-rts-00011
mof-rts-00009
mof-rts-00015
mof-rts-00003

Bearing Error (°)

co
un

t

b) paur

Figure 4.15: Histogram of bearing errors.

results show only a slight increase in power consumption of tRackIT OS compared to paur, i.e.,
tRackIT OS meets the power requirements for continuous operation of the system.

4.2.5 Summary

We presented tRackIT OS, open-source software for reliable VHF radio tracking of small animals

in their wildlife habitat. tRackIT OS is an operating system distribution for tRackIT stations that
receive signals emitted by VHF tags mounted on animals. tRackIT OS encompasses components

for VHF signal processing, system monitoring, configuration management, and user access.

We evaluated and compared tRackIT OS against a previous operating system distribution

(called paur), in an experimental field evaluation carried out in the Marburg Open Forest. Our
experimental results showed that compared to paur, tRackIT OS (a) enables reliable VHF signal

detection for bearing calculation, (b) increases the number of usable signals by 103.3%, (c)

improves the mean bearing calculation error from 38.9° to 23.7°, and (d) introduces only a slight

overhead in power consumption of 2.55% or 0.2W. tRackIT has the potential to substantially

improve the quality of habitat usage studies and/or environmental assessments in the context

of anthropogenic interventions in the environment, while massively reducing the time required

for field work.

These results show that tRackIT OS is a smart solution in the sense of this thesis. In Figure

4.1 on page 26, tRackIT OS can be classified based on the following considerations: tRackIT
OS was able to detect 2.033 times the number of signals compared to paur, and the bearing

calculation errors could be reduced from 38.9% to 23.7%, i.e., improved by a factor of 1.391. Power

consumption as the main cost metric on the other hand only differs slightly, i.e., it is 1.0255

times higher than using paur. Depending on the weighting of the two quality improvements,

the quality-cost improvement thus ranges from 1.356 to 1.982 of tRackIT OS compared to

paur.

54

4.3 BatRack: An Open-source Multi-sensor Device for Wildlife Research

0 50 100 150

300

400

500

600

700

System
tRackIT OS
paur

Time (s)

C
ur

re
nt

 (
m

A
)

tRackIT OS start paur start

Figure 4.16: Power measurements of tRackIT OS and paur in default settings.

4.3 BatRack: An Open-source Multi-sensor Device for Wildlife
Research

4.3.1 Introduction

Many of the important findings and principles of ecology and conservation biology have been

derived from behavioural observations [CS10], but these are difficult to obtain for small wildlife

[Kel08]. To further close knowledge gaps, the constraint of ecological surveys between grain

and extent must be further resolved. This requires automatic, cost-effective and data-efficient

(i.e. triggered) observation systems that provide comprehensive sensor combinations and enable

automatic observation at the individual level.

To combine the desirable features of audio and video monitoring, BatRack was developed, a

modular observation system that integrates audio, video and automatic VHF radio tracking

in a single unit. The three recording technologies can be used separately, simultaneously

or in mutual trigger mode, and the corresponding configuration scheduled and switched

automatically. BatRack’s hardware is assembled from off-the-shelf components and its design

and the required software have been published under a GNU GPL 3.0 license.

In the following, BatRack’s hardware and software is presented, the suitability of its audio and

VHF sensors in triggering the camera is evaluated, and the potential of VHF recordings in the

identification of individuals in videos, in a case study of the dawn-swarming behaviour [Kun82]

of Bechstein’s bat Myotis bechsteinii is tested. To date, only a few studies have examined this

behaviour in detail [NK13]. Using BatRack’s combined sensor approach, new insights based

on individual-related information about the reproductive state and an individual’s decision to

change roost sites during the night can be provided.

Parts of this section have been published in Jannis Gottwald, Patrick Lampe, Jonas Höchst,

Nicolas Friess, Julia Maier, Lea Leister, Betty Neumann, Tobias Richter, Bernd Freisleben, and

Thomas Nauss. “BatRack: An Open-source Multi-sensor Device for Wildlife Research.” in:

Methods in Ecology and Evolution (July 2021). doi: 10.1111/2041-210X.13672.

55

https://doi.org/10.1111/2041-210X.13672

4 Smart Environmental Monitoring

4.3.2 Related Work

Video recordings are often used to observe the behaviour of individuals [Car+17], but for small

species camera traps are effective only over short distances [RK18]. The observation of bats is

particularly difficult due to their nocturnal lifestyle in often richly structured habitats. Instead,

recordings of echolocation calls are frequently used to monitor the presence/absence of bats

[Mil+20]. These acoustic signals, with their comparatively long range [Ena+19], can serve as

triggers for visual sensors. The combination of audio and video can additionally support the

interpretation of the data [Bux+18].

However, recognizing individuals on images, particularly small and nocturnal species or species

that lack unique visually detectable features, is challenging [Row+08], as is the recognition

of individuals based on acoustic recordings [Sto+19]. By contrast, the automatic tracking of

bats using lightweight VHF radio transmitters offers several advantages [Got+19; Kay+11;

Tay+17]: (a) VHF signals can be used as triggers for other sensors and (b) they may support the

recognition of individuals in video sequences based on comparisons of the VHF signal patterns

with the movements observed in the video.

4.3.3 Materials and Methods

The BatRack system

BatRack combines a core computation component with three sensor units (audio, video and

VHF) and tailored analysis modules. Scientists and practitioners can easily assemble, configure

and extend the system. Moreover, BatRack is inexpensive (650€ without a power supply),

easily repaired using commodity off-the-shelf (COTS) components (Figure 4.17), and uses free

and open source software (FOSS). In addition, it is configurable with respect to the attached

sensors as well as their recording ranges, time-based scheduling and mutual trigger mode. A

detailed description of the hardware and software modules, including product specifications

and blueprints, can be found at the BatRack webpage https://nature40.github.io/Bat
Rack/.

For easy deployment, the software comes as a customized Raspberry Pi OS image bundle

called BatRackOS https://github.com/Nature40/BatRackOS/releases/, which was

built using PIMOD [Höc+20b].

The audio module (Figure 4.18a) is implemented using pyaudio for audio data retrieval and

numpy for further audio processing and bat call detection. The sampling rate depends on

the hardware (e.g. 384 kHz for Dodotronic Ultramic 384k). The camera analysis module (Fig-

ure 4.18b) uses the RPi Camera Web Interface software https://elinux.org/RPi-Cam-W
eb-Interface, which allows fast shutter speeds, concurrent camera access and automated

exposure settings. Camera recordings are obtained in single image or continuous mode (max

90 frames/s) depending on user-defined settings.

The VHF analysis module (Figure 4.18c) uses the signal detection algorithm described by

Gottwald et al. [Got+19]. When a new signal is received, its strength and duration are evaluated

such that remote and noisy signals are filtered out. All other signals are classified as active

56

https://nature40.github.io/BatRack/
https://nature40.github.io/BatRack/
https://github.com/Nature40/BatRackOS/releases/
https://elinux.org/RPi-Cam-Web-Interface
https://elinux.org/RPi-Cam-Web-Interface

4.3 BatRack: An Open-source Multi-sensor Device for Wildlife Research

Figure 4.17: Hardware components of BatRack: (a) Raspberry pi mini computer, (b) rtl-sdr

dongle, (c) real time clock or LTE stick (d) 12V to 5V converter with USB power

supply, (e) KY-019 relay, (f) ultrasonic microphone, (g) IR spotlight, (h) Raspberry pi

camera (NoIR or HQ-camera with removed IR filter), (i) omnidirectional antenna,

(j) 12 V battery, (k) solar panel.

Figure 4.18: Analysis units of BatRack: (a) audio analysis unit (AAU), (b) camera analysis unit

(CAU), (c) VHF analysis unit (VAU).

57

4 Smart Environmental Monitoring

(i.e. flying) or inactive (i.e. resting; [Kay+11]). A bat is inactive if a standard deviation in signal

strength <2 is detected over at least 30 s, and active otherwise (Figure 4.19). If the VHF signals

are used to trigger audio or video recordings, only time periods with active signals are written

to memory, thus saving storage space and reducing the number of recordings that must be

analysed. The operational modes of the analysis modules can be scheduled and configured

individually.

Figure 4.19: VHF signal patterns in relation to the different modes of behaviour. Swarming

(purple), passive (orange), emerging from roost (green).

Audio-triggered video recordings

The suitability of passive ultrasonic audio observations for triggering video recordings of bats

was tested by placing BatRack in front of a known roost of Bechstein’s bats Myotis bechsteinii

for one night. The use of highly sensitive settings (10 dB, 15 kHz) resulted in the triggering of

video and audio recordings for 2 s approximately every 10 s. Audio recordings were visualized

using BatScope [OB18] and classified as Bechstein’s bats, other bats or no bats. Video sequences

were manually screened for bats, and the ratio of simultaneous audio and video detections of

bats served as the test variable.

58

4.3 BatRack: An Open-source Multi-sensor Device for Wildlife Research

To optimize the trigger parameters for the detection of Bechstein’s bats, the recorded audio

files were postprocessed using the trigger algorithm of the audio analysis unit. All possible

combinations in the range of 15–50 kHz for the frequency threshold and 15–50 dB for the

sound-pressure threshold were tested. All audio recordings classified as Bechstein’s bat calls

were treated as true positives; all other bat calls were excluded from the training dataset. The

maximum F1 score, which is the harmonic mean of precision and recall, was used to select the

parameter combination that best minimized false positives while correctly identifying most

true positives.

VHF-triggered video recordings and individual-related behavioural patterns

To test the suitability of the VHF recordings in camera control and of the VHF signal strength

in inferring behaviour, three pairs of Bechstein’s bats from the same maternity colony were

captured with mist nets between June and July 2020 and fitted with VHF tags. All females,

except individual h172498, were in the expected reproductive state at the time of capture

(Table 4.3). To monitor the bats, three BatRacks were placed in front of known roosting trees at

a distance of 5–15 m for a total of 30 nights between June and August 2020.

ID Reproductive state Pair Capture date VHF frequency

h146480 Pregnant Pair1 08.06.2020 150.187

h172494 Pregnant Pair1 08.06.2020 150.128

h172498 Not reproducing Pair2 23.06.2020 150.172

h146482 Lactating Pair2 18.06.2020 150.199

h146486 Postlactating Pair3 15.07.2020 150.199

h146488 Postlactating Pair3 15.07.2020 150.156

Table 4.3: Studied female Bechstein’s bat individuals and their pair assignments

To determine the suitability of VHF receptions in triggering video recordings of tagged individ-

uals, the ratio of expected captures based on VHF patterns to manually screened, actual video

captures of at least one visible bat was used as the test variable. To investigate the potential of

individual measurements to infer behavioural patterns, in this case swarming and emerging, the

VHF data were analysed manually. Swarming was defined as both a signal pattern indicating

an active bat and a signal strength above a threshold of -20 dBW for at least 30 s (Figure 4.19,

purple). This corresponded to the continuously flying of a tagged individual in close proximity

to the sensor unit. Emerging was defined as a resting phase immediately followed by a strong

signal, which in turn dropped off very quickly and did not stabilize immediately (Figure 4.19,

green).

The observed behaviour of the bats was manually labelled as swarming if the recorded video

sequences revealed an individual that moved back and forth in the area of the roost, if the

individual briefly approached the tree, or if it left the roost after a short entry. Exits that were

not directly followed by re-entry or swarming were classified as emerging.

59

4 Smart Environmental Monitoring

To determine whether the video-captured bats could be identified as the tagged individuals,

the VHF signal patterns and the corresponding movement patterns in the video were compared.

Exemplary VHF data and video frames are shown in Figure 4.20. The full video sequence and

animated VHF data are provided at the BatRack webpage.

Figure 4.20: Identification of a tagged individual. The VHF signal shows strong fluctuations

during swarming (up left and mid). The signal fluctuations decrease significantly

after the bat enters the tree (up right, down left). Shortly after a second individual

enters the tree (down mid), the tagged bat emerges from the tree (down right).

Unless otherwise stated, all analyses were performed using R [R F20].

4.3.4 Experimental Evaluation

Audio trigger performance

During the test night, 3,317 audio-triggered audio and video recordings with an average length

of 2 s were collected. Bats could be manually identified on 170 video (5.1%) and 663 audio (20%)

recordings. From the latter, 272 recordings (41%) most likely originated from Bechstein’s bats.

For 166 of the 170 (97.6%) videos, a bat call was recorded simultaneously; in 160 cases (94.1%),

the call was classified as that of a Bechstein’s bat.

After all files with calls that could not be assigned to Bechstein’s bats were removed and

files without bat calls retained as true negatives, the remaining 2,929 files were processed to

determine the optimal trigger parameters. The optimal combination of frequency and volume

threshold based on the maximum F1 score (0.91) was 15 dB and 38 kHz. With this combination,

235 out of 274 files containing Bechstein’s bat calls (sensitivity = 0.858) were correctly identified;

only 5 out of 2,655 negatives were falsely identified as positives (specificity = 0.998).

60

4.3 BatRack: An Open-source Multi-sensor Device for Wildlife Research

VHF trigger performance

In total, 205 video recordings were captured that matched the VHF sequences classified as

swarming or emerging. Of these, 130 (63%) were considered to show swarming and 75 (37%)

emerging. Manual screening of the footage revealed one or more bats on 170 of the 205 (83%)

sequences. Swarming was successfully detected in 93% of the sequences in which swarming

was expected (122 out of 130), and emerging in 65% of the sequences (49 out of 75).

From the 170 (91%) video detections of a bat, in 155 the bat could be identified as the tagged

individual with a very high probability, based on comparison of the movement pattern with

the VHF signal strength. Among the 49 emerging and 130 swarming events, this was the case

for 47 (96%) and 108 (83%), respectively.

Individual behaviour patterns

Pregnant and postlactating bats (Figure 4.21; pairs one and three) did not show any apparent

differences in their swarming and resting patterns, either between individuals of a pair or

between pairs. All four individuals showed a higher swarming frequency on the night of the

roost change and on the following night. During the latter, repeated swarming sequences and

resting phases at the abandoned tree occurred. The lactating female (Figure 4.21; pair two,

h146482), showed a higher frequency of swarming behaviour and resting periods than observed

in the nonreproducing female (Figure 4.21; pair two).

4.3.5 Summary

A prerequisite for understanding dynamic natural environments as socio-ecological systems is

data collected using highly automated monitoring systems. Recent developments have shown

that the integration of (multiple) sensors and technologies in data acquisition and analysis

can provide deep insights into the ecology of different species [GY19; Rip+20; Sch+19; Tol+20].

BatRack offers a highly promising solution in the observation of bats. With its modular COTS

design, BatRack can be readily built and easily maintained, allows individual configurations

and extensions, and enables both flexible scheduling and the combination of measurements.

BatRack yields reliable occurrence information based on audio or VHF recordings. The latter

can be used in the retrieval of basic behavioural information even from a single, nondirectional

VHF receiver. Especially for small bat species, the use of either VHF or audio to trigger a

video unit results in more energy- and storage-efficient video capture than allowed by purely

schedule-based recording. A high detection probability and a substantial reduction in false

positives are ensured by applying targeted trigger parameters to the audio unit. Triggering

based on the VHF signal results in an even better performance with bats captured almost all

the time when one of the tagged bats triggered the recording. In our study, valuable video

recordings were obtained even for bats flying up to 15 m away from the sensor.

Our case study on the behaviour patterns of Bechstein’s bats illustrates the potential of BatRack.

The observations provide first anecdotal indications of an association of increased swarming

activity with a change of roost (pair one, three) and weening of the pup (pair two). However,

61

4 Smart Environmental Monitoring

Figure 4.21: VHF-signal-derived behavioural patterns of Bechstein’s bat pairs. Blue = inactivity,

green = swarming. Gradations in the respective colour scale indicate the roost used

for resting (Tree A = lighter blue, Tree B = darker blue) or for swarming (Tree A =

lighter green, Tree B = darker green).

the advantage of information acquired at the individual level comes at the price of having to

62

4.4 Bird@Edge: Bird Species Recognition at the Edge

tag the animals. Furthermore, the identification of an individual is more difficult if several

tagged individuals with similar levels of activity are recorded simultaneously.

The application possibilities of BatRack are manifold. Observations that were previously only

possible in the laboratory can be obtained in natural habitats. BatRack is best suited for studies

where the observation of bats is linked to a specific and small area (e.g. hibernation roosts,

maternity colonies, specific resource occurrences). The focus here is on the study of social

behaviour between animals or the use of resources. The mobility of BatRack also makes it

possible to complement laboratory studies with field experiments (e.g. changes in resource

availability). Moreover, while behavioural contexts can often be inferred from vocalizations,

reference recordings are missing for many species [TMR19]. This deficiency can be addressed

by BatRack, which can be used to collect visual ground truth of the behavioural significance of

vocalizations. Thus, BatRack is a promising building block to close knowledge gaps regarding

bat behaviour and to develop and evaluate conservation measures.

With regard to the classification in Figure 4.1 on page 26, BatRack cannot be classified in a

straightforward manner. The intersection of the different sensors enables a functionality that

was hardly possible before, even with manual techniques. Manual VHF telemetry, for example,

can be used to determine the roosting locations of bats, but immediate triggering of a camera

trap is not possible due to the high delay. The recording of bat calls with the help of audio

recorders is also technically possible, but the possibility of triggering a camera trap based

on this is also missing here. Finally, there is the camera trap itself, which can be triggered in

response to movement, but which generates many false positives. The classification in the

Figure 4.1 refers to the enhancements of the video recordings themselves, which previously

occurred only in small numbers or with high false positive rates.

4.4 Bird@Edge: Bird Species Recognition at the Edge

4.4.1 Introduction

The continuous loss of biodiversity is particularly evident from the sharp decline of bird popu-

lations in recent decades. Birds are important for many ecosystems, since they interconnect

habitats, resources, and biological processes, and thus serve as important early warning bioindi-

cators of an ecosystem’s health. Thus, changes in bird species in time and space should be

detected as early as possible.

Traditionally, this is achieved by human experts who walk around a natural habitat to look

at birds and listen to bird sounds, identify bird species present in the sounds, and take notes

of their occurrence. In recent years, this is often supported by placing microphones in the

natural habitats of birds and recording their sounds. The audio data recorded in this way is

then evaluated either manually by human experts or by means of automatic analysis methods

to recognize bird species in soundscapes. The disadvantages of this approach are: (a) there is a

potentially large amount of recorded audio data that can usually only be evaluated after the

end of the recording time, and (b) there is an inherent time delay between recording the audio

data and delivering the recognition results.

63

4 Smart Environmental Monitoring

In this section, we combine Edge Computing and Artificial Intelligence (AI) to present Bird@-

Edge, an Edge AI system for recognizing bird species in audio recordings to support real-

time biodiversity monitoring. Bird@Edge is based on embedded edge devices operating in

a distributed system to enable efficient, continuous evaluation of soundscapes recorded in

forests. Multiple microphones based on ESP32 microcontroller units (called Bird@Edge Mics)

stream audio to a local Bird@Edge Station, on which bird species recognition is performed.

The recognition results of different Bird@Edge Stations are transmitted to a backend cloud for

further analysis, e.g., by biodiversity researchers.

To recognize bird species in soundscapes, a deep neural network based on the EfficientNet-B3

architecture is trained and optimized for execution on embedded edge devices and deployed

on a NVIDIA Jetson Nano board using the DeepStream SDK. Our experimental results show

that our deep neural network model outperforms the state-of-the-art BirdNET neural network

on several data sets and achieves a recognition quality of up to 95.2% mean average precision

on soundscape recordings in the Marburg Open Forest, a research and teaching forest of the

University of Marburg, Germany. Measurements of the power consumption of a Bird@Edge

Station and the Bird@Edge Mics highlight the real-world applicability of the approach. All

software and firmware components of Bird@Edge are available under open source licenses
24
.

Our contributions are:

• We present a novel Edge AI approach for recognizing bird species in audio recordings; it

supports efficient live data transmission and provides high-quality recognition results.

• We propose a deep neural network based on the EfficientNet-B3 architecture optimized

for execution on embedded edge devices to identify bird species in soundscapes.

• We evaluate our Edge AI approach in terms of recognition quality, runtime performance,

and power consumption.

Parts of this section have been published in Jonas Höchst, Hicham Bellafkir, Patrick Lampe,

Markus Vogelbacher, Markus Mühling, Daniel Schneider, Kim Lindner, Sascha Rösner, Dana G.

Schabo, Nina Farwig, and Bernd Freisleben. “Bird@Edge: Bird Species Recognition at the

Edge.” in: International Conference on Networked Systems (NETYS). Springer. May 2022. doi:

10.1007/978-3-031-17436-0_6.

4.4.2 Related Work

In this section, we discuss related work with respect to current machine learning approaches

for bird species recognition in audio recordings and edge AI approaches for biodiversity moni-

toring.

Bird Species Recognition

For many years, bird populations were monitored manually by ornithologists who identified

birds visually and acoustically on site. The introduction of autonomous recording units (ARU)

24https://github.com/umr-ds/BirdEdge

64

https://doi.org/10.1007/978-3-031-17436-0_6
https://github.com/umr-ds/BirdEdge

4.4 Bird@Edge: Bird Species Recognition at the Edge

opened new possibilities. Although such passively recorded data does not provide any visual

information, the resulting bird surveys conducted by humans from sound recordings are

comparable to traditional monitoring approaches in the field [Dar+18].

Furthermore, machine learning methods, such as Convolutional Neural Networks (CNN), are

increasingly being used for automatically recognizing bird species in soundscapes. For example,

BirdNET is a task-specific CNN architecture trained on a large audio data set using extensive

data pre-processing, augmentation, and mixup that achieves state-of-the-art performance

[Kah+21b]. The audio spectrograms are generated using a Fast Fourier Transform (FFT) with a

high temporal resolution. BirdNet is based on a ResNet [He+16] architecture and is capable of

identifying 984 North American and European bird species.

More recently, BirdNET-Lite
25
has been released. This neural network is optimized for mobile

and edge devices and can recognize more than 6,000 bird species. It takes raw audio as its input

and generates spectrograms on-the-fly. Mühling et al. [Müh+20] proposed a task-specific neural

network created by neural architecture search [ZL17]. It won the BirdCLEF 2020 challenge

[Kah+20]. It also operates on raw audio data and containsmultiple auxiliary heads and recurrent

layers.

Recently, Vision Transformers (ViT) achieved great improvements in computer vision tasks

[Dos+21] and audio event classification[GCG21]. Puget [Pug21] adopted a ViT architecture for

bird song recognition and achieved results comparable to CNNs. However, the annual birdcall

identification challenge (BirdCLEF [Kah+21a]) is currently dominated by approaches based on

CNNs. The top approaches typically use ensembles of CNNs and heavy parameter tuning. The

winning approach at BirdCLEF 2021, for example, usesMel spectrograms, network architectures

based on ResNet-50 [He+16], and gradient boosting to refine the results using metadata. The

runners-up Henkel et al. [HPS21] presented an ensemble of nine CNNs. During training, they

used 30 second Mel spectrograms to mitigate the effect of the weakly labeled training data

and applied a novel mixup scheme within and across training samples for extensive data

augmentation. Furthermore, a binary bird call/no bird call classifier contributed to the final

result. However, combining several machine learning models leads to a considerably increased

computational effort.

Edge AI for Biodiversity Monitoring

Executing machine learning algorithms on edge devices leads to a quantitative increase of

data through continuous observation, where previously only individual data points could

be collected with manual effort, often including a bias of individual experiences depending

on, e.g., habitat or bird species. Merenda et al. [MPI20] survey several approaches based on

the execution of machine learning methods on hardware with limited resources. Gallacher

et al. [Gal+21] deployed 15 sensors in a large urban park to process recorded audio data

of bats locally, which allowed monitoring their activities for several months. Given that the

system has only been operated in an urban environment, the limitations of this approach are

that network connectivity must be available via WiFi, and that a fixed power supply must be

present. Novel deep learning approaches presented by Disabato et al. [Dis+21] further improved

25https://github.com/kahst/BirdNET-Lite

65

https://github.com/kahst/BirdNET-Lite

4 Smart Environmental Monitoring

bird song recognition at the edge. These approaches provide high accuracy while reducing

computational and memory requirements, with limited battery lifetimes of up to 12.4 days on

an STM32H743ZI microcontroller. Likewise, Zualkernan et al. [Zua+21] compare different edge

computing platforms based on neural networks using bat species classification as an example.

While the NVIDIA Jetson Nano is the only device capable of executing a TensorRT model on its

GPU, both the Raspberry Pi 3B+ and the Google Coral showed good results when executing a

reduced TensorFlow-Lite model.

4.4.3 Bird@Edge

Bird@Edge is designed as an Edge AI system based on distributed embedded edge devices to

enable efficient, continuous evaluation of soundscapes recorded in forests. Multiple Bird@Edge

Mics stream audio wirelessly to a local Bird@Edge Station, on which bird species recognition is

performed. The recognition results of different Bird@Edge Stations are transmitted to a backend

for further analysis. The results are stored in a time series database and can be visualized, as

shown in Fig. 4.22. Using hidden microphones also supports recognizing very elusive species

that are hard to detect while ecologists are present in field to conduct a census.

Audio Data
Bird Species Labels
User Requests

Local WiFi

…

…

Local WiFi

…

Web Frontend

Figure 4.22: Overview over the Bird@Edge system

A Bird@Edge Station consumes significantly more power than a microphone node, but can

run a neural network for bird species recognition for more than one audio stream. We can

feed 1 to 10 audio streams into the neural network and thus operate a variable number of

66

4.4 Bird@Edge: Bird Species Recognition at the Edge

Bird@Edge Mic

ESP32

Ba!ery Box

Solar
Charger

Solar
Panel

Bird@Edge Station

NVIDIA Jetson Nano

H
D

M
I

 LTE M
odem

WiFi

12V / 5V
Converter

Bird@Edge Mic

ESP32

Bird@Edge Mic

ESP32

Figure 4.23: Bird@Edge hardware components

Bird@Edge Mics at one Bird@Edge Station. Different numbers of Bird@Edge Mics may be

present when a new microphone node appears (e.g., by switching it on) or leaves (e.g., due to

battery shortage).

To generate a list of bird species at a Bird@Edge Station, chunks of an incoming audio stream

are passed to the neural network, which may return multiple results, since we process mixtures

of recorded bird songs, i.e., soundscapes. These potentially multiple results per audio segment

are then collected and aggregated into larger intervals in the time series database in the

backend cloud. The size of the interval can be dynamically changed and visualized in near

real-time. In addition, the status of the microphone nodes and potential problems can be

detected much faster than collecting data only every few days.

Bird@Edge Hardware

The hardware used for Bird@Edge consists of (a) Bird@Edge Mics, which are in charge of

recording and transmitting audio at the deployed location; (b) Bird@Edge Stations, which

receive audio streams from multiple Bird@Edge Mics and execute the Bird@Edge processing

pipeline. Figure 4.23 provides an overview of the hardware components used in Bird@Edge.

A Bird@Edge Mic consists of an Espressif ESP32 microcontroller that has a dual-core CPU

running at 80 MHz, Bluetooth and WiFi connectivity, as well as multiple input and output

options, including an I2S (Inter-IC Sound) bus. Connected to it is a Knowles SPH0645LM4H

67

4 Smart Environmental Monitoring

microphone capable of recording audio in the range between 50 Hz and 15 kHz
26
. A Bird@Edge

Mic can be powered either using single 18650 Li-ion cells or using one of the widely available

USB power banks. The price of a Bird@Edge mic of 22€ to 50€ is composed of the ESP32,

depending on the offer and model 5€ to 15€, the I2S microphone 7 - 12€ and a battery for 10€ -

20€. All components can be placed in a small case of 10 x 10 x 5 centimeters, which does not

exceed the weight of 500 grams.

At the heart of a Bird@Edge Station is a NVIDIA Jetson Nano. It allows the efficient execution of

machine learning models in a low power environment. A Realtek RTL8812BU-based USB WiFi

is used to enable wireless networking with the board and allow connection to the Bird@Edge

Mics. In addition, a Huawei E3372H LTE modem is installed to connect to the Internet in

rural areas. The station is powered by 12V solar battery system connected to the Jetson Board

via a 12V/5V step down converter. The hardware of a Bird@Edge Station costs about 110€,

with 50€ for the Jetson Nano, 20€ for the USB WiFi adapter, and 40€ for the LTE modem. The

components of an Bird@Edge Station, including a solar charge controller, can be fitted into an

industrial enclosure measuring 25 x 18 x 12 centimeters, weighing less than 1.5 kilograms in

total.

Bird@Edge Software

Bird@Edge consists of a variety of software components that enable its smooth configuration

and operation. Figure 4.24 shows these software components, as well as the data flows and

interaction possibilities of the users with the system.

Bird@Edge Station

Server

Bird@Edge OS

Bird@Edge
Daemon

InfluxDB

Grafana

Storage

OpenSSH

Users

Wi-Fi / Wireguard

systemd

Data Flow

Interaction

Bird@Edge Mic

mDNS Service
Discovery

HTTP Audio
Stream

Bird@Edge Mic

mDNS Service
Discovery

HTTP Audio
Stream

Bird@Edge
Pipeline

…

pymq!util

W
iF

i

Cellular

Figure 4.24: Bird@Edge software components

26https://www.knowles.com/docs/default-source/default-document-library/sph0645lm4h-1
-datasheet.pdf

68

https://www.knowles.com/docs/default-source/default-document-library/sph0645lm4h-1-datasheet.pdf
https://www.knowles.com/docs/default-source/default-document-library/sph0645lm4h-1-datasheet.pdf

4.4 Bird@Edge: Bird Species Recognition at the Edge

The software for the Bird@Edge Mics is built using components of the Espressif Development

Framework (ESP-IDF), i.e., HTTP Server, Multicast DNS Implementation, and I2S drivers. When

booting up, the Bird@Edge Mic connects to the WiFi network (SSID: BirdEdge) with the best

signal strength and reports its own accessibility via the service identifier mDNS. Then, the

HTTP server is started, which provides the audio stream of the microphone for the Bird@Edge

station. To detect connection interruptions, the WiFi connection is also checked at intervals of

one second with the aid of ICMP and, if necessary, the WiFi connection is re-established. The

Bird@Edge Mic software is available online
27
.

The software running on a Bird@Edge Station is based on the NVIDIA Jetson Nano Develop-

ment Kit Operating System, which in turn is based on Ubuntu Linux. The central component

responsible for detecting the Bird@Edge Mics, executing the processing pipeline and trans-

mitting the results is called birdedged (Bird@Edge Daemon). It continuously searches for

newly connected Bird@Edge devices and restarts the processing pipeline accordingly when

devices are found or dropped. Bird species recognition results from the processing pipeline are

captured and transmitted to the InfluxDB server system. The server system that collects data

from potentially multiple Bird@Edge implementations runs Grafana, a dashboard visualization

WebUI designed specifically for stream data
28
.

The operating system running on Bird@Edge Stations is built using PIMOD [Höc+20b] and is

available online
29
. NVIDIA’s licenses do not allow to redistribute complete operating system

images, however pimod allows to reduce the necessary steps and easily create the images.

4.4.4 Recognizing Bird Species in Soundscapes

In this section, we describe our deep learning approach to bird species recognition in audio

recordings including the preprocessing steps, the neural network as well as its optimization

and deployment on the NVIDIA Jetson Nano edge device. The deep neural network model is

designed to recognize 82 bird species indigenous in Germany and background noise that is

typical for German forests.

Audio Preprocessing

We selected 44.1 kHz as the sampling rate and analyzed frequencies up to 22.05 kHz to cover the

frequency ranges of the bird song patterns. The task is considered as a classification problem,

aiming to recognize bird species in 5-second audio snippets. To avoid overfitting and enrich

our data set, we randomly select these 5-second snippets and add randomly selected noise

from up to four background samples. This encourages our model to focus on the patterns that

are important for species recognition. The recognition is based on visual representations of

the frequency spectrum as it changes over time, called spectrograms. In our case, we use Mel

spectrograms that are generated using 128 Mel bands and an FFT window size of 1,024.

27https://github.com/umr-ds/BirdEdge/tree/main/BirdEdge-Client
28https://grafana.com
29https://github.com/umr-ds/BirdAtEdge-OS

69

https://github.com/umr-ds/BirdEdge/tree/main/BirdEdge-Client
https://grafana.com
https://github.com/umr-ds/BirdAtEdge-OS

4 Smart Environmental Monitoring

Neural Network Architecture

Our approach to recognize bird species relies on an EfficientNet-B3 [TL19] architecture pre-

trained on ImageNet [Rus+15]. The model is fine-tuned in two phases to target domain using

the Adam [KB15] optimizer. In the first phase, we only train the last, randomly initialized layer

for 40 epochs with an initial learning rate of 0.004, while the remaining layers with pre-trained

weights are frozen. In the second phase, we train all layers of the model until convergence,

while reducing the initial learning rate by a factor of 10. Furthermore, a binary cross-entropy

loss combined with modulation factors motivated by the success of focal loss [Lin+17] in the

field of object detection are used to emphasize difficult samples during the training process.

Since the underlying data set is only weakly labeled, we use positive training samples for

one species as negative samples for the others. Furthermore, samples labeled negative from

expert feedback are defined as hard negatives in the following. Our loss function is defined as

follows:

L =
K

∑
k=1

l(yk, pk),

l(y, p) =


−αpos(1− p)γ log(p) if y is positive

−αn pγ log(1− p) if y is negative

−αhn pγ log(1− p) if y is hard negative

where K is the number of bird classes, pk is the predicted probability for the k-th class, yk is

the k-th ground truth label, αpos is the weighting factor for positive labels, αn for negative or

undefined labels, αhn for hard negative labels and γ is the focusing parameter.

We implemented our approach using the TensorFlow deep learning framework [Mar+15]. For

audio processing and especially spectrogram generation, we use the librosa library [McF+15].

Optimizing the Neural Network for Edge Devices

To speed up inference, we optimized our model using the TensorRT
30
library. This library in-

cludes an inference optimizer for CUDA-capable target devices that applies various operations,

such as quantization and memory optimization, to reduce the inference time. In particular,

the floating point precision is reduced by quantizing to FP16 or INT8, while maintaining high

accuracy. We optimized our model by using FP16 quantization in addition to the original FP32

weights, since the NVIDIA Jetson Nano does not support INT8 computations natively. Further-

more, we applied target-specific auto-tuning to select the best algorithms and quantization for

each layer.

30https://developer.nvidia.com/tensorrt

70

https://developer.nvidia.com/tensorrt

4.4 Bird@Edge: Bird Species Recognition at the Edge

Inference

We use the DeepStream SDK
31
to deploy our optimized model on the NVIDIA Jetson Nano

board with high throughput rates. DeepStream is based on the GStreamer framework and

provides a pipeline that takes an input stream and performs hardware accelerated inference on

it. An overview of our pipeline composed with DeepStream is presented in Figure 4.25. First, the

Stream
Muxer……

Predictions

Read
HTTP

Stream

Highpass
@120 Hz

NvInferAudio

CNN

NvInferAudio

CNN

Read
HTTP

Stream

Highpass
@120 Hz

Figure 4.25: Overview of the Bird@Edge processing pipeline

N HTTP streams are read and parsed from the WiFi signal. Since the microphone we used (see

Section 4.4.3 for details) induces noise in the lowest frequency bands, we apply a highpass filter

that attenuates all frequencies below 120 Hz to each stream. These frequencies are irrelevant

for bird species recognition and can therefore be neglected. We prefer the Chebyshev highpass

filter over the windowed sinc filter, because it is much faster. Next, we use DeepStream’s stream

muxer to bundle our streams into one batch and forward the data to the NvInferAudio plugin.

This plugin provides inference for audio streams and automatically generates the respective

Mel spectrograms. Finally, the spectrograms are passed to our model with a batch size of N,

and the obtained predictions are retrieved. To be able to process the streams in real-time with

a high temporal resolution, we take 5 second snippets with a stride of one second.

4.4.5 Experimental Evaluation

In this section, we present experimental results in terms of (a) bird species recognition qual-

ity and execution speed, (b) visualization of bird recognition results, as well as (c) power

consumption measurements of a Bird@Edge Station and a Bird@Edge Mic.

31https://developer.nvidia.com/deepstream-sdk

71

https://developer.nvidia.com/deepstream-sdk

4 Smart Environmental Monitoring

Bird Species RecognitionQuality and Execution Speed

Data Sets.

Our neural network models were evaluated and compared to BirdNET [Kah+21b] and BirdNET-

Lite
25
on data sets collected from three sources. We recorded a first data set with AudioMoth

devices [Hil+19] in the Marburg Open Forest (MOF). The recordings were labeled on a 5 second

basis by human experts. In total, 33 species occur in the MOF data set. Since the amount of

labeled data in the MOF data set is not sufficient to train a deep learning model, we acquired

further data sets by crawling data from the online bird song collections Xeno-Canto [Xen] and

iNaturalist [iNa]. The assets included in these data sets have often higher quality and contain

less background noise. In our evaluation, we took up to 10% of the files of each class. To make

sure that we do not feed snippets without bird calls, we first applied the heuristic used by Kahl

et al. [Kah+21b] and selected up to three 5 second snippets containing a bird call for each test

file. Table 4.4 shows an overview of the training and test data.

Data Set MOF Xeno-Canto iNaturalist

Training 4,294 104,989 30,631

Test 913 2,144 1,365

Table 4.4: Overview of the training and test data

Quality Metrics.

To evaluate the performance of our bird species recognition approach, we use average precision

(AP) as our quality metric. The AP score is the most commonly used quality measure for

retrieval results and approximates the area under the recall-precision curve. The task of bird

call recognition can be considered as a retrieval problem for each species where the annotated

audio samples represent the relevant documents. Then, the AP score is calculated from the list

of ranked documents as follows:

AP(ρ) =
1

|R ∩ ρN |

N

∑
k=1

∣∣R ∩ ρk
∣∣

k
ψ(ik),

with ψ(ik) =

 1 if ik ∈ R

0 otherwise

where N is the length of the ranked document list (total number of analyzed audio snippets),

ρk = {i1, i2, . . . , ik} is the ranked document list up to rank k, R is the set of relevant documents

(audio snippets containing a bird call),

∣∣R ∩ ρk
∣∣
is the number of relevant documents in the

top-k of ρ and ψ(ik) is the relevance function. Generally speaking, AP is the average of the

precision values at each relevant document. To evaluate the overall performance, the mean AP

score is calculated by taking the mean value of the AP scores from each species.

72

4.4 Bird@Edge: Bird Species Recognition at the Edge

Method MOF XC iNat

BirdNET[Kah+21b] 0.833 0.725 0.725

BirdNET-Lite
25

0.859 0.737 0.714

EfficientNet-B3 0.952 0.820 0.811

Bird@Edge 0.952 0.816 0.819

Table 4.5: Results (mAP)

Model Device Inference time (ms)

BirdNET-Lite
25

Raspberry Pi-4B 279

Bird@Edge (FP32) Jetson Nano 64

Bird@Edge Jetson Nano 54

Table 4.6: Model inference runtimes

Results.

First, we evaluated the recognition quality of our models, namely the original trained model

(EfficientNet-B3) as well as the optimized model (Bird@Edge) and compare the results to Bird-

NET and BirdNET-Lite. While EfficientNet-B3 is evaluated with TensorFlow on a workstation,

the Bird@Edge model is run on the NVIDIA Jetson Nano for inference.

BirdNET and BirdNET-Lite take the recording location as additional metadata along with the

corresponding audio input. As longitude and latitude, we take the coordinates of the Marburg

Open Forest for all data sets, since we only use bird species resident in this specific forest

for evaluation. Since the length of the audio input of the BirdNET models differs from our

approach, the 5 second samples are split into two 3 second snippets with an overlap of 1 second

and the results are averaged for the final prediction.

Table 4.5 summarizes the experimental bird species recognition results. Our original model

(EfficientNet-B3) outperforms BirdNET-Lite as well as BirdNET by roughly 10% in terms of mAP

on all data sets considered. While keeping the recognition quality, the optimized Bird@Edge

model achieves an inference runtime of 64 ms per spectrogram, as shown in Table 4.6. Adding

model quantization with 16-bit floating point precision where appropriate effectively reduces

the inference runtime on the NVIDIA Jetson Nano board by 10 ms. We also compared the

runtimes of our models to BirdNET-Lite. Similar to BirdNET-Pi
32
, we ran BirdNET-Lite on a

Raspberry Pi-4B with 4 CPU threads in parallel. Table 4.6 reveals that our setting is more than

four times faster.

73

4 Smart Environmental Monitoring

Figure 4.26: Grafana panel (x-axis: clock time; y-axis: recognition confidence) showing recog-

nized bird species of a certain Bird@Edge Mic, based on Xeno-Canto file XC706150,

recorded by user brickegickel

Visualization of Bird Species Recognition Results

Figure 4.26 shows a Grafana screenshot of an automatically generated graph of the recognized

bird species of a Bird@Edge station. To generate the figure, the publicly available soundscape

audio file XC706150 from Xeno-Canto
33
of the target area was played back and captured by

the Bird@Edge Mic. The clock time is shown on the x-axis. The confidence of the recognition

is plotted on the y-axis. The data is grouped according to the recognized bird species labels,

distinguished by color. For every Bird@Edge Mic, a separate figure is generated, and its

parameters, e.g., plotted time frame or selection of species, can be configured.

Some observations can be derived from this simple visualization. First, there are several rec-

ognized occurrences of Coccothraustes coccothraustes (hawfinch) in two clusters. Picus canus
(grey-headed woodpecker) is detected multiple times over the duration of 12 seconds, and Sitta
europaea (Eurasian nuthatch) is detected in two clusters each at the beginning and end of the

observation period. All three observations indicate that individuals were heard on the record-

ings and were in the area at these times. For Loxia curvirostra (red crossbill) and Dendrocopos
major (great spotted woodpecker), only 4 and 2 observations were made, respectively; these

were probably heard only in the background. More sophisticated analyses can be performed

based on researchers’ requirements, such as heat maps of the occurrence of species based on

their geo-positions, or time-based plots. This can include both short-term considerations, such

as the time of day at which certain species are active, or long-term aspects, such as during

which period a particular species is particularly active.

32https://github.com/mcguirepr89/BirdNET-Pi
33https://xeno-canto.org/706150

74

https://github.com/mcguirepr89/BirdNET-Pi
https://xeno-canto.org/706150

4.4 Bird@Edge: Bird Species Recognition at the Edge

Power Consumption

An important aspect for the applicability of Bird@Edge in real applications is its power con-

sumption. Therefore, we measured the power consumption of a Bird@Edge Station and a

Bird@Edge Mic.

To measure the power consumption of a Bird@Edge Station, we used the internal power

monitors of the NVIDIA Jetson Nano, since these enable the differentiation between CPU,

GPU, and total power consumption. The power measurements were performed in different

profiles: a) the 10 Watt maximum performance profile (default), b) the 5 Watt low power profile

from NVIDIA, and c) a custom low power profile created for Bird@Edge. In this custom power

profile, only 2 of the 4 CPU cores were used, running at a maximum frequency of 614 MHz,

and the GPU was limited to a maximum of 230 MHz. As a baseline, the power consumption is

measured with 5 connected Bird@Edge mics, and only the measured values while the pipeline

is running are averaged. In this setup, the maximum performance mode requires 4.86 W, the

low power profile 4.19 W and the custom low power mode only requires 3.16 W, i.e., roughly

35% less compared to the maximum performance mode with no performance degradation

observable. Our observations during the execution of the experiments suggest that the GPU’s

dynamic frequency scaling algorithm tends to be too conservative to permanently lower the

clock and thus prevents the possible lower power consumption.

0 50 100 150 200 250

0

500

1000

1500

2000

2500

3000

0

20

40

60

80

100 CPU Power
GPU Power
Total Power
GPU Utilization

Time (s)

Po
w

er
 C

on
su

m
pt

io
n

(m
W

)

U
ti
liz

at
io

n
(%

)

Start Pipeline Running Power Mic 2-5 Power Mic 6-10

Figure 4.27: Power consumption of a Bird@Edge Station in a dynamic scenario.

Figure 4.27 shows the power consumption of a Bird@Edge station in a short scenario with a

changing number of connected Bird@Edge Mics. At the beginning, the system is switched on,

but the neural network for bird species is not running; the system needs 2.1 W in this state. At

t=0, the neural network is started with a Bird@Edge Mic already connected to the station. The

neural network model is loaded into memory from t=6, for which the CPU requires up to 0.59

W. From time t=36, i.e., 30 seconds after the start of the pipeline, the neural network model runs

and forwards results to the backend. In this phase, the Bird@Edge station requires an average

of 3.18 W. At t=120 and t=180, 4 and 5 additional Bird@Edge Mics are switched on, which first

75

4 Smart Environmental Monitoring

connect to the Bird@Edge Station via WiFi, then are discovered via mDNS, which results in the

reconfiguration of the processing pipeline and its restart. In both cases, the reboot took about

35 seconds, with 5 seconds for WiFi connection and discovery, and 30 seconds for pipeline

reboot. With 5 and 10 Bird@Edge Mics connected, the Bird@Edge Station requires 3.16 W and

3.13 W, respectively. Particularly noteworthy is the station’s lower power consumption when a

larger number of Bird@Edge Mics are connected. Figure 4.27 indicates that GPU utilization is

lower with many Bird@Edge Mics connected, compared to smaller numbers of Bird@Edge

Mics (98% with 1 client, 88% with 5 clients, 80% with 10 clients). This is probably due to internals

of the DeepStream SDK and may be influenced by the implementation, e.g., with respect to

the handling of unused streams.

The magnitude of the Bird@Edge Station’s power consumption necessitates the use of an LFP,

VRLA or AGM battery, which at 12 Volts typically have a capacity of 50 to 200 Ah. The available

60 to 2400 Wh allow the operation of a Bird@Edge Station from 7 up to 31 days. In combination

with a solar panel between 50 and 100 watt, a continuous operation is also possible during

periods of weak sunlight.

To measure the power consumption of a Bird@Edge Mic, we used a Monsoon High Voltage

Power Monitor
34

and connected the ESP32 using the 3.3 volt input. The measurements of

a Bird@Edge Mic show a power usage of 665 mW whenever the stream is activated and

data is sent to the station. The power measurements were performed with three different

off-the-shelf ESP32 boards, since the additional electronics present on the boards can have an

additional impact on power consumption. The three boards differed only slightly in terms of

power consumption: 0.452 W was needed by the Adafruit HUZZAH32, 0.452 W by the Joy-IT
NodeMCU ESP32, and 0.421 W by the SparkFun ESP32 Thing Plus. The latter

35
is the board

of choice for our application, due to the lowest power consumption, a direct LiPo battery

connector, and an external WiFi antenna.

To get a realistic estimation of the battery life of a Bird@Edge Mic, further measurements were

performed with 3.7 Volt via the corresponding connectors for LiPo batteries. The SparkFun

board required 0.468 W or 126.6 mA in operation, whereas the Adafruit board required 132.9

mA, or 0.492 W. LiPo batteries are available in a wide range of capacities, from 100 mAh to

over 30000 mAh. Typical capacities, as they are found in smartphones and can be purchased

cheaply, are around 3500 mAh, which allow a runtime of 27.6 hours. In combination with a

small solar panel of around 10 Watts, continuous operation is thus easily feasible.

4.4.6 Summary

We presented Bird@Edge, an Edge AI system for recognizing bird species in audio recordings

to support real-time biodiversity monitoring. Bird@Edge is composed of embedded edge

devices, such as ESP32-based microphones and NVIDIA Jetson Nano boards, operating in a

distributed system to enable efficient, continuous evaluation of soundscapes recorded in forests.

We presented a deep neural network based on the EfficientNet-B3 architecture and optimized

for execution on a NVIDIA Jetson Nano board to recognize bird species in soundscapes. It

34https://www.msoon.com/high-voltage-power-monitor
35https://www.sparkfun.com/products/15663

76

https://www.msoon.com/high-voltage-power-monitor
https://www.sparkfun.com/products/15663

4.4 Bird@Edge: Bird Species Recognition at the Edge

outperforms the state-of-the-art BirdNET neural network on several data sets and achieves a

recognition quality of up to 95.2% mean average precision on soundscape recordings in the

Marburg Open Forest, a research and teaching forest of the University of Marburg, Germany.

Measurements of the power consumption of Bird@Edge Station and Bird@Edge Mics show

that the system has an acceptable demand of 3.18 W plus 0.492 W for each Bird@Edge Mic,

which can be covered by reasonably sized batteries and solar panels, highlighting the real-

world applicability of the approach. All software and firmware components of Bird@Edge are

available under open source licenses
36
.

The results shown make it clear that Bird@Edge is a smart solution in the context of this

thesis. The Bird@Edge classification presented in Figure 4.1 on page 26 can be justified in all

three areas, i.e., computation, communication, and storage. The information analysis cost in

terms of computation was reduced by the optimizations presented in Section 4.4.4, in particular

the machine learning approach based on EfficientNet-B3, which was further reduced for

execution on the edge device. The storage and communication costs were improved by orders

of magnitude by the design of the architecture of the system, i.e., the direct processing of the

audio data close to the source, since no audio data but only the labels of the classification have

to be transmitted. The presented approach also improves the quality compared to established

approaches for automated bird song recognition, as shown above.

36https://github.com/umr-ds/BirdEdge

77

https://github.com/umr-ds/BirdEdge

5
Smart Adaptive Disruption-tolerant

Networking

This chapter presents novel approaches in the area of smart adaptive peer-to-peer, delay- and

disruption-tolerant networks. Particular use cases for adaptive peer-to-peer networking are

disaster scenarios and emergency response applications, in which communication infrastructure

might be instable, temporarily unavailable, or even destroyed.

The Serval Project is an open-source wireless ad-hoc networking system supporting a variety of

communication protocols and applications. An evaluation of the delay-tolerant protocol suite

Serval Rhizome is presented in Section 5.1.

Opportunistic named functions (ONFs) are a novel approach to operate information-centric

disruption-tolerant networks (ICN-DTNs) during emergencies. Network participants specify

their interests in particular content and possible application-specific functions that are executed

in the network opportunistically, either partially or totally. The concept of ONFs, its Serval-

based implementation, and an experimental evaluation are presented in Section 5.2.

Based on the findings of the previous section, the concept of computational offloading is further

extended to the computational offloading framework OPPLOAD, presented in Section 5.3.

The modular design, implementation, and evaluation of IETF’s Bundle Protocol Version 7, called

DTN7, written in the Go programming language, are presented in Section 5.4.

In Section 5.5, an approach to programmable disruption-tolerant networking based on DTN7,

called ProgDTN, is presented. The main idea is that network operators can incorporate context

information of DTN bundles and nodes into routing algorithms that consider the specific

properties of a particular application scenario.

Long range device-to-device communication can be achieved using LoRa. In Section 5.6, an

approach for using LoRa with smartphones particularly for crisis scenarios is presented. The

approach is integrated into DTN7 such that it allows us to adapt between different connection

options.

Figure 5.1 compares the information analysis cost and achievable quality of the three main

approaches (i.e., ONFs in ICN-DTNs, OPPLOAD, ProgDTN) presented in this chapter with

conventional solutions. The Serval Rhizome evaluation, DTN7, and LoRa-DTN are used as

inputs and/or technical prerequisites for the three main approaches. This chapter primarily

investigates methods for network communication. In this domain, the improvements in terms

of achievable quality relate particularly to technical metrics, i.e., QoS. The information analysis

79

5 Smart Adaptive Disruption-tolerant Networking

Information Analysis Cost

A
ch

ie
va

bl
e
!

al
it

y
(Q

oS
/Q

oE
/Q

oR
)

low

medium

high

low medium high

Computation

Communication

Storage

QoS

QoE

QoR

ProPHET

DTLSR

Offloading Computational
Workflows in Opportunistic

Networks [IEEE LCN’19]

Opportunistic Named
Functions in ICN-DTNs

[ACM CF’18]

ProgDTN: Programmable
Disruption-tolerant

Networking [NETYS’22]

Epidemic

Binary Spray

Delay-tolerant
Networking + Function

Execution

Remote-
Procedure Calls

Figure 5.1: Information analysis cost and achievable quality of smart adaptive disruption-

tolerant networking approaches

costs are also reflected in a particular area, namely communication. Improvements in network

communication can be realized by sharing the status information of the individual participants,

which, in addition to some computational cost, makes up the main part of the information

analysis cost.

Many of the implementations presented in the following sections are available as open source

software. The extensions of Serval regarding opportunistic functions
1
, a Python interface

for Serval
2
, and the implementation of OPPLOAD

3
are available via GitHub. The ongoing

development of DTN7 is documented on a project website
4
, the ProgDTN implementation is

available in the respective branch
5
. The LoRa modem firmware

6
as well as the device-to-device

chat application BlueRa7 are released under open source licenses as well.

1https://github.com/umr-ds/serval-dna/tree/nicer-hooks
2https://github.com/umr-ds/pyserval
3https://github.com/umr-ds/OPPLOAD
4https://dtn7.github.io
5https://github.com/umr-ds/dtn7-go/tree/progdtn
6https://github.com/umr-ds/rf95modem
7https://github.com/umr-ds/BlueRa

80

https://github.com/umr-ds/serval-dna/tree/nicer-hooks
https://github.com/umr-ds/pyserval
https://github.com/umr-ds/OPPLOAD
https://dtn7.github.io
https://github.com/umr-ds/dtn7-go/tree/progdtn
https://github.com/umr-ds/rf95modem
https://github.com/umr-ds/BlueRa

5.1 An Experimental Evaluation of Delay-Tolerant Networking with Serval

5.1 An Experimental Evaluation of Delay-Tolerant Networking
with Serval

5.1.1 Introduction

The unfortunate reality is that each year disasters and emergencies in many places around

the world happen, and that a common feature of these events is that partial or complete

loss of communications capacity occurs. Even without the loss of communications capacity

in a disaster, there are significant challenges to providing effective information for those

affected [WO07]. The loss of means of communications serves to compound the difficulties

and sufferings faced by those affected [CH06]. There is, therefore, a moral imperative to seek

out means of finding ways to restore, or better, sustain communications during and following

such adverse events.

The Serval Project [Gar11; Gar+13b; Gar+13a; Gar+12] is one of a number of endeavours that

seeks to respond to this moral imperative. Its objective is to allow people to usemobile telephone

handsets to communicate anywhere, anytime [Gar+13a]. The project seeks to achieve this

by creating protocols, writing software, including mobile apps, and creating complementary

hardware devices that, together, are able to replicate many of the functions of a conventional

cellular network to some degree. The goal is not the replacement of cellular networks, but

rather provisioning the best possible set of functionality and quality of service that is feasible,

without requiring any conventional infrastructure.

In this section, an in-depth experimental evaluation of the delay-tolerant networking (DTN)

aspects of the Serval software stack for various network setups and usage patterns, including

simulated long term use, is presented. The evaluation is based on a simulation and emulation

environment to provide insights into the scenarios where Serval can be deployed with satisfac-

tory quality and performance characteristics, without requiring the expense and complication

of deploying large and potentially costly physical test networks. Since battery capacity is

limited on mobile phones, we take a closer at the battery drain from using Serval over various

communication links, such as WiFi and Bluetooth. The contributions of this section are:

• A hybrid simulation and emulation environment is presented that allows us to run real

OpenWRT
8
firmware images in an emulator, in contrast to mere simulations where only

the DTN protocol can be tested.

• Various network topologies, ranging from many 1-hop neighbours and a 64-hop chain to

more realistic merging islands connection schemes are evaluated.

• Several test cases mimicking common functionality, such as file distribution, messaging

and peer discovery, and typical user behaviour, such as rapid bulk insertion of content,

writing periodic text messages, and adding different types of content every now and

then, are considered.

• Different file sizes are examined to reflect different patterns of mobile phone usage, such

as sharing text files (GPX data, ebooks, messages), images (map tiles, pictures), voice

and video recordings (eye-witness video footage, voice memos, diaries).

8
https://openwrt.org/

81

5 Smart Adaptive Disruption-tolerant Networking

• All test data, scripts and topologies are freely available and can be adapted to test other

software
9
.

Parts of this section have been published in Lars Baumgärtner, Paul Gardner-Stephen, Pablo

Graubner, Jeremy Lakeman, Jonas Höchst, Patrick Lampe, Nils Schmidt, Stefan Schulz, Artur

Sterz, and Bernd Freisleben. “An Experimental Evaluation of Delay-Tolerant Networking with

Serval.” in: 2016 IEEE Global Humanitarian Technology Conference (GHTC). Seattle, USA, Oct.
2016. doi: 10.1109/GHTC.2016.7857262.

5.1.2 Related Work

There exists a wide range of related work addressing emergency communications needs and

solutions, beyond what is possible to cover in this section [PK+15]. Nonetheless, many of the

solutions in this space can be classified according to (1) the communications medium/media

and modulation(s); and (2) the architectural model(s) used by each solution.

Communications media include WiFi, Bluetooth, WiMAX, GSM, TETRA digital radio, and

various analog two-way and digital microwave, UHF, VHF and HF radio systems, as well

as wired analog or digital systems, and satellite based systems, all available from various

commercial vendors.

The architectural models can be often classified as either infrastructure-oriented, distributed

(including peer-to-peer ad-hoc systems), or hybrid architectures of both approaches.

Several systems support multiple transport modalities. For example, WISECOM [BCW07] is

an infrastructure-oriented system that seeks to provide a comprehensive approach to post-

disaster communications, using satellite for global connectivity and a wide range of media and

modulations. A significant challenge with such systems is their overall complexity, and their

dependence on a sophisticated Internet-side infrastructure.

Distinct from the transport media, considerable work has been done on designing network

protocols and frameworks for emergency communications using various selections of the media

and modulations listed above [Cac+13; Wan+07; Man+14]. A resulting problem in this diversity

is that interoperability can be a signifcant challenge and requires ongoing effort to contain

and improve this situation [May02; Pec+15].

Mobile applications are also becoming more prominent in the emergency communications

space [Gar11], due to the increasing capability of modern smartphones. Several systems also

employ DTN principles to mitigate the challenges that arise when forming networks from

end-user devices, and without adequate supporting infrastructure [CS14]. Such systems are

particularly relevant, due of their ability to operate when faced with the failure of infrastructure,

which is a common feature in disasters and emergencies [PK+15].

For example, FireChat
10
is a DTN system for sendingmessages, but it lacks openness. Other DTN

systems such as SPAN [TRM12] and Briar
11
only support specific target operating systems such

9
https://github.com/umr-ds/

10
http://opengarden.com/firechat

11
https://briarproject.org/

82

https://doi.org/10.1109/GHTC.2016.7857262

5.1 An Experimental Evaluation of Delay-Tolerant Networking with Serval

as Android, and SPAN does not provide applications built on top of it. Furthermore, Forban
12

can spread files opportunistically in a DTNmanner, but lacks protocol support for direct private

file transfers, messaging or routing.

Liu et al. [Liu+15] have developed a DTN based mobile microblogging app for censorship

resistant communication. Their focus is on the app’s energy consumption in an 802.11 ad-hoc

network, ignoring other means of communication such as Bluetooth or WiFi in AP mode and

limiting the system to specific rooted Android devices in ad-hoc networking mode. Also, there

is no support for sending large files, such as videos.

Ntareme et al. [NZP11] have presented an approach based on Android phones using a store-

and-forward architecture. Services such as email are transparently delivered via DTN, but the

solution requires special server software in addition to the Android app. Energy and bandwidth

consumption were measured, but scalability and performance in different scenarios were not

evaluated.

Heimerl et al. [Hei+13] attempt to solve the problem of poor cellular coverage and power

outages in rural areas by using low-cost GSM hardware and a system for reduced power

consumption. While this approach is interesting for feature phones and services such as voice

calls and text messages, it still requires infrastructure to function.

5.1.3 Serval

The basic concepts of Serval are presented below.

UDP, IP,
Ethernet / WiFi Packet Radio RS232 etc…

Mesh Datagram Protocol
(MDP)

Serval Rhizome

Voice over Mesh
Protocol (VoMP)Maps File Dis-

tributio MeshMS Voice
Mail

Network

Transport

Application

Figure 5.2: The Serval technology stack

Overview

Serval is centered around a suite of protocols and technologies designed to allow ad-hoc

infrastructure-independent communications [Gar11; Gar+13b], as illustrated in Fig. 5.2. The

goal is to provide infrastructure-independent versions ofmany of the services that are commonly

used on smartphones in conjunction with the Internet and/or cellular networks, e.g., voice calls,

short text messaging (SMS), voice mail, social media, as well as file and image transfer.

12
http://www.foo.be/forban/

83

5 Smart Adaptive Disruption-tolerant Networking

The Serval Mesh protocols purposely take a contrasting approach to that of using IP (v4 or v6)

as the basis for forming mobile ad-hoc communications networks (MANETs) [Gar+13a]. The

reason for this is that despite billions of dollars of research and development work, IP-based

MANETs still struggle, and face a number of significant challenges that limit their real-world

use, e.g., address allocation, the need to maintain a routing table, authenticity and integrity of

communications, and the need for relatively reliable and stable end-to-end connectivity for

such systems. Instead, Serval uses 256-bit public cryptographic keys as the primary network

identifier, the so-called Serval ID (SID), and also includes a rich security model that facilitates

confidentiality, integrity and authenticity by design, and does not require a Trusted Third

Party (TTP) to operate. It also includes a store-and-forward DTN protocol (Rhizome), allowing

network operation in the absence of end-to-end connectivity.

Rhizome and Delay Tolerant Networking

Rhizome is a simple bundle protocol that principally defines data units as bundles, consisting
of an optional payload, together with a manifest that contains necessary meta-data. Manifests
have a hard size limit of 1 KB to improve efficiency, and must also contain a cryptographic

public key that is used to protect the integrity and authenticity of the manifest itself. The

manifest may also contain a cryptographic hash, indicating that it has an associated payload,

together with other meta-data, such as mime-type, Rhizome service tag, file-name, and SID of

the sender and/or recipient, as appropriate.

While the Rhizome implementation includes several transports for Rhizome, including HTTP,

packet radio and the Serval MDP protocol described below, the protocol is purposely agnostic of

the transport, to allow other transports to be added. The intention of this is that any transport

that is capable of carrying bytes of data can be used to transport Rhizome data.

As a simple state-less flooding protocol, Rhizome requires no routing table, and never requires

that two parties have an end-to-end connection for them to communicate. That is, the Rhizome

protocol is always focused on single-hop communications, with multi-hop communications

emerging as a natural consequence of bundles replicating among nodes.

Rhizome is used as the basis for the SMS-like Mesh Messaging Service (MeshMS) [Gar+12],

and file distribution, including software updates. It is also planned to implement a twitter-like

micro-blogging service using Rhizome.

MDP, MSP and Node Discovery

In addition to the Rhizome DTN protocol, Serval also includes a real-time packet-switched

protocol, the Mesh Datagram Protocol (MDP) that is generally similar to UDP/IP, but uses

SIDs instead of IP addresses, and includes encryption, authentication and integrity features

by default. The TCP-like Mesh Streaming Protocol (MSP) is layered atop MDP to provide

reliable data streaming. Various services can be implemented atop MDP and MSP, including

the VoIP-like Voice over MDP Protocol (VoMP).

MDP routing uses an OSLR- and BATMAN-inspired [JNA08], [Jac+01] ad-hoc protocol for both

node discovery and maintaining a routing table, that facilitates multi-hop routing of packets.

84

5.1 An Experimental Evaluation of Delay-Tolerant Networking with Serval

In order to reduce packet sizes, address abbreviation is used, so that only the minimum number

of bytes of a SID is required to uniquely identify a node among its direct, i.e., 1-hop neighbours.

This reduces the header size in the common case to be smaller than that used for IPv6.

5.1.4 Experimental Evaluation

The experimental setup for our in-depth evaluation of Serval, including the hard-/software en-

vironment used, the parameters measured, the network topologies chosen, and communication

scenarios, is presented below.

Simulation/Emulation Environment

To evaluate the performance in a realistic manner, we have developed a simulation/emulation

system called MiniWorld based on QEMU/kvm and Linux networking code to achieve full

system emulation. This gives us the opportunity to use the OpenWRT build chain for building

router images that include Serval. OpenWRT is also used on real world routers such as TP-Link

MR3020 or the Mesh Extenders of the Serval Project. Having a full operating system with its

own network stack running on each node gives a much better picture of real life performance

than pure protocol simulation.

All tests are performed on a 64 core AMD Opteron 6376 CPU with 256 GB RAM, simulating up

to 100 virtual nodes, each one with 512 MB RAM and 2 GB of storage space. These quite limited

values allow us to investigate how Serval performs on older smartphones like the original

Samsung Galaxy S or similar, which are common in developing countries.

Measurements

Standard Unix tools are used to measure system properties, with a measuring interval of one

second. For memory consumption, CPU and I/O usage pidstat13 is used to monitor the statistics

of the Serval process from within a node. Disk space is measured with du and df, both from

the GNU coreutils
14
. Network usage is measured on the MiniWorld bridge interfaces of the

host system using a custom Python tool
15
based on libpcap16. Insertion points in time for the

Rhizome store are derived directly from Serval’s log, while the general file count is logged

using direct servald calls.

13
http://sebastien.godard.pagesperso-orange.fr

14
http://www.gnu.org/s/coreutils/

15
https://github.com/umr-ds/serval-tests/blob/master/netmon.py

16
http://www.tcpdump.org

85

5 Smart Adaptive Disruption-tolerant Networking

Network Topologies

Several network topologies are studied, as shown in Table 5.1. The Hub topology connects 48

nodes with each other. It represents a scenario with a high number of direct neighbours all

using bandwidth, flooding each other with status information and new files, sharing the same

transport channel. Typically, the number of direct neighbours is limited by the radio range of

WiFi or Bluetooth (i.e., often less than 48). Thus, Hub is challenging for Serval and also the

radio link itself.

Name # Nodes Description

Hub 48 All nodes connected to each other

Chained 64 Pair-wise connected

Islands 100 Partitioned islands, merging over time

Table 5.1: Topologies

The Chained topology consists of a chain of 64 nodes, thus the last node is 63 hops away from

the first node. Typically, network connections over the Internet require less than 16 hops. In a

delay-tolerant mobile mesh network, more hops might be needed for messages to reach their

destination compared to static networks physically optimized for minimum hop numbers and

maximum throughput.

The Islands topology represents a partitioned network that slowly merges over time. At the

beginning, there are 100 nodes in small islands with only a few neighbours. Between these

small islands there are no links, but after a predefined time a few of them merge together,

exchanging all their information that they have collected so far. Finally, there are two big

islands where one node acts as a bridge between the two, and all accumulated data from one

island has to pass through this node to propagate to the other island.

All topologies are used in two configurations, one modeled after the common 802.11g standard

with a 54 Mbit/s limit on each link and one with no bandwidth limitations.

Scenario Tests

Based on these topologies, we designed several tests, as shown in Table 5.2.

Idle (I) simply starts Serval and waits until all nodes have found each other. This test serves to

evaluate how long the discovery phase takes in various network setups and how much traffic

Serval produces while idling.

Mass Files (MF) pre-generates a number of files and inserts them at one specific node. The goal

is to evaluate whether Serval can handle a large number of files at once. Propagation through

the network is observed to reveal problems related to high bandwidth, storage and/or CPU

usage.

86

5.1 An Experimental Evaluation of Delay-Tolerant Networking with Serval

Name Short Description

Idle I Node discovery, no actions triggered

Mass Files MF Insert bulk of file set at once

Mass Messages MM Insert bulk of messages at once

Periodic Files PF Periodic adding of files

Periodic Private Files PPF Periodic adding of private files

Periodic Messages PM Periodic sending of messages

Combined C All periodic tests together

Table 5.2: Scenario Tests

Mass Messages (MM) is designed to test the messaging subsystem of Serval by flooding the

network with text messages. A number of messages is sent at once to every single node in the

network no matter if it is currently reachable or not.

Periodic Files (PF) is designed to observe the long-term behaviour of the system. Files are

added at random points in time by every node. A real world analogy is: people taking pictures

occasionally and sharing them with everybody else.

Periodic Private Files (PPF) is a special case of PF where files are not shared with the public but

sent to a randomly chosen recipient.

Periodic Messages (PM) is designed to evaluate the Serval messaging subsystem. These messages

are also directed to a specific recipient and are not meant for the public.

Combined (C) is designed to run all periodic tests (PF, PPF, PM) at once. Similar to real life

situations, the nodes change their behaviour and there is a competition for the resources in

the network. Broadcasting files, sending files to “friends” and writing text messages all have

different requirements.

Data Sent

Text messages consist of a fixed string plus a timestamp in milliseconds when a message was

sent. Since these messages are meant to mimic real world chat, the total string length is kept

small (53 characters). According to a chat study of Battestini et al. [BSS10], text messages sent

by males had an average length of 47 characters and for females 58 characters.

Files have different file sizes representing different types of data, as shown in Table 5.3. The

Small file set contains randomly generated files ranging from 64 KB to 512 KB; large text

files, ebooks, small pictures or other data such as map tiles typically have these sizes. In the

Medium file set we have files between 1 MB and 10 MB, which is nowadays the size of pictures

taken with mobile phones or some audio recordings. Recorded video or software bundles are

represented in the Large file set and are generated in the range from 25 MB to 100 MB. Finally,

there is a Mixed file set where small, medium and large files are included.

87

5 Smart Adaptive Disruption-tolerant Networking

Name Sizes Description

Small 64K, 256K, 512K Small pictures, map data, text files

Medium 1M, 5M, 10M Camera pictures, audio recordings

Large 25M, 50M, 100M Recorded video

Mixed all of the above -

Table 5.3: Test File Sets

Test Execution

All file related tests were performed with all four file sets, every test was executed on all

topologies with limited and unlimited bandwidth resulting in a total of 114 tests. While some

tests (e.g., MF) are count-based and terminate after every node has received a specific number

of files, other tests (e.g., PPF) are time-based - always running for the same duration. We

performed 5 iterations of each test, resulting in a total of 570 test runs.

Experimental Results

In this section, various results regarding Serval’s behaviour during the experiments are pre-

sented.

Idle Behaviour

To investigate the idle behaviour of Serval, we looked at network traffic, CPU load and memory

usage after the initial discovery phase, without triggering further actions. In every scenario,

whenever Serval is started, there are peaks in the network load, in the Chained and Hub
topologies at approximately 10 to 12 Mbit/s. After this peak, Chained has a summed average

network traffic of around 0.7 Mbit/s, whereas the nodes inHub produce 6Mbit/s. This behaviour

is caused by Serval’s information distribution strategy, because it announces status information,

such as the list of files in Rhizome, periodically via broadcasts. Since there are 47 neighbours

for each node, traffic is relatively high in the Hub topology. Islands has extrema whenever

partitions merge. The traffic during peaks grows with the number of nodes.

CPU usage of the Serval process correlates with network load in our scenarios, but never gets

larger than two percent per node. Serval uses around 4 MB of memory in all scenarios.

Moreover, the discovery time of each topology is different. For Hub, the average time of a full

network discovery is approximately 5 seconds, since every node has a direct connection to all

others. In contrast, the Chained topology takes about 20 seconds, because announcements

have to be forwarded through all other nodes.

In some experiments, Serval’s address abbreviation (Sec. 5.1.3) mechanism caused conflicts

under special circumstances, depending on the keys and when different nodes announce

88

5.1 An Experimental Evaluation of Delay-Tolerant Networking with Serval

themselves for the first time. If a node already has seen another node with the same abbreviated

address, it is ignored, potentially causing a partitioning of the network. To circumvent such

effects, we modified Serval to generate unique prefixes for the desired node number in our

tests.

Hub Constraints

For Hub, a single bridge interface was used to connect all nodes. Since each node is a single hop

away from all other nodes and Serval uses broadcast packets to announce meta-data (e.g., the

files of a node), each node is flooding all neighbours with this information. Since the number

of adjacent nodes affect the CPU consumption of the respective node, in the Hub topology the

CPU usage is always higher than in the corresponding test in Chained or Islands, due to the
high number of direct neighbours.

Topology Characteristics

Fig. 5.3 showsMass Files tests with aMixed file set in different topologies. It shows how transfer

rate in Mbit/s, size of the Rhizome database and the CPU usage change over time. The transfer

rate is stacked for all links. The Rhizome size is the stacked database sizes of all nodes.

Fig. 5.3a shows a limited (802.11g) Chained topology, in which five phases are visible, caused

by the Rhizome prioritization based on file sizes. Small files are delivered first and therefore

can be distributed earlier by the following nodes. The bigger the files get, the less total network

utilization is achieved. Despite this effect, a constant stable data flow is visible, and the Rhizome

store grows constantly. The maximum CPU load correlates with network usage, since the most

active network nodes do have the highest CPU usage.

In Fig. 5.3b, a limited Hub topology is shown. Though a constant 54 Mbit/s data flow is visible,

the spikes exceeding 54 Mbit/s are measurement errors, caused by differing network backend

and traffic monitoring timers. With a constant network load caused by the file transfers, the

disk usage also grows linearly as expected in this case, meaning that the network load is not

dominated by status and management information but real content distribution. Compared to

Fig. 5.3a the average CPU usage is about 10 times higher, as explained in Sec. 5.1.4.

For Islands, CPU usage increases every time the network changes. Looking at Periodic Files
tests, the max. CPU load rises to 15% when large files are inserted, since they have to be

redistributed among the other nodes. Fig. 5.3c shows the Mixed file set in MF, which peaks at

around 7% CPU load. Since many of the files already exist on various nodes, every time new

network connections are set up, the impact on the CPU is relatively low compared to Hub. In
general, smaller files have a negligible impact on the CPU.

The Periodic File tests with small sizes do not show any unexpected behaviour in terms of CPU

consumption in Chained, the CPU peaks at about 10%. When the files are encrypted as in

PPF, the CPU utilization is slightly higher, at about 15%, due to CPU intensive cryptographic

operations.

89

5 Smart Adaptive Disruption-tolerant Networking

0 200 400 600 800 1000 1200
time (s)

0

100

200

300

400

500

tr
a
n
sf

e
r

ra
te

 (
M

b
it

/s
)

0

5

10

15

20

25

rh
iz

o
m

e
 s

iz
e
 (

G
iB

)

0

20

40

60

80

100

)
 m

a
x

 a
v
g

m
in

cp
u
 u

sa
g
e
 (

%
)

-
(

a) Chained

0 500 1000 1500 2000 2500 3000 3500
time (s)

0

20

40

60

80

100

tr
a
n
sf

e
r

ra
te

 (
M

b
it

/s
)

0

2

4

6

8

10

12

14

16

18

rh
iz

o
m

e
 s

iz
e
 (

G
iB

)

0

20

40

60

80

100

)
 m

a
x

 a
v
g

m
in

cp
u
 u

sa
g
e
 (

%
)

-
(

b) Hub

0 100 200 300 400 500 600 700
time (s)

0

500

1000

1500

tr
a
n
sf

e
r

ra
te

 (
M

b
it

/s
)

0

5

10

15

20

25

30

35

40

rh
iz

o
m

e
 s

iz
e
 (

G
iB

)

0

20

40

60

80

100

)
 m

a
x

 a
v
g

m
in

cp
u
 u

sa
g
e
 (

%
)

-
(

c) Islands

Figure 5.3: MF Mixed : Cumulated Rhizome store size, network and CPU load.

The file size influences CPU utilization, which greatly impacts the inserting node. For instance,

when sending Small files in Chained, there is no significant change of CPU utilization compared

to idling, whereas file set Large utilizes the CPU up to 35%. Bigger files lead to more time

90

5.1 An Experimental Evaluation of Delay-Tolerant Networking with Serval

consuming hashing, as it is required by the corresponding protocol. Thus, every node receiving

the file needs to compute a hash, verify and redistribute it, which also leads to a higher load.

In terms of CPU usage, Islands is a combination of Chained and Hub. CPU usage does not

exceed 50%, since the total number of neighbours per node is not as high as in Hub.

Figure 5.4: MM CPU usage over time. Left: unlimited Chained, right: unlimited Hub.

In the message based tests, the measured CPU consumption correlates with the number of

messages sent. For MM, the behaviour differs depending on the topology used. Fig. 5.4 shows

the CPU usage per node of two experiments over time. Using Chained, the inserting node peaks
at 30% CPU load compared to the receiving nodes, which consume about 15%. Using Hub,
the load of the inserting node remains the same. In contrast, the receiving nodes constantly

consume about 65% CPU. Hub suffers from the broadcast overhead (Section 5.1.4), but this

does not fully explain the high load, as the sending node is not affected. Further investigating

this behaviour, we tracked it back to recurring hashing and encryption in Rhizome Journal

syncing, which is the core of MeshMS messaging.

PM results differ from MM. For Chained, the CPU utilization is relatively low at about 15%

maximum. This correlates with the CPU load of the non-inserting nodes inMM. Since they are

added periodically, the CPU overhead is negligible here. Hub behaves differently than in the

file based tests orMM: The PF tests show that in every topology the more files are injected

in the network, the more CPU is needed to handle the broadcast packets. Messages are not

announced further after reaching their destination and being acknowledged by the recipient.

The obvious consequence should be that the CPU usage decreases. However, as indicated by

Fig. 5.5, once the CPU peaks at about 25%, it does not settle any more, but increases even

further, although the network load decreases to the idle level and the Rhizome database size

is at its maximum, which indicates that all messages have arrived. This behaviour cannot be

transferred to Islands, where the inserting nodes peak at about 40% and all other nodes do not

exceed 15%.

For C tests, the general CPU usage is similar to other file based tests. The only difference is the

fact that in Chained and Hub the CPU usage increases by 5% after about 500 seconds and also

correlates with the network load, similar to the behaviour depicted in Fig. 5.5. This problem

emerges when sending messages over a longer time period. Since Islands is not in the final

91

5 Smart Adaptive Disruption-tolerant Networking

0 100 200 300 400 500 600 700 800 900
time (s)

0

5

10

15

20

25
tr

a
n
sf

e
r

ra
te

 (
M

b
it

/s
)

0

2

4

6

8

10

12

14

16

rh
iz

o
m

e
 s

iz
e
 (

M
iB

)

0

20

40

60

80

100

)
 m

a
x

 a
v
g

m
in

cp
u
 u

sa
g
e
 (

%
)

-
(

Figure 5.5: Hub limited PM: Rhizome store size, network & CPU

state at the beginning of the test in terms of the links between the nodes, this result can not

be observed in this particular topology.

Network Performance

One goal was to test to what extent Serval is able to use available bandwidth. Chained was

created to assess this.

The cumulative transfer rate using Rhizome in this topology reached 500 Mbit/s to 2 Gbit/s,

depending on the file sets, with Large being the fastest. That is, up to 2 Gbit/s of traffic was

being carried over the set of hops in the chain, with each seeing an average utilization of

32 Mbit/s. Tests that transfer large files over an unlimited network show that Serval is able to

use even more bandwidth, since the highest measured transmission speed from one node to

another can be up to 160 Mbit/s.

Using Chained, the hop-to-hop transmission time can be modeled, since node n is able to

receive a file just after node n− 1 received it. Fig. 5.6 shows the hop-to-hop transmission times

of theMedium file set. The five files of each size are grouped into one box plot, while the colors

present five different runs of each experiment. The median transmission times for 1, 5 and 10

MB files are 0.54, 1.06 and 1.85 seconds, and only 0.27 sec for 64 KB files. From these values, a

simple correlation for the transmission time can be derived: T(sizeMB) = 0.16 · size + 0.26,
which also holds for the Large set. The formula indicates a net transmission rate of around 31

Mbit/s, with a 0.26 sec delay.

92

5.1 An Experimental Evaluation of Delay-Tolerant Networking with Serval

1
m

1
m

1
m

1
m

1
m

5
m

5
m

5
m

5
m

5
m

1
0

m

1
0

m

1
0

m

1
0

m

1
0

m

filesize

0.1

1

10

100

ti
m

e
 (

s)

Figure 5.6: Chained limitedMedium file set: File-size-grouped hop-to-hop delivery periods of

five runs.

The average speeds are lower, because files are exchanged node-by-node, and can only be

spread to node n + 1 after reaching node n, resulting in an effective end-to-end bandwidth, for

a given bundle, inversely proportional to the number of hops. This compares favourably with

end-to-end ad-hoc wireless routing protocols, where the effective end-to-end bandwidth drops

by approximately half for each additional hop.

Briefly considering the different topologies, the network utilization in Islands for file based
tests is generally about the same as in Chained, since each node has only a few neighbours, in

contrast to Hub, which is always able to saturate all links due to the high degree of connection

among nodes.

Messages in Serval are effectively transported as small files, with a payload size of 53 bytes

in both PM andMM cases. The network load shows a behaviour similar to small files in the

PF test, peaking at up to 40 Mbit/s at all topologies and regardless if the network is limited or

not.

The network load for C tests in all topologies is similar to the file based tests, independent of

bandwidth limitations. The only difference is the increase of the network load after about 500s

on Chained and Hub, as shown in Section 5.1.4.

In Hub, small files take between 1 and 4 min to arrive on the last node in the limited network

links. This increases linearly, up to 20 min, with increasing file size. If the network is unlimited,

transmission time reduces to between 18 sec and 9 min, depending on the file size. One

difference between Hub and Chained is the runtime. Small files are transmitted faster in Hub,
whereas Large files are faster in Chained. The time overhead for file announcements is relatively

higher for Small. Even with a lower total bandwidth (Hub: 54 Mbit/s for 48 nodes vs. Chained :
54 Mbit/s pairwise), Hub can achieve faster transmission rates. The limitation of network speed

does not influence this behaviour, only the overall transmission time increases.

The transfer times of messages differ from topology to topology. While it takes about 350 sec

in Chained until all messages arrive at their destinations, it can take up to 900 sec in Hub. This
again shows that the high number of 1-hop neighbours in Hub is challenging for Serval. The

93

5 Smart Adaptive Disruption-tolerant Networking

transmission time for messages in the C tests depends highly on the used file set, rather than

on the topology and network speed. The reason is that the network is saturated with big files,

which leads to overall higher transmission times for messages.

Energy Consumption

The Idle test in Section 5.1.4 showed network peaks caused by Rhizome status information

announcements. Therefore, the energy consumption of the announcements is evaluated: Two

devices send announcements in different intervals. Fig. 5.7 shows the energy consumption

for peer A using different announcement intervals at peer A and peer B. With a 0.5 sec or 1

sec interval, the consumed energy is 9% higher than in idle state. With a 2 sec interval, the

consumed energy is only 3% higher than in idle state. With a higher interval of 4 sec or 8 sec,

only negligible decreases in energy can be achieved.

No Peer 0.5 1 2 4 8
Announcement Interval Peer B (s)

1400

1450

1500

1550

1600

1650

1700

1750

E
n
e
rg

y
 C

o
n
su

m
p
ti

o
n
 P

e
e
r

A
 (

W
s) Announcement Interval Peer A (s)

0.5 1 2 4 8

Figure 5.7: Energy consumption of announcement intervals

Furthermore, the power consumption duringMM andMF tests were evaluated. Two peers were

connected via an 802.11n WiFi Access Point. Peer A inserts files and messages into Rhizome in

the same manner as MM and MF tests. The power consumption of peer B, a Raspberry Pi 3, is

then measured with the Odroid Smart Power measurement device, an external power meter.

The aim of these experiments is to measure the energy overhead for running Serval on a device,

which allows conclusions about the power drain of Serval on battery-powered devices.

Fig. 5.8 shows the power consumption during different Rhizome file set insertions similar to

MF. The file sizes are increased during the phases f1-f4. During f1, the file sizes are smaller than

1 MB, resulting in a negligible additional power consumption. The bigger the transmitted files

are, the more power is consumed. The comparison between receiving files and sending files

shows an unexpected behaviour: In all phases f1-f4, sending files is less expensive compared to

receiving files, on the average between 0.05 and 0.1 W (3-6%). This counterintuitive result is

caused by additional CPU consumption of the Rhizome checksum calculation during reception.

Compared to a 1.53 W mean idle value of peer B, the power overhead introduced by Serval is

between 0.01 and 0.13 W (1-8%) during phases f1-f4.

In another experiment, we measured the power consumption during different message inser-

tions similar to the Mass Messages test. The results show a power consumption peak between

94

5.1 An Experimental Evaluation of Delay-Tolerant Networking with Serval

1.81 and 1.91 W during a short period of reception, followed by a phase of negligible additional

power consumption. During the reception of 100 messages, a mean value of 1.69 W (10%)

additional power consumption is measured.

A better energy efficiency during message transmission could be achieved by using Bluetooth.

It consumes a significant amount of energy during device discovery, but has a lower power

consumption during data transmission than WiFi. Due to the low energy efficiency (joule

per bit) of Bluetooth compared to WiFi, it consumes significantly more energy for large data

transmissions. During an experiment, we measured a 32 times better energy efficiency of WiFi

compared to Bluetooth for files between 512 KB and 16 MB.

Figure 5.8: Power consumption during different Rhizome file set insertions (f1-f4) similar to

the Mass Messages test.

5.1.5 Summary

In this section, an in-depth experimental evaluation of the delay-tolerant aspects of Serval

for various network setups and usage patterns, was presented. The results show satisfactory

performance of Serval when deployed in partitioned scenarios and extreme examples of network

topologies. Furthermore, we have analyzed Serval’s energy consumption, having the limited

battery capacity of mobile devices in mind.

In particular, our experiments indicate that there is a sweet-spot for the trade-off between

up-to-dateness and energy consumption regarding announcement intervals. Furthermore,

Serval can handle a realistic number of files over a longer time period. In the Chained topology,

neither the CPU load nor the used network bandwidth leads to out of service situations. All

tests with the Hub topology show that in a highly used network the announcements consume a

considerable portion of the available bandwidth. In emergency situations or in long-term setups

this could have a negative effect depending on the number of people in direct communication

range. The Combined tests in our Islands topology demonstrate that Serval works flawlessly in

adapting to heterogenous environments where users have different requirements at the same

time and the topology changes over time.

95

5 Smart Adaptive Disruption-tolerant Networking

5.2 Opportunistic Named Functions in Disruption-tolerant
Emergency Networks

5.2.1 Introduction

Facilities like power stations, water reservoirs, and telecommunication centers are part of the

critical infrastructures that are vital for modern societies. During and in the aftermath of a

disaster or an emergency event, such as an earthquake or a terrorist attack, it is essential to

maintain these infrastructures and to restore and to repair capacities that have been damaged.

Telephone lines, cellular base stations and parts of the Internet backbone might be destroyed,

disrupted or overloaded due to network congestion. However, information about the current

situation is crucial for affected people and rescue teams. Thus, it is important to re-establish

basic means of communication during a disaster despite fragmented IP networks and totally

or temporarily disrupted network links.

In the past, mobile ad-hoc networks (MANETs) and disruption-tolerant networks (DTNs) were

studied as approaches to re-establish basic communication services during disasters. More

recently, information-centric network (ICN) protocols for disaster scenarios, such as ICN-

MANETs [OLG10] and ICN-DTNs [Mon+14; Che+16a; Ana+16] were proposed. Apart from

important challenges such as authentication and access control, ICN protocols address the

following aspects in a disaster scenario: (i) since end-to-end connectivity is not guaranteed and

location-based as well as fixed addresses may not work, name resolution at the network layer

(instead of at the application-layer) can be used, which also supports anchor-less mobility, (ii)

since caching, traffic engineering and prioritization based on the name of the desired content

is an inherent concept of ICNs, network nodes can make a trade-off between, for example,

bandwidth and storage based on the relevance of the content for a consumer. Furthermore,

Named Function Networking (NFN) [TS14] as a generalization of Named Data Networking

(NDN) [Jac+09] offers great potential for providing support in disaster scenarios. In NFN, names

do not only refer to data, but also to functions and computational tasks, and the network’s

role is to resolve names to computations.

In this section, Opportunistic Named Functions (ONFs), a novel approach to extend the NFN

paradigm for DTNs in disaster scenarios, are presented. ONFs are opportunistic in the sense that
(i) named functions are applied based on locally optimal decisions using criteria such as network

congestion avoidance, battery lifetime and device capabilities, and (ii) named functions are

applied after the receipt of data transmitted during opportunistic communication. In particular,

the section makes the following contributions: (1) We present a novel approach for ICN-DTNs in

which ONFs are used for data preprocessing, analysis, integration and transfer within wireless

networks in disaster scenarios where in-network processing can provide essential information

for situation analysis. (2) We introduce a novel implementation of ONFs within Serval, a well

evaluated open-source DTN project for disaster situations [Bau+16]. (3) We propose novel

methods for image (pre-)processing and face detection in disaster scenarios to support the

search for missing persons. We further present experimental evaluations with respect to battery

consumption and runtime of these methods. (4) We present simulations for using ONFs in

basic network topologies and a disaster scenario.

96

5.2 Opportunistic Named Functions in Disruption-tolerant Emergency Networks

Parts of this section have been published in Pablo Graubner, Patrick Lampe, Jonas Höchst,

Lars Baumgärtner, Mira Mezini, and Bernd Freisleben. “Opportunistic Named Functions in

Disruption-tolerant Emergency Networks.” in: ACM International Conference on Computing
Frontiers 2018 (ACM CF 2018). Ischia, Italy: ACM, May 2018. doi: 10.1145/3203217.3203234
.

5.2.2 Related Work

ICN-DTNs were used for message-based communication in disaster scenario notifications

[Che+16a; Kim+15; Psa+14]. Here, naming schemes were utilized to specify a group of receivers

(e.g., the police) and to prioritize the importance of certain messages (e.g., a SOS message is

more important than a chat message). Within our ONF approach, roles and multiple receivers

can also be expressed with the help of hierarchical names, i.e., specific function executions are

only delivered to certain roles.

Monticelli et al. [Mon+14] assume that during a disaster, the network in densely populated

areas is fragmented into smaller community networks. The authors leverage vehicles or mobile

phone users wandering around to exchange ICN packets between isolated network fragments.

In contrast to such mobile phone-only scenarios, radio technologies (e.g., Bluetooth, LoRaWAN,

WiFi, TETRA digital radio or satellite links) introduce more complex topologies of heterogenous

connections (between multiple classes of devices), which can be utilized by our ONF proposal

with respect to transferring a smaller amount of data via high-range links with at a low data

rate.

The typical approach to perform face detection on mobile devices is to offload images to a

server and run a face detection algorithm [Soy+12]. Although generator-powered servers might

also be available in a disaster scenario, rescue teams and affected people cannot rely on it.

In the domain of DTNs for disaster communication, preprocessing and delivery of medical

images for healthcare workers were applied by Ashar et al. [Ash+16] and Roy et al. [Roy+16].

In contrast to their application-specific implementation, ONFs can be leveraged to allow more

applications running in parallel, and possibly benefit from each other by sharing a common set

of preprocessed data.

Named Function Networking (NFN) was proposed by Tschudin et al. [TS14]. It was realized

based on Content-Centric Networking (CCN) and used, e.g., as a method for realizing Content

Delivery Networks (CDNs). In these approaches, partial or complete function execution is cou-

pled with the ICN forwardingmechanism. In contrast, in ONF networks, routing and forwarding

are decoupled from function execution. This allows functions to be applied opportunistically,

hence we rely on opportunistic named functions (ONFs).

Melvix et al. [JLP15] proposed a context- and tolerance-based forwarding strategy for IoT and

5G scenarios. Tolerances are used to tolerate longer delays, precomputed or approximate data

instead of real-time sensor values. NFN is optionally leveraged to perform arithmetic functions

on the data received from sensors. This is similar to our proposal of alternative names, but in

contrast to our approach, it is specific to sensor data processing and aggregation.

Nguyen et al. [Ngu+17] presented a directional interest propagation mechanism for crowd

sensing in NDNs. This approach distributes interest packets by only re-broadcasting them if

97

https://doi.org/10.1145/3203217.3203234
https://doi.org/10.1145/3203217.3203234

5 Smart Adaptive Disruption-tolerant Networking

the receiver is nearer to the area of interest then the last sender. Traveling interest packets are

minimized and the network load is reduced. In contrast, we distribute the interest packets to

all participants and reduce the data size of the results by applying our ONFs.

5.2.3 Opportunistic Named Functions

In Named Function Networks (NFNs) [TS13; TS14; Sif+14], the network orchestrates function

execution and caching, in an intelligent manner. For resource-constrained ICN-DTNs, the

collaboration between nodes to efficiently execute functions and cache intermediate results

is also highly desirable, but opportunistic communication introduces several problems: (i)

communication is driven by content consumers and by intermittent opportunities, (ii) routing

paths, computing nodes, and caches might be (temporarily) unavailable, (iii) global information

about the network, i.e., its topology, statistics about different link qualities, and other infor-

mation relevant for performing an orchestration is incomplete or sparse in the best case and

unavailable in the worst case, (iv) mobile devices and sensors are resource-constrained and

have limited battery capacity, and (v) these devices do not have a common architecture and

might not be capable of performing complex functions.

Caller Network

propagates interest

Interest
g=f(data)

Process
g=f(data)

g
data

Figure 5.9: Basic ONF concept

To address these problems, we propose opportunistic named functions (ONFs). Figure 5.9 shows

the basic idea of our approach. A function f (data) is defined to be processed in the network.

The node specifies a request to the network, similar to an asynchronous function call, where

the node is the caller and the network is the callee. Each data producer in the network can

either (i) perform the requested function on the original data or (ii) delegate the execution of

the function to other nodes. In the best case, the request is processed completely within the

network and the results are returned to the callee. In the worst case, the network delegates

function execution on the produced data back to the callee, where f (data) is then applied.

Figure 5.10 illustrates in-network processing with ONFs in an ICN-DTN. Node A (upper left)

stores cached content /data, which can serve as input for two kinds of function: g(/data)
and f(g(/data)). In our approach, functions applied on existing content are specified using

a naming scheme, where g(/data) is represented by /data/g. Furthermore, nodes signal

their interest in the result of a function by declaring interest packets. In Figure 5.10, green

points (1-3) describe different points in time. At point (1), node B is in the range of node A that

opportunistically transmits the cached content /data to node B. Node B, on the other hand, is

aware of the two interests /data/g and /data/g/f, respectively, and after the reception of the

data, node B decides how to process the content based on the known interests. In our example,

the remaining battery of the node is low, so only one of two possible functions is applied and

the result is stored in its cache. Then, node B moves to point (2), where it is in the range of

98

5.2 Opportunistic Named Functions in Disruption-tolerant Emergency Networks

A

…

Cache
/data

Process
/data/g

Process
/data/g/f

…

1

2
3

/data/g
/data/g

/data/g/f

C

B

C

B

Interest
/data/g/f

Interest
/data/g/f

Figure 5.10: Example of in-network processing of named content with ONFs

more nodes, including node C. Since DTNs are based on the store-and-forward principle, all

nodes in range receive the cached content. Since node C has a full battery, C decides to process

/data/g/f and store the result in its cache. When node C arrives at point (3), the results of

the function is transmitted to another node. To summarize, the data traverses the network

from the content producer to the interested consumer, while it is processed on intermediate

nodes.

ONF-
Node

ONF-enabled Node

Decision

Process

Local
Cache

Cache
/data

Received
Interest
Registry

uses storesb)

a)

Interest
/data/f

Figure 5.11: Functionality of ONFs

Figure 5.11 shows the architecture of our ONF approach. First, a content consumer specifies

his/her interest in content. This is expressed as an interest packet transmitted to an ONF-

enabled next hop and then propagated opportunistically in the ICN-DTN network. An interest

99

5 Smart Adaptive Disruption-tolerant Networking

is specified as a human-readable hierarchical name that may refer to both content or functions.

During interest propagation, at each hop, the received interests are registered locally. When

new content is received from another node, the registered interests in specific content are used

to execute opportunistic named functions. ONFs are applied based on locally optimal criteria

as well as the priority of the registered interest. Afterwards, the results are cached locally. If a

node has an intermittent connection to one or more other nodes, it sends the cached content

in the order of its priority to the other nodes. This is explained in more detail below.

Interest Propagation and Registration

In existing ICN approaches (e.g., CCNx), a Forwarding Information Base (FIB) at each hop

specifies the path on which an interest packet will be forwarded. Data packets traverse the

network on the backroute of an received interest packet, stored in the Pending Interest Tables

(PITs) at each hop. In ICN-DTN, the propagation of a content request is not coupled to forward-

ing/routing mechanisms. Decoupling function execution and routing allows us to use different

DTN routing algorithms. In our approach, interest and data packets travel on independent

paths through the network. We use a bundle protocol on top of epidemic routing, detailed in

Section 5.2.5.

Due to the loose coupling between content request resolution and routing/forwarding, a

received interest might be outdated or the content might have already been delivered by

another node. Received interests are stored in a Received Interest Registry (RIR). When a

content consumer is no longer interested in specific content, a negative interest packet is

sent by the client to the next ONF-enabled hop to propagate through the network similar

to an interest packet. The RIR is also used for basic bookkeeping purposes. It stores the last

received interest or negative interest per user, and decides whether a received interest is newer

than a stored interest. Therefore, an interest/negative interest packet needs a globally unique

identification for the user and a sequence number.

Hierarchical Naming

Interests in ONFs are specified as human-readable hierarchical names that may refer to both

content or functions, such as /camera/ persons/injured. In this example, an operation is

specified on the topic /camera, which represents all camera images taken from all participants.

When a picture is taken with a mobile phone’s camera, a hook in the camera software library

throws an event received by the ONF library. The ONF library then calls the name resolution

engine described in Section 5.2.3, which is then responsible for performing the operation

persons/injured on the camera image. Since ICN-DTNs do not use a global registry for

specific files/filenames, our design of the hierarchical naming scheme does not allow us to

request a specific file like /camera/image_001.jpg. Instead of specifying a file request to the

network, the content consumer specifies a topic and receives the corresponding content.

In addition to topics and topologies, the hierarchical naming scheme is used to express a pipeline
of functions. For example, a content consumer can express his/her interest in all pictures taken

at a specific location in the form of a filter on GPS latitude and longitude and a filter on all

images containing a person /camera/GPS_coordinates_50_8/persons. Here, latitude and

100

5.2 Opportunistic Named Functions in Disruption-tolerant Emergency Networks

longitude are parameters for the filter function GPS_coordinates, encoded in the hierarchical

name. When a content producer receives interests, then the node, based on the local context

and its capabilities, decides which kind of and how many functions it applies on the produced

content. It might store pictures under the name /camera and deliver them opportunistically

to other nodes, where the GPS function is applied with the specified parameters. If the GPS

filter is applied, the content is named /camera/GPS_coordinates_50_8 afterwards. It either

continues to detect persons, or it transmits the resulting image to another node able to perform

the detection.

In case of multiple interests specified by one or more content consumers, the hierarchi-

cal naming is used to resolve common tasks that might be useful to serve as preliminary

results for multiple interests at once. For example, in a disaster scenario, medical work-

ers might be interested in all pictures taken from injured persons, specified by interest

/camera/persons/injured. Rescue teams might be interested in crowds of people, spec-

ified by /camera/persons/crowd, to organize supply or transportation for them. In these

cases, the common interest in /camera/persons might be used for additional savings: either

saving CPU cycles by forwarding the content of /camera/persons without detecting injuries

or a crowd to both nodes, or saving transmission time by forwarding only pictures containing

injuries or a crowd.

Alternative Names

ONFs rely on hierarchical and alternative names. While hierarchical names can be interpreted

as subsequent executions (similar to an AND operator in several computer languages), alternative

names introduce alternative function executions (similar to an XOR operator in several computer

languages). This is especially interesting in scenarios where a slight reduction of the quality of

results might be acceptable. For example, if a content consumer is interested in all images of

fires specified by /camera/fire, it might not be possible to deliver a picture taken with a 16

megapixel camera to the content consumer, since interest- and packet-routes in an ICN-DTN

are inherently non-deterministic and without guarantees. Instead, it is more useful to specify

an alternative to that interest, with a higher possibility of a successful network traversal. For

example, a user can specify the alternative /camera/fire or /camera/wavelet_filter,
where wavelet transformations can be used for fire detection [Tör+06] that can run efficiently

on digital signal processors, in contrast to a memory-intensive visual concept detection. In this

example, alternative names are used to prioritize the interests with an XOR operator: if it is

not possible to deliver results by visual concept detection, the network should use a wavelet

transformation as a fallback. This concept is not limited to a single alternative. If multiple

alternatives are specified, they are interpreted as an (ordered) cascade of fallbacks.

Name Resolution and Function Execution

Algorithm 1 is used to resolve names in ONFs. First, when new content is received, the device’s

context is used to get a list of functions that are available and applicable based on a device’s

context. Then, a loop computes the next functions to be applied on the content. This is used to

allow pipelined execution of functions. Inside the loop, the resolvable interests are computed

101

5 Smart Adaptive Disruption-tolerant Networking

Algorithm 1: Name Resolution

Input: name: received content name, F: set of available functions, I: registered interests

1 Function parseFunction(interests, f unctions)
2 for i in interests do
3 i.function← longestPrefixMatch(f unctions);

4 return interests.functions;

5 Function getPriorityMatches(parsedFunctions, f unctions)
6 for f in parsedFunctions do
7 matches← priority of f in f unctions;

8 return matches;

9 Function getBestMatch(interests, matches)
10 result = ∅;

11 sorted_matches = sort matches: m1 > m2 if m1 has more interests than m2;

12 for m in sorted sorted_matches do
13 result← result ∪ m. f unction;
14 if all interests applied then
15 break;

16 return result;

17 F′ ← get applicable functions from F;
18 for not F′.isEmpty() do
19 I′ ← get resolvable interests for name in I;
20 f unctions← parseFunction(I′, F′);
21 matches← getPriorityMatches(f unctions, F’);
22 M← getBestMatch(matches);
23 name← apply each function in M on name;
24 F′ ← get applicable functions from F;

based on their naming scheme. For example, an interest in /camera/fire is applicable to the

name /camera. Then, the corresponding functions are parsed using the longest prefix-match

method that allows unambiguous name resolution.

The most important part is to decide which functions should be applied. This can be seen

in the two functions getPriorityMatches and getBestMatch. The latter returns the func-
tions that should be applied at this stage of the pipeline. For example, if both interests

/camera/persons/injured and/camera/persons/crowd are specified, both functions are

applied to the content with the name /camera. If there is an interest in /camera, the identity
function is returned. More importantly, the function getPriorityMatches computes a total

order of all functions, which is used to decide which functions should be applied. Therefore,

each alternative name in an interest is handled in the order of its occurrence; the first name

is handled with priority 1, the second with priority 2 etc. Then, the number of interests that

can be served by a function according to its priority is used to compare each function, i.e., a

function that serves two interests with priority 1 is preferred to another function that serves

102

5.2 Opportunistic Named Functions in Disruption-tolerant Emergency Networks

two interests with a lower priority. After the functions are executed, the loop is restarted at the

next stage.

5.2.4 Opportunistic Named Functions in Disaster Scenarios

In a disaster scenario, the search for missing persons is a primary task for rescue teams and

highly important for affected people. In such situations, sensors, battery-powered mobile

devices, and generator-powered routers remaining from the communication infrastructure can

be used to establish a resilient disaster-response communication system. The inherent tradeoffs

between either spending CPU cycles and battery power for ONF function execution, or spending

battery power and air time for data transmissions, is illustrated by the following example. A

content consumer is interested in all detected faces in all pictures taken by the mobile devices’

cameras. Since state-of-the-art mobile phone cameras usually provide a resolution of 8–16

megapixels, simply transferring all raw images from the content producer to the consumer

has the risk of producing network congestion. In contrast, ONFs can be used to (i) delegate

function execution, (ii) apply multiple stages of image preprocessing that can be deployed even

on small devices and can be executed in a pipeline, and (iii) prioritize processed content based

on the importance for a content consumer.

In our scenario, ONFs are used to support the search for missing people in image files that

are distributed via an ICN-DTN. Figure 5.12 illustrates the processing of ONFs in an ICN-DTN

within this disaster scenario. The first node at the top of the picture is a command center or the

head of a rescue team that relies on information about missing persons. This is reflected by the

specified interests in content, which in this case are also formulated with domain knowledge

about the applicable filters, scalings, and lossy compressions. In a real-world scenario, this

process could be transparently handled by an additional application provided to rescue teams.

In our scenario, we have built a small software component that relies on detected faces, either

in their original color or transformed to a grayscale image, and low-resolution black/white

images. The component visualizes the information by showing detected faces in high resolution,

with a low-resolution black/white-underlay for situation analysis. It is not sufficient to transfer

the low-resolution part only, since it is not possible to perform face detection algorithms on

black/white images with accurate results [Lam+17].

In Figure 5.12, we assume that all nodes already received the interest packets sent by the

consumer. The producer at the bottom of the figure is amicrocontroller-based camera that is able

to make basic image transformations, such as grayscaling and shrinking a black/white version

of an image. In our case, the resulting images are transferred to two different nodes: an ARM-

based smartphone that can perform a face detection algorithm and a microcontroller-based

Low PowerWide Area Network (LPWAN) device. Due to its low bandwidth, the microcontroller-

based LPWAN device cannot transfer a 2.4 MB image with 25 kbps in reasonable time. On the

other hand, the mobile phone can perform a face detection on the grayscaled image. It extracts

3 faces (0.1 MB, 0.23 MB and 0.12 MB) that are then transmitted via 802.11 WiFi. At the content

consumer, the scaled black/white image and each of the three detected faces arrive separately.

The software component on top of the ICN-DTN is notified at each arrival and provides an

image to the user that is successively completed with a low-resolution black/white image in the

background and grayscale faces in the foreground, which can be used for situation-awareness.

103

5 Smart Adaptive Disruption-tolerant Networking

To summarize, this scenario illustrates the operation of ONFs in ICN-DTNs (i) without end-

to-end connectivity (ii) with unpredictable routes, and (iii) with heterogenous devices on the

route through the network.

5.2.5 Implementation

In our disaster scenario, ONFs are used to support the search for missing persons through

image files that are distributed via an ICN-DTN. Therefore, ONFs have been integrated into

the Serval Project [Gar+13a; Gar+13b; Gar+12] that is centered around a suite of protocols

designed to allow infrastructure-independent communication based on DTN.

The implementation of the ONF functionality in Serval, as well as the applied functions, are

described below. Image transformation and face detection functions are introduced that can

be used to trade between execution time, resource consumption and quality of results.

Serval-based ONFs

The Serval Project provides software for mobile devices to form a secure, self-organizing and

fully distributed mesh network. Serval’s store-and-forward DTN protocol (Rhizome) allows

network operation in the absence of end-to-end connectivity and can run on top of a transport-

agnostic Mesh Datagram Protocol (MDP). MDP can run both (i) on top of the IP protocol

stack or (ii) on bare link layer protocols like packet radio. Serval Rhizome implements a simple

stateless flooding protocol running in user space. Since no guarantees for meeting other nodes

are given, epidemic flooding of content to neighbors is used, providing fault tolerance and

reliability at the expense of consuming resources. Data transmission is based on broadcast

(announcements) and unicast (packet transfer), and the data can be transferred un- or encrypted

and/or signed. These user space network layer mechanisms run with acceptable performance,

both on common MIPS-processor based access point/router hardware and on low-end ARM

smartphones [Gar+13a].

To provide basic ICN capabilities, we have designed an interface for specifying interests.

Interests are specified in the form /camera/face_detection. Similar to other ICN-DTN

instances [Mon+14], our implementation distinguishes between interest packets and content

packets. They are realized with interest and content bundles in Serval Rhizome, which are

transferred to other nodes without internal fragmentation or scattering. Furthermore, we have

integrated generic hooks for handling incoming and outgoing payload by independent user

space programs into Serval, called Serval Hooks
17
. These hooks allow user space applications

to control (i) announcements of existing data to other nodes to forward interest and content

bundles to other nodes at the sender, (ii) filtering of bundles at the receiver based on bundle

metadata, and (iii) processing of received bundles. Consuming and producing bundles is handled

by the same mechanism, i.e., a node can act as a content producer, an ONF node, or a content

consumer at the same time.

An ONF-enabled Serval node maintains the RIR, a name resolution component, and a function

execution environment. Functions are implemented as executable binaries that reside either

17
source code available at https://github.com/umr-ds/serval-dna/tree/nicer-hooks

104

https://github.com/umr-ds/serval-dna/tree/nicer-hooks

5.2 Opportunistic Named Functions in Disruption-tolerant Emergency Networks

Content Producer (Node 1)

/camera/gray /camera/scale/black_white

LPWAN node (Node 2)

/camera/scale/black_white

Mobile Phone (Node 3)

/camera/gray/face_detection

Content Consumer (Node 0)

Node 4

0.13 MB2.4 MB

0.12 MB0.23 MB0.1 MB

…

0.45 MB

/camera/
face_detection

/camera/scale/
black_white

Interests:
/camera/gray/
face_detection

or

0.13 MB

LPWAN

WiFi

High range,
low bandwidth

Medium range,
high bandwidth

WiFi

/camera

Figure 5.12: Processing ONFs in a disaster scenario

105

5 Smart Adaptive Disruption-tolerant Networking

(i) in a designated folder inside the local file system, or (ii) as data bundles within the DTN

network, allowing the distribution of (signed and encrypted) binaries via the network. When a

new content bundle arrives at an ONF-enabled node, the name resolution algorithm decides on

the basis of the content’s name whether it is cached as it is or a function is applied (or both).

In many scenarios, a pre-installed set of functions is available, such as official mobile warning

apps distributed by governments and installed by mobile users.

Implemented ONFs

The implemented ONFs for our scenario are described below.

Image (Pre-)Processing

For basic image preprocessing purposes, we use the OpenCV
18

library that is available for

multiple hardware architectures and software platforms. For black/white conversion of images,

we use a basic thresholding operation to filter the intensity of each pixel above a threshold and

assign to it a black value or a white value, respectively. Thus, we convert the original image

to a 1-bit black-and-white image. To achieve grayscaling, we use an 8-bit grayscale operation

integrated into OpenCV. Image scaling is performed by a resampling method using pixel area

relations, which reduces the effect of moiré patterns in contrast to interpolation methods.

Smart Image Fragmentation

Another approach to trade result quality for transmission time is smart image fragmentation. It

consists of two independent steps: (i) to fragment an image, where each fragment represents a

region of the original image, and (ii) to prioritize and filter the fragments statistically, according

to their relevance to detect a face or a visual concept.

This approach is related to the field of detection proposals [Hos+16] for machine learning

approaches and makes use of the property that bounding boxes of interest are usually found

within a specific region, and most importantly close to image centers [MV13]. Figure 5.13

illustrates this property by showing regions of high interest for relevant topics with red color and

a) Fire b) Helmet c) Gas Mask d) Building

Figure 5.13: Regions of interest in photos for relevant topics

18
http://opencv.org

106

5.2 Opportunistic Named Functions in Disruption-tolerant Emergency Networks

regions of low interest with blue color in a heatmap. Therefore, heatmaps were generated from

bounding boxes provided by the ImageNet
19
image library that organizes images according

to the WordNet
20

hierarchy, i.e., according to meaningful concepts, described by multiple

words or word phrases. For each topic, a matrix with 256 × 256 values was generated. These

matrices represent the number of overlaps between the bounding boxes for a specific region of

a normalized image. All bounding boxes for all detected objects of a topic were retrieved from

the database and were scaled according to a normalized image size.

When image fragments are filtered according to these matrices, their relevance is determined

statistically and not by inspecting a specific image. Assuming that fragmentation is performed

during the compression phase and the matrices representing the statistical relevance are stored

in memory, then this image fragmentation technique has O(1) runtime for a single memory

lookup. Thus, smart image fragmentation can be applied on devices with small amounts of

memory (KBs instead of MBs) and constrained computation capabilities. It possibly sacrifices

some result quality for a reduced amount of data that needs to be transmitted.

Face Detection

For face detection, we apply a two-stage approach. In the first stage, the Viola/Jones algorithm

[VJ04] implemented in OpenCV is used, since it is a common out-of-the-box solution for face

detection. It is comparatively fast [Che+15] and has a low false negative rate. Thus, as many

faces as possible are detected quickly. However, it has a relatively high false positive rate that

is acceptable if the algorithm is used as a pre-filter. In the second stage, dlib21 is used to verify

the results. It is slower than the Viola/Jones algorithm, but in the second stage it operates only

on small subimages that can be processed much faster. Additonally, dlib has a low false positive

rate and a higher precision [Che+15]. Consequently, dlib can act as a validator for the results

produced by the Viola/Jones algorithm. All parameters except the face sizes are independent of

the used face detection algorithms. Thus, the algorithms can be replaced by alternatives, still

benefiting from the rest of our optimizations.

5.2.6 Experimental Evaluation

We present an experimental evaluation of ONFs below. In Section 5.2.6, image (pre-)processing,

smart image fragmentation, and face detection are evaluated in terms of runtime and power

consumption. In Section 5.2.6, these experimental results are used to simulate ONFs in different

basic topologies as well as in a disaster scenario.

ONF Measurements

To evaluate image (pre-)processing, smart image fragmentation, and face detection as examples

of ONFs, we performed measurements on a Raspberry Pi 3, model B (RPi). This device is used as

19
http://image-net.org

20
http://wordnet.princeton.edu/

21
http://dlib.net

107

5 Smart Adaptive Disruption-tolerant Networking

a reference for several devices with ARM-based CPUs, such as mobile phones. As a test image

set, we used an existing image set that only contains images related to emergency scenarios

[Lam+17]. It consists of 1,482 files, with a total size of 2.7 GB. It includes the following scenario

specific search terms on an Internet image search engine: Haiti earthquake, earthquake faces,
earthquake people, disaster people, disaster faces. Power consumption was measured using the

ODROID Smart Power meter with a sampling frequency of 5 Hz.

The experimental results show that black/white transformations of all images consume a total

of 0.35 Wh (328 seconds at an average of 3.8 W), grayscaling consumes 0.31 Wh (296 sec at

avg. 3.86 W), image resizing consumes 1.01 Wh (964 sec at avg. 3.79W), and face detection

consumes 15.33 Wh (14,914 sec at avg. 3.7 W). While the average power consumption differs

only slightly during this test, it shows that each face detection takes, on the average, 10.1 sec,

with a standard deviation of 4.7 sec. Smart image fragmentation has been tested with pictures

fragmented into matrices of 128 × 128 images. In our tests, we reduced the total amount of

transmitted data at the following rates: 5%, 10% and 25%. A face detection applied afterwards

was also possible, but the reduction of 10% gave the most reliable results of 94.6% positive

detections.

0 5 10 15 20
#Transmissions

0

20

40

60

80

100

E
n
e
rg

y
 (

W
h
)

LoraWAN full set
Bluetooth full set
WiFi full set
LoraWAN prev face detection
Bluetooth prev face detection
WiFi prev face detection

Figure 5.14: Energy consumed for a transmission with and without a previously applied face

detection

To estimate a possible tradeoff between the transfer of an image and an expensive computation

like a face detection, we measured the power consumption of a LoRa interface (connected to a

RPi), a Bluetooth interface (via two RPis) and aWiFi interface (on the RPi during a transmission

108

5.2 Opportunistic Named Functions in Disruption-tolerant Emergency Networks

Name avg(tc) max(tc) avg(ti) ∑ bytes Etrans Ecomp Esum

Disaster ONFs 19.41 s 214.22 s 3.68 s 371.2 MB 510.50 Ws 836.2 Ws 1346.72 Ws

Disaster raw 50.85 s 268.97 s - 1.5 GB 2119.04 Ws - 2119.04 Ws

Chain ONFs 27.42 s 101.08 s 7.76 s 488.4 MB 671.49 Ws 597.3 Ws 1268.79 Ws

Chain raw 79.56 s 389.77 s - 2.8 GB 3881.70 Ws - 3881.70 Ws

Star-get ONF 8.33 s 20.11 s 0.27 s 131.3 MB 180.26 Ws 836.2 Ws 1016.48 Ws

Star-get raw 15.32 s 40.83 s - 366.2 MB 503.62 Ws - 503.62 Ws

Star-share ONF 10.20 s 27.81 s 2.08 s 131.3 MB 180.26 Ws 836.2 Ws 1016.48 Ws

Star-share ONF

(lightw.)

11.01 s 31.04 s 4.08 s 354.8 MB 487.10 Ws 21.0 Ws 508.10 Ws

Star-share ONF

(router)

20.71 s 44.85 s 5.17 s 94.7 MB 129.34 Ws 784.5 Ws 913.90 Ws

Star-share raw 19.06 s 45.43 s - 412.0 MB 566.91 Ws - 566.91 Ws

Table 5.4: Scenario tests

of our test data set). We then compared these measurements of a data transfer with energy

consumed when (i) a face detection was performed and only smaller images within bounding

boxes of the detected faces were transmitted, and (ii) this smaller data set was transferred via

different wireless links. Figure 5.14 shows both the energy consumed for the full data set as

well as the data set resulting from a previous face detection. The x-axis shows the number of

hops while the images traverse the network, the y-axis shows the energy consumption over

time. Since the resulting data set is quite small compared to the original data (only 18 MB

or 0.75%), the energy spent for transmission on links with lower bandwidth (LoRaWAN: 25

kbps, Bluetooth: 600 kbps) dominates the total energy consumption. While for these links

a face detection before the first transmission is useful, the break-even point for WiFi is not

reached before 16 hops. Applying an optimal strategy would require global knowledge about

the network topology and its constituent links, which cannot be assumed in a network relying

on opportunistic communication.

Network Topologies

We used the experimental results from the previous section to simulate ONFs in different basic

topologies as well as in a disaster scenario. The described topologies were implemented using

the CORE (Common Open Research Emulator) network emulation framework. CORE provides

WiFi access point and ad-hoc characteristics, traffic shaping, as well as simple network bridges

for direct linking of certain nodes [Ahr+08].

Topologies

We investigated three topologies: Chain, Star, and Disaster. The Chain topology consists of 64

mobile phone nodes that are connected pairwise in a chain. In this topology, the first node

in the chain is defined as the content producer and the last one as the consumer. The Star

109

5 Smart Adaptive Disruption-tolerant Networking

topology consists of one middle node that acts as a gateway to all other nodes. The middle

node is evaluated in two different configurations: (i) a lightweight router, only featuring basic

data processing functions, and (ii) a powerful wireless router that is also capable of more

complex functions like face detection. Figure 5.15 shows a screenshot of Disaster scenario,
a topology as it could be found in an emergency event. In the disaster site, 22 people are

trapped building a partial mesh and 15 rescuers are moving in the direction of the trapped

people also building a partial mesh. When the rescuers approach the building the two mesh

networks merge. To support the approaching rescuers, the trapped people document different

aspects of the disaster using their mobile phones. A LoRa link is established to enable basic

text communication and to propagate the interests of the rescuers.

Figure 5.15: Disaster scenario modeled in CORE. Rescuers approaching from the left, trapped

people on the right.

Simulation Results

Based on these topologies, we performed several simulation experiments. The results are

presented in Table 5.4. The {Chain, Star, Disaster} raw scenarios do not execute any functions,

instead the images are spread to all nodes. They provide a baseline for comparison to {Chain,
Star, Disaster} with ONFs. While the Chain scenario is evaluated with one content consumer

and one producer, the Star scenario is evaluated in two different configurations: in the Star-get
variants, all except one node act as content producers, whereas in the Star-share variant only
one node acts as a producer and all other nodes act as content consumers. The Star scenarios
are further evaluated in two different configurations. In the lightweight configuration, the

110

5.2 Opportunistic Named Functions in Disruption-tolerant Emergency Networks

middle node acts as a simple router only providing inexpensive functions, such as smart image

fragmentation. In the second variant, the router is also capable of applying the functions

mobile phones provide, such as face detection. Finally, the ONF scenarios use our interest

propagation and function application mechanism. These scenarios can be used to investigate

different metrics applicable to the proposed mechanism (e.g., interest propagation time) as

well as general metrics for comparison with the other scenarios (e.g., content delivery time).

For the ONF scenarios, the interests are specified similar to our scenario in Section 5.2.4: a

first interest specifies a face detection on /camera, alternatively on fragmented or grayscaled

images. A second interest specifies an image scaling performed on the original images or on a

grayscaled- or a black/white-version of the image.

Note that the decision whether an ONF is executed or not depends on the devices’ context. In

our implementation, the expensive face detection functions are skipped if the battery level of a

device is lower than 50%. Instead, grayscaling, fragmentation and black/white transformations

are applied. The results of our simulations are shown in Table 5.4. The value tc specifies

the content transmission time, while the value ti specifies the interest propagation time.

Furthermore, the total amount of transmitted data and the estimated energy consumed are

listed. The latter is modeled by (i) Etrans, the energy consumed during transferring data at

10 Mbps via WiFi (at 1.72 W, according to our experiments with the Raspberry Pi) and (ii)

Ecomp, the total amount of energy consumed by the applied ONF, according to the Raspberry

Pi measurements.

Table 5.4 shows significant differences between raw and the ONF-based scenarios, although

the same number of images were stored in /camera by the content producers. For the Disaster
scenario, although no ONFs are performed and no faces are detected, the transmission energy

spent by 1.5 GB of data is significantly higher (36%) than with ONFs. This is due to the data

reduction of both scaling and face detection on the devices. Although more transmissions

were performed (1475 compared to 702) due to multiple interests, the propagation time of the

interest was also relatively low (3.68 sec), since the small interest bundles could be transmitted

via the wide-range and low-bandwidth LoRaWAN. Using ONFs, the average content transfer

time could be reduced by more than 60%.

In the Chain scenario, significantly more energy is consumed without ONFs (factor 3). In this

long chain of nodes between consumer and producer, the latter scales images and detects faces

according to the specified interest. Due to the high number of hops between consumer and

producer, the interest propagation time ti is rather long and the total amount of transmitted

data is very high (488.4 MB vs. 2.8 GB). Therefore, the total energy consumption within this

network is dominated by data transmissions. The content propagation time tc is very high for

the raw case and can be reduced to by again more than 65% on the average and almost 75% in

the maximum case.

In the Star scenario, the interest and content propagation times are short due to the small

number of hops between producer and consumer. Star-get with ONF and Star-share with ONF
share the same behavior, since all ONF functions are executed on the producer nodes. Due

to the small number of hops, the energy for function execution dominates the total energy

consumed by this network. In such a case, ONFs deliver function results, but cannot utilize

ONF for better energy efficiency. In contrast, a lightweight router in scenario Star-get with
ONF (lightweight), only featuring basic data processing functions is able to perform inexpensive

111

5 Smart Adaptive Disruption-tolerant Networking

tasks to reduce the total amount of data (14%) and the consumed energy (10.5%). In the more

powerful router in scenario Star-get with ONF (router), a face detection function is applied at

the router. This is less energy-consuming compared to ONFs at the producer (10%), but it also

cannot utilize ONFs for better energy efficiency. In the first two Star-share scenarios, content
transmission times were reduced by a small amount, showing again a small advantage of the

approach.

To summarize, the basic topologies show that ONFs applied at the producer are quite ad-

vantageous in scenarios with a high number of hops between consumer and producer, but

in topologies with smaller numbers of hops, ONFs can be utilized for network congestion

avoidance, but not for higher energy efficiency. We have shown that, even though ONFs require

a rather high amount of time for computation, ONFs lead to shorter content delivery times.

In a disaster scenario, on the other hand, a significant amount of traffic (factor 4) and energy

(36%) can be saved compared to not using ONFs and flooding the network with raw images.

5.2.7 Summary

In this section, opportunistic named functions as a novel approach to operate ICN-DTNs during

emergencies, have been presented. Affected people and first responders use their mobile devices

to specify their interests in particular content and/or application-specific functions that are

then executed in the network on the fly, either partially or totally, in an opportunistic manner.

Opportunistic named functions rely on user-defined interests as well as on locally optimal

decisions using criteria such as battery lifetimes and device capabilities. In the presented

emergency scenario, they were used to preprocess, analyze, integrate and transfer information

extracted from images produced by their smartphone cameras, with the aim of supporting the

search for missing persons and the assessment of critical conditions in a disaster area. Experi-

mental results have shown that opportunistic named functions reduce network congestion

and improve battery lifetimes in a heterogeneous network of battery-powered sensors, mobile

devices, and mobile routers, while delivering crucial information to carry out situation analysis

in a disaster. Using ONFs in our disaster scenario saves a significant amount of traffic (factor

4) and energy (36%) compared to not using ONFs by flooding the network with raw images.

Based on the results shown, this novel approach to operate ICN-DTNs is a smart solution in

the sense of this thesis. For the comparison between information analysis cost and achievable

quality, as shown in Figure 5.1 on page 80, the data of the experimental evaluation can be used.

The comparisons are carried out within different scenarios, so the results also vary depending

on the scenario evaluated. However, compared to a conventional DTN, in which the data is

first transmitted and then a function execution is performed on the receiver node, there are

some major advantages. The transmitted data alone is significantly reduced to up to 17.4% of

the conventionally required total data transfer. Energy consumption has also been reduced

to 32.7% in some scenarios, including the energy required for computations performed on

the network devices. Particularly in scenarios with network congestion, such as the disaster

scenario described above, this leads to faster or more complete delivery of data such as images

from the scene of the accident, and thus to an improved QoS for the network.

112

5.3 Offloading Computational Workflows in Opportunistic Networks

5.3 Offloading Computational Workflows in Opportunistic
Networks

5.3.1 Introduction

Opportunistic networking is useful for communication in scenarios where no infrastructure

is available, if network connectivity is intermittent or error-prone. This is achieved using a

store, carry and forward approach to transmit bundles hop-to-hop, from source to destination.

Opportunistic networking can help first responders and victims in disasters, inhabitants in

rural areas, and researchers in environmental monitoring of natural habitats to exchange data

without relying on a working communications infrastructure [Gar11; Bau+18; Con+10]. Since

mobile devices used in such scenarios typically have limited computational power, storage, or

energy, offloading computational tasks can reduce load on initiating devices or even enable

task execution, e.g., if specialized hardware is required [Kum+13]. Face detection in disaster

scenarios could help first responders to save resources for essential communication [Con+10],

and environmental monitoring with mobile sensor nodes is a current research topic [Bau+18].

Client
Offload

Worker
Task 1

Worker
Task 2

Figure 5.16: Illustrative example: executing a workflow on two workers.

In this section OPPLOAD is presented, a novel framework for offloading computational work-

flows in opportunistic networks. Fig. 5.16 shows an example for offloading a simple face

detection workflow where Task 1 converts an image to grayscale, and Task 2 extracts faces

and returns them to the client [Lam+17]. Using OPPLOAD, clients can assign the individual

tasks of a workflow to particular remote execution platforms (workers) ahead of time or can

leave the assignment open, i.e., each worker will search for another suitable worker just in

time for the next task using our novel worker assignment algorithm, while both modes can

be mixed in a workflow. Workers publish their capabilities and resources (available memory,

remaining battery capacity, etc.), i.e., clients will only select capable workers. Furthermore,

workflow tasks can be executed on multiple workers that are automatically selected to balance

the overall load, based on a folded standard normal distribution and an innovative worker

ranking system, where workers are rated based on their available resources, their capabilities,

and the proximity to the calling client/worker, resulting in a novel approach ensuring that load

on workers is distributed fairly in the network. No permanent connection to the worker nodes

is needed. Depending on node mobility, results can still be delivered even after longer periods

of isolation due to a disruption-tolerant networking (DTN) underlay.

113

5 Smart Adaptive Disruption-tolerant Networking

To show the feasibility of our approach, we emulated up to 30 highly mobile nodes in different

experimental settings, showing that the success rate of offloading increases by up to 40%

with negligible overhead. Our Python implementation
22
and all artifacts

2324
of this section are

publicly available.

Parts of this section have been published in Artur Sterz, Lars Baumgärtner, Jonas Höchst,

Patrick Lampe, and Bernd Freisleben. “OPPLOAD: Offloading Computational Workflows in

Opportunistic Networks.” in: 2019 IEEE 44th Conference on Local Computer Networks (LCN 2019).
Osnabrück, Germany, Oct. 2019. doi: 10.1109/LCN44214.2019.8990775.

5.3.2 Related Work

Workflow-based Approaches

To offload tasks to other mobile devices, Serendipity splits each task into smaller tasks that are

either offloaded or not if no worker is found [Shi+12]. In a mobile cloud computing scenario,

Ahn et al. [Ahn+18] start the execution of tasks locally and offload them to suitable cloudlets.

Ravi and Peddoju [RP18] present an offloading algorithm where an application is partitioned

into clusters containing tasks to decide whether to offload, based on a density-based clustering

algorithm.

Although these proposals follow a workflow-based approach, they do not have a worker

selection algorithm to distribute the load fairly in the network and/or they are not suitable for

opportunistic networks.

Proximity-based, Movement-based, and Social Approaches

COMET [Gor+12] is a framework for offloading parts of applications to neighboring nodes to

speed up their execution. Mtibaa et al. [Mti+13] propose a framework where a task is offloaded

to mobile devices that belong to the same social context, e.g., the same household or a group

of first responders in a disaster scenario.

Wang et al. [WLJ14] present an offloading scheme for opportunistic networks where mobility

patterns are analyzed to estimate the number and duration of contacts for the offloading

decision. Zhang et al. [ZNW15] consider the load of a device, the availability of cloudlets, and

user mobility to maximize the probability of successfully offloading tasks. Honeybee [FLR16]

includes a work sharing algorithm that employs nearby nodes to execute tasks based on job

stealing.

These publications either focus on a single aspect (e.g., movement/proximity of nodes or

social relationships), or they are designed for cloudlet scenarios and thus are not suitable for

opportunistic networks. Additionally, most of these approaches do not follow a workflow-based

approach and offload only entire tasks, without splitting them into smaller tasks.

22
https://github.com/umr-ds/OPPLOAD

23
https://github.com/umr-ds/OPPLOAD-experiments

24
https://ds.mathematik.uni-marburg.de/oppload/oppload_results.tar.gz

114

https://doi.org/10.1109/LCN44214.2019.8990775

5.3 Offloading Computational Workflows in Opportunistic Networks

Offloading in Cloud Environments

Deng et al. [Den+15] decide for each task of a workflow whether it should be offloaded to the

cloud or executed locally, based on the capabilities and the movement of nodes. Chatzopou-

los [Cha+16] use an incentive mechanism where users have to define how many resources they

are willing to spend for executing offloaded tasks. Chowdhury et al.[Cho+18] migrate tasks

between cloud, mobile devices, or robots by considering energy, latency, and task execution

deadlines.

All these works are designed for cloud environments and are therefore not optimized for

resource savings in opportunistic networks with mobile devices.

Mobile Cloud, Edge, and Fog Environments

Fan et al. [Fan+18] present an approach where a base station in a mobile cloud scenario can

either execute an offloaded task itself or further offload it to another base station. Using a fuzzy

decision engine, Flores et al. [FS13] consider multiple criteria like CPU power to decide whether

a task should be offloaded to a mobile cloud server. Yang et al. [Yan+13] offload computations

in mobile cloud scenarios to maximize the throughput of applications. Chen et al. [Che+16b]

formulate a game theoretic approach for offloading tasks in a mobile cloud scenario. Bellavista

et al. [BZS17] present a computation offloading approach, where tasks are offloaded to mobile

edge cloud instances and the results are return over the same node or a different one, if the

user has moved in the meantime. Zhang et al. [Zha+18] introduce a task allocation scheme

where social sensing applications are offloaded to edge servers to maximize a node’s payoff

by saving energy. Yang et al. [Yan+18] propose an algorithm to offload tasks to a nearby edge

server.

These approaches assume the availability of a mobile cloud, cloudlets, or similar technologies.

In addition, neither worker capabilities, nor highly unreliable networks, nor workflow-based

execution to preserve resources are taken into account.

Other Approaches

Funai et al. [FTH16] present an approach that minimizes energy consumption by offloading

computations across multiple hops in an ad-hoc network. Zanni et al. [Zan+17] propose an

approach to split arbitrary Android apps into smaller tasks that can be offloaded. Sterz et

al. [Ste+17] present a framework for remote procedure calls in disruption-tolerant networks with

separated control and data channels to cope with short contact durations. Internet-of-Things

devices use more capable devices that are reachable within one hop to execute a task [ES18].

Feng et al. [Fen+18] present an approach where mobile devices offload tasks to other mobile

devices via cellular base stations without prior knowledge of the devices’ resources.

These approaches are either not suitable for opportunistic networks and faulty situations, or

they only consider a very limited scope of capabilities and worker selection. Furthermore, most

of them do not handle workflows but single tasks only, which is not suitable for scenarios

where mobile devices are the main execution platforms.

115

5 Smart Adaptive Disruption-tolerant Networking

Finally, to the best of our knowledge, there is no previous work that takes all these parameters

into account, introduces a transparent workflow-based computational task offloading algo-

rithm for multi-hop opportunistic networks, and provides an open source proof-of-concept

implementation.

5.3.3 OPPLOAD’s Design

Workflow-based Computations

OPPLOAD supports workflow-based computations where a client defines a workflow that

consists of a chain of tasks. The client assigns each task to a worker, and OPPLOAD will take

care of the execution order, even in unpredictable network situations. Furthermore, OPPLOAD

transparently passes inputs and outputs between the different tasks of a workflow. Connectivity

is achieved using protocols for disruption-tolerant networking (DTN), while we assume that

the communication overhead in terms of CPU and memory resources for remote execution is

negligible [Bau+16].

Worker Addressing

OPPLOAD supports two worker addressing modes: Ahead of Time (AoT) and Just in Time (JiT).
This makes it possible to select the best suitable and available worker for each task, based on

the user’s preferences and the network environment.

Ahead of Time

Using AoT addressing, the client assigns a task to a worker explicitly. It is possible to select

a different worker for each task, as well as the same worker for different tasks. This mode

exists mainly for two reasons. Privacy-sensitive tasks should be executed on known and trusted

workers. Furthermore, worker operators might give certain guarantees, e.g., to stay in the

network or to always execute a task, even under heavy load.

Just in Time

In JiT mode, workers publish all services they offer periodically by broadcasting them into the

network. These offers are stored on every node locally, where workers are searched from. Since

in opportunistic networks nodes can appear and disappear frequently from the network, these

offers are only valid for a certain time period, depending on the dynamics of the network.

If a client does not assign a task to a specific worker, OPPLOAD will transparently chose a

suitable worker by passing the workflow description through a number of steps that are part of

worker assignment, as shown in Fig. 5.17. During the first step of worker assignment, a worker

with an offer for executing a desired task will be searched in the local database. If the search is

successful, the task will be executed on this worker. This mode is helpful when it is not clear

whether a worker is available for a task.

116

5.3 Offloading Computational Workflows in Opportunistic Networks

Worker

Worker
Assignment Preprocessing Postprocessing

Workflow

Task

Execution

Client

Worker
Assignment Postprocessing

Worker

Workflow

Task

Workflow

Task

Workflow

Result
JiT

AoT

JiT

AoT

Figure 5.17: Architecture of OPPLOAD client and worker showing a possible workflow with

Ahead of Time (AoT) or Just in Time (JiT) worker assignment.

Worker Capabilities

Workers announce their capabilities and available resources, such as CPU load, available mem-

ory, and other metrics. Additionally, workers announce available special hardware or other

properties that help executing specific tasks better than other workers, e.g., face detection

in images is more energy efficient on a GPU that may not be available on all workers. The

time interval for periodic capability announcements matches the dynamics of the network.

The more dynamic a network is, the more often the capabilities are broadcast. In the second

step of worker assignment using JiT addressing, these capabilities are taken into account. Task

requirements specified by the client are compared to the capabilities published by the workers

to select capable workers.

Worker Assignment

During worker assignment, multiple capable workers may be available. Therefore, we have

developed a novel worker assignment algorithm that distributes the workload fairly in the

network on multiple workers and selects nearby and powerful workers. Instead of simply

selecting a random worker or the worker with the most recent offer, we introduce a worker

rating scheme based on different weighted metrics. The user has to estimate, e.g., CPU, memory,

or disk space requirements for a task. Additionally, the rating scheme also keeps the tasks

spatially close to the calling client. Therefore, the geographical distance between the two

involved nodes is a metric of the rating. During worker assignment, the client will calculate for

each capable worker how well it satisfies each requirement of a task by dividing the capabilities

published by workers by the given requirements for every metric. By applying this rating

scheme, the best capable worker based on the local knowledge is selected. However, this can

lead to an unfair load distribution in the network, where nearby and powerful workers could

be disadvantaged, since they would always be chosen. Therefore, a worker is selected from the

sorted list of workers based on their rating following the folded standard normal distribution.

This ensures that a nearby and powerful worker will be selected with a high probability, but the

load is also distributed to different workers, leading to a fair workload distribution approach.

117

5 Smart Adaptive Disruption-tolerant Networking

Error Handling

Bundle delivery in opportunistic networks cannot be guaranteed. If a worker disappears in

OPPLOAD before it could execute an assigned task, the client would wait infinitely long.

Therefore, users can specify a time-to-live (TTL) for a workflow. This has two implications.

First, the client stops waiting for the results after the TTL has expired, making it possible to

re-issue the workflow. Second, a worker will not execute a task if the TTL is expired, which

preserves resources on workers. This ensures a defined behavior in cases where no result can

be retrieved in time.

If errors occur in conventional networks, clients can be notified immediately to handle the

error appropriately. In opportunistic networks, this is not necessarily possible due to potentially

poor network conditions. Thus, OPPLOAD handles three classes of error. The first error class is

a task execution error. These errors occur during the execution of the task itself. The offloaded

task can implement error and exception handling on its own and provide error messages and

stack traces, which OPPLOAD will deliver to the client. The second error class is a worker
selection error. These errors occur if the execution of a task was successful, but a worker cannot

find a subsequent worker during the assignment. The third error class is a worker calling error.
These errors can occur in different situations, such as when the worker is no longer capable

to execute the task or if it is not offering the service and was called by mistake in AoT mode.

Error handling for these errors depends on the addressing mode. If the worker on which the

error occurred was selected in JiT mode, it will inform the prior worker about the error, which

will retry to assign the task to a capable worker one more time. If the second try also fails

or the worker was chosen in AoT mode, the client will be informed about the error using the

same communication mechanisms as before. The client is then responsible to handle the error

appropriately. After an offloaded task finishes or an error occurs, OPPLOAD will clean up all

involved files and bundles across all workers to save storage.

5.3.4 Implementation

We implemented OPPLOAD based on the bundle store implementation, Rhizome, of the Serval
Mesh [Gar11], which uses a simple epidemic DTN routing protocol. OPPLOAD is written in

Python and uses Rhizome’s RESTful API for handling all network-related duties. In previous

work, we have conducted an in-depth evaluation of Serval in various experiments with different

network setups and usage patterns [Bau+16].

Offering a Service

Workers offer a service by a name, an arbitrary number of parameters, and an executable that

should be executed on the worker. Any executable that runs on the underlying operating system

can be used, e.g., Python programs, or compiled binaries. Every worker periodically publishes

the definitions of its services, and clients will then use these offers for the JiT worker assignment.

In addition to the service offers, workers also announce their capabilities as key-value pairs

that are published together with the service offers to reduce the network overhead.

118

5.3 Offloading Computational Workflows in Opportunistic Networks

Executing a Workflow

To execute a workflow, a user splits it into tasks to be executed across multiple workers. All

tasks have to be described in a workflow description containing the desired worker (either AoT

or JiT), the name of the task, and all required parameters, for each task. A workflow description

must include at least one task. This workflow description has to be provided to the OPPLOAD

client that handles the remaining parts transparently.

A workflow description has the following form. First, a task has to be assigned to a worker,

which can be an address for AoT mode or a placeholder indicating that JiT mode should be used.

Then, the name of the service to be executed has to be given, followed by all parameters. Using

another placeholder indicates that the output of a task should be the input for the next task.

Each task can only have one result, and the placeholder is allowed only once per task. Finally,

a task can have requirements that are only used during assignment for this particular task.

After specifying the workflow, OPPLOAD will assign a worker to the first task, if applicable.

The first step is to rank all workers, which is based on the requirements, as introduced in

Section 5.3.3. For each metric, a weighted rank is calculated and summed up, using the weight

and the requirements as well as the worker’s capability for the particular metric. Workers are

sorted based on their ranking, and a random worker is selected based on the folded normal

distribution with location parameter µ = 0 and scale parameter σ = 1. All files required for a

task, the workflow description itself, and task results or errors will be packed into an archive

that will be sent as an encrypted bundle to the selected worker. By packing everything in a

single archive, fragmentation in transmission is avoided, and a worker is guaranteed to have

everything required for processing the task.

When the offloaded task arrives, the worker starts preprocessing by unpacking the archive and

parsing the workflow description. It will check whether it is capable of executing the assigned

task, since the capabilities could have changed during the transmission due to network delays.

If the worker is capable, the service will be executed. After the service finishes, the worker

will replace the parameter placeholder of the next task in the description with the result of

its execution. Finally, the worker assigns a next worker if required, packs everything into an

archive, and passes it on.

When the final task is executed, the last worker will return the result to the client that will then

trigger a network cleanup. This is achieved by having the workers remove their payloads, and

it is finished when the final result is removed. If an error occurs, the worker will stop further

execution, pack all intermediate files including the error log into an archive and return them as

an error bundle to the client, which will raise an exception. The client is responsible to handle

the exception appropriately, e.g., re-execute the workflow.

5.3.5 Experimental Evaluation

Test Setup

To evaluate OPPLOAD in a realistic manner, the network emulation framework Common Open
Research Emulator (CORE) was used. In contrast to simulation approaches like NS-3, CORE

uses Linux namespaces to execute binaries and scripts natively, which gives us the opportunity

119

5 Smart Adaptive Disruption-tolerant Networking

JiT Recent Equal
JiT Random Equal
JiT Best Equal
JiT Spread Equal

AoT - Equal
JiT Recent Differing
JiT Random Differing
JiT Best Differing
JiT Spread Differing

AoT - Differing

10 20 30 40 50 60 70 80
Time (s)

Client - -

Runtime Transmission Execution

Figure 5.18: Exemplary overall workflow time in different configurations.

to evaluate software and frameworks as close to reality as possible by still being able to scale

the experiments easily [Ahr+08].

Test Cases

To evaluate OPPLOAD, the algorithm of Lampe et al. [Lam+17] for detecting faces in images

on smartphones was adapted. The workflow of this algorithm has five tasks. The first task is to

denoise an image. The second task is to scale the image up by 10% to increase the probability

of fitting a possible face into the detection window. The third task is to crop the image by

10% to decrease the image size, which speeds up the detection time while maintaining a high

detection accuracy. The fourth task converts the colored image into an 8-bit grayscale image,

which additionally speeds up face detection while maintaining the same detection accuracy.

The fifth task detects faces on the preprocessed image. These five tasks are executed on five

different workers in the network. In every experiment, the bandwidth of the network links was

set to 54 Mbit/s, and a delay of 20 ms was used. All nodes were configured as workers. In JiT

mode, we compared four worker assignment algorithms: (i: recent) selecting the worker whose

offer arrived most recently, (ii: random) selecting a worker randomly, (iii: best) selecting the

best available worker based on our rating, and (iv: spread) using the algorithm described in

Section 5.3.3 to spread the load among the best available workers. Since OPPLOAD is designed

for networks with mobile devices as workers, the weights for the worker rating were set to

keep the tasks on nodes with high energy reserves and spatially close to the client. Therefore,

available energy and distance were weighted with 30%, CPU with 20%, and available memory

and free disk space with 10%. We modelled energy using a virtual energy unit e. These were
used to model energy consumption for each task related to the task’s execution time, meaning

that the longer a task takes on average, the more e is consumed. In our experiments, a service

offer from a worker was set to expire after 120 seconds, as described in Section 5.3.3. Finally,

workers announced their capabilities every 2 seconds, since this is the sweet spot announcement

interval, as shown by Baumgärtner et al. [Bau+17].

Baseline Evaluation

The baseline tests show how OPPLOAD performs under good network conditions. For these

tests, twelve static nodes were arranged in a ring, where each node had exactly two neighbors

and only the first node was a client. In AoT mode, workers were selected at the start of an

experiment in the same order as they appear in the network, always skipping one node. The

120

5.3 Offloading Computational Workflows in Opportunistic Networks

same workers were used for all AoT experiments for comparability. To evaluate the effect of

worker capabilities, this setup was first executed with all workers equally capable of executing

a task and a second time where we used the following capability distribution: 20% (2) of the

workers were capable with no constraints, 40% (5) were also capable, but had less energy

reserves, 30% (3) could execute the task, but with limited capabilities (like little available

memory) and 10% (2) were not capable to execute the task at all. The capabilities were modeled

using available disk space, memory, CPU resources, and energy e, which was reduced according

to the above description. Since worker assignment requires randomness, our random number

generator was initialized with 25 different seeds. Finally, we executed the experiments also on

the client to have a benchmark for comparison.

Workflow Profiling

To analyze the overhead of OPPLOAD, workflow processing was split into three phases: (i)

runtime (red) of the OPPLOAD implementation, i.e., pre- and postprocessing and worker

assignment in JiT tests, (ii) transmission time (blue) for transmitting the bundle, and (iii)

execution time (green) of the task itself. The colors refer to Fig. 5.18. The x-axis shows the

workflow execution time, each bar denotes a specific configuration.

As shown in Fig. 5.18, OPPLOAD does not introduce significant processing overhead. The

workflows are offloaded from the clients 10 seconds after the start of the experiment. Regardless

of the test configuration, postprocessing and worker assignment require about 1 second, while

preprocessing can be neglected. The execution time depends on the task.While scaling, cropping,

and grayscaling only require about 2 seconds, denoising and detecting faces can take up to 6

seconds.

If AoT addressing is used in known topologies, users can estimate a workflow time range in

which it finishes. The downside is that if a worker is not capable of executing a task, the entire

workflow will be stopped, as indicated by the second last bar in Fig. 5.18. Therefore, tasks

should only be explicitly assigned in cases where no other option is desirable, or if a task must

be handled by a specific worker.

The major overhead is introduced by transmitting the bundles across the network. The last bar

of Fig. 5.18 shows the same workflow executed on the client, thus no networking is needed. The

entire workflow needs about the same time as two to three tasks in the JiT tests, depending

on the worker assignment. Although overhead is introduced by network related operations,

it can still be better to offload workflows than executing them locally. First, the client may

not be able to execute the tasks due to resource constraints or other limitations. Second, the

longer the tasks take to be executed, the more negligible the communication overhead becomes.

Finally, the decision whether to offload or not also depends on the number of hops between

the offloading node and the worker, as indicated by Graubner et al. [Gra+18a]. For OPPLOAD,

we assume that the user decides whether to offload during the creation of the workflow.

Tables 5.5 and 5.6 show the average time needed for the parts of a workflow (the numbers in

brackets show the standard deviation) in seconds. Table 5.6 indicates that the overall workflow

time highly depends on the worker assignment in the JiT experiments. The recent worker

assignment with an average of about 64.48 seconds requires the longest time, due to the

121

5 Smart Adaptive Disruption-tolerant Networking

Addr. Exec. (s) Runt. (s) Transm. (s) Total (s)

Client 8.10 (0.21) 3.55 (0.11) 0.87 (-) 12.52 (0.32)

AoT 9.94 (0.26) 3.77 (0.08) 20.44 (0.13) 34.15 (0.47)

Table 5.5: Average runtimes of workflow parts in the ring scenario in client-only tests and using

AoT addressing.

Assign. Exec. (s) Runt. (s) Transm. (s) Total (s)

Recent 9.65 (0.26) 3.89 (0.09) 50.94 (10.20) 64.48 (10.50)

Random 9.82 (0.16) 3.93 (0.09) 32.60 (4.27) 46.35 (4.25)

Best 10.02 (0.28) 3.94 (0.08) 23.54 (9.63) 37.49 (9.99)

Spread 9.95 (0.20) 3.95 (0.09) 24.05 (6.82) 37.94 (7.11)

Table 5.6: Average runtimes of workflow parts in the ring scenario using JiT addressing and all

four assignments.

long distance between the nodes, since their offers take longer to reach the client and thus

arrive more recently. The standard deviation is also relatively high with more than 10 seconds,

indicating long running tasks and differing results. The random worker assignment achieves

better results with about 46.35 seconds on average and a deviation of 4.25 seconds, since closer

workers are chosen. Always selecting the best available worker leads to significantly lower

workflow times, requiring about 37.49 seconds, but with a standard deviation of 9.99 seconds.

Finally, using the spread assignment algorithm, the workflow time does not significantly differ

from the previous assignment algorithm, using about 37.94 seconds, but has a better standard

deviation of 7.11 seconds. If all workers are equally capable, the workflow times using the best

worker or the spread algorithm do not differ. This shows clearly that in terms of workflow

time, the algorithm using the best workers and our spread approach outperform the other

approaches. But since not all workers are equally capable in the different capability tests,

tests using the best worker have a broader standard deviation, since the capable workers are

further away in the topology. This means that always using the best worker is slightly faster

than using the spread algorithm, but is more unpredictable in how long the execution of a

workflow will take, since the very best workers will be worn up and worse workers have to be

chosen consequently. Therefore, we propose our spread algorithm as the best available solution.

Executing a workflow locally at the client would only require execution time and runtime, since

the networking part is not needed. As shown in Table 5.5, the total execution time is about

12.52 seconds and is pretty stable with only about 300 ms deviation. Finally, the AoT mode

needs about 34.15 seconds in total and is also stable with only about 400 ms deviation. Since in

AoT mode a worker is always two hops away from the next hop, the transmission is even faster

than using JiT mode with the best worker assignment.

122

5.3 Offloading Computational Workflows in Opportunistic Networks

n12
n11
n10
n9
n8
n7
n6
n5
n4
n3
n2
n1

No
de

Recent Random
n1 n2 n3 n4 n5 n6 n7 n8 n9 n1
0

n1
1

n1
2

Selected Worker

n12
n11
n10
n9
n8
n7
n6
n5
n4
n3
n2
n1

No
de

Best
n1 n2 n3 n4 n5 n6 n7 n8 n9 n1
0

n1
1

n1
2

Selected Worker

Spread

0%

20%

40%

60%

80%

100%

Figure 5.19: Worker selection in the ring topology just in time assignment scenarios.

Worker Load Distribution

Fig. 5.19 shows the worker load distribution in all four worker assignment algorithms using JiT

mode. On the y-axis, the calling nodes are shown, whereas on the x-axis the assigned worker is

denoted. The lighter the color, the more often a particular client selected a particular worker.

The recent selection approach spreads the load over particular nodes, but almost always selects

a worker on the opposite side of the network, leading to long-running workflows. Using a

random worker, the workload is distributed on nearly all available workers. Although this leads

to a fair load distribution, the profiling analysis shows that this approach does not necessarily

give the fastest workflow execution times. Additionally, tasks are sent to spatially far away

workers, leading to the same problems of long transmission times and network splits in mobile

networks as in the recent approach. Always using the best available worker keeps the workflow

execution spatially close, and the overall runtimes are the lowest achievable, but with an

unfair load distribution, which disadvantages close and powerful workers over others that are

also able to execute a task. In dense networks with a high offloading frequency, this could

lead to overloaded nodes and empty batteries, which in the end would be less beneficial for

the overall performance. Finally, our approach spreading the load on the best workers leads

to the best overall results. Close and powerful workers are preferred over others, while less

powerful workers also have chances to be selected. Overall, as previously shown in Table 5.6,

123

5 Smart Adaptive Disruption-tolerant Networking

the workflow times are nearly as good as always selecting the best worker. Thus, our algorithm

should be used instead of the other presented approaches.

CPU, Memory, and Bandwidth Utilization

0 10 20 30 40 50 60
Time (s)

0

100

200

300

400

CP
U

us
ag

e
(%

)

0

200

400

600

800

1000

M
em

or
y

us
ag

e
(M

iB
)

Figure 5.20: CPU and memory utilization in AoT mode; every worker capable.

Fig. 5.20 shows the CPU and memory utilization of an experiment in AoT mode where every

worker was equally capable to execute a task. On the x-axis, the time is shown, whereas the left

(blue) y-axis denotes the CPU usage and the right (orange) y-axis shows the memory allocation.

In both graphs, the resource usages of all nodes are stacked, whereas 100% CPU load means

that one CPU core of the emulation host is fully utilized (the emulation host had 80 CPU cores

and 256 GB RAM, both are not exceeded).

During the first 10 seconds, the test is set up (the emulated nodes are started, configuration

files are prepared, etc.). After 10 seconds, Serval and OPPLOAD are started, which require many

computations (e.g., loading Python interpreters into memory, computing hashes for the worker

capabilities), and the CPU utilization has a high peak with more than 400% CPU. During the

experiment, five peaks can be identified, which are the five tasks of the workflow. The CPU

peaks are more blurred, since not only during the task the CPU is used heavily, but also during

transmitting the result to the next worker using Serval. Memory usage shows that on average

every node requires about 60 MB of memory, while the execution of a task leads to peaks, due

to the fact that the image and the task binary itself have to be loaded into memory.

OPPLOAD in Action

In the final set of experiments, we studied a 30 node network using five different random-

waypoint mobility models, since randomly moving nodes is the most challenging scenario

124

5.3 Offloading Computational Workflows in Opportunistic Networks

in opportunistic networks. The worker capabilities were set differently in all experiments, as

defined in Section 5.3.5. Furthermore, we evaluated the behavior with 5 and 10 clients that

offload tasks at the same time in the network at the start of an experiment, which can lead to

workers executing multiple tasks simultaneously. To simulate an IEEE 802.11g network, which

is still widely used especially in decolping countries, with a bandwidth of 54 Mbit/s, a basic

range model for the Wi-Fi nodes with 40 meters of range was used. The mobility model was

configured for 30 nodes, walking randomly in an area of about 1.7 km
2
at a speed between 0.8

m/s and 1.9 m/s or rest for up to 60 seconds, which corresponds to human walking speed. This

setup leads to relatively small mesh networks that are appearing and disappearing during the

execution of the experiment. Overall, 200 experiments were executed, all using JiT mode. An

experiment finished either successfully, meaning that all clients received their results, or it was

stopped after 30 minutes.

Re
ce

nt

Ra
nd

om Be
st

Sp
re

ad

Re
ce

nt

Ra
nd

om Be
st

Sp
re

ad

0

50

100

150

200

250

Nu
m

be
r o

f T
as

ks

5 Client(s)

10 Client(s)Success
Worker Error
Transmission
Runtime
Execution

Figure 5.21: Final workflow states, by number of active clients in JiT mode.

Fig. 5.21 shows the final states of the workflows executed in the specific scenarios, where

the bars are grouped by the number of clients per experiment and worker assignment. The

y-axis shows the number of tasks in a particular state. The first case is a successful workflow

(Success), where a workflow was offloaded, all tasks could be executed, and the result arrived

at the client. Second, OPPLOAD performed as intended but errors occurred as discussed in

Section 5.3.3 (Worker Error) and the client could successfully be informed about this error. An

experiment stopped in the Transmission state, if a task was transmitted to the next worker, but

not received until the end of the experiment, e.g., if the recipient cannot be reached due to

network fragmentation. Due to experiment abortion while OPPLOAD was in a runtime state

or a worker executed the task itself, it is denoted as Runtime and Execution, respectively.

Experiments using the recent assignment mode have the lowest success rates, which is due

to the fact that workers are selected that are far away and the offers arrive late. Using a

random worker increases the number of successes slightly. Using the best worker available,

125

5 Smart Adaptive Disruption-tolerant Networking

Assign. Exec. (s) Runt. (s) Transm. (s) Total (s)

Recent 8.7 (0.64) 5.0 (1.89) 269.0 (336.37) 282.8 (338.91)

Random 8.9 (1.02) 5.0 (1.84) 254.9 (300.75) 268.8 (303.61)

Best 8.9 (0.62) 5.2 (1.80) 135.5 (191.26) 149.6 (193.68)

Spread 8.9 (0.68) 5.1 (1.95) 234.2 (300.75) 248.1 (303.61)

Table 5.7: Average runtimes of tasks in mobile JiT scenarios in seconds.

all tests were either successful or the client was informed about an error when 5 clients are

used. Our spreading approach is as good as using the best worker in terms of successful

workflows or errors returned in time. The fact that even using the best worker does not lead

to 100% successful executions is due to the worker capabilities and the transmission time in

opportunistic networks. A worker updates its capabilities after executing a task, which can

lead to the situation that another task is offloaded to the worker, even though it is not capable

anymore. The falsely assigned worker will decline task execution and inform the client.

Table 5.7 shows the average workflow runtimes over all mobile experiments. It is evident that

using our spread algorithm gives better results than random assignment and using a recent

worker. Note that the transmission times (and thus also the total times) have a rather high

standard deviation. This is due to the mobility of the nodes and potentially disappearing links

between two nodes, resulting in re-transmissions. These increase the time, whereas many

transmissions are successful within the first try, reducing the mean transmission time.

To summarize, OPPLOAD introduces negligible overhead in terms of CPU load or memory con-

sumption and supports efficient offloading of computational workflows on resource-constrained

devices in opportunistic networking scenarios.

5.3.6 Summary

We presented OPPLOAD, a novel framework for offloading computational workflows in op-

portunistic networks, with two addressing modes, workers publishing their capabilities and

available resources, a worker assignment algorithm, appropriate error handling, and network

cleanup to reduce network load. Experiments with up to 30 emulated mobile nodes showed

that worker assignment is important for speeding up workflow execution and for spreading

the load fairly on spatially close but powerful workers, which increases the rate of successful

offloadings significantly.

OPPLOAD is a smart solution in the sense of this thesis, as the presented results have shown. A

classification based on information analysis cost and achievable quality, as presented in Figure

5.1 on page 80 cannot be made directly, since a new system has been created for which there is

no conventional alternative. Nevertheless, a similar functionality could be realized with the

help of remote procedure calls. However, since in opportunistic networks it is especially likely

that connections will be interrupted, such a system design is only of limited help in achieving

the functionality. In addition, the composition of workflows from individual tasks also ensures

126

5.4 DTN7: An Open-Source Disruption-tolerant Networking Implementation of Bundle

Protocol 7

that the effort can be distributed among different participants. We argue that by avoiding the

repetition of computations, in particular due to disconnected connections and participants

that have left the network, the information analysis cost is lower than for a comparable system

that is based on conventional remote procedure calls. At the same time, the QoS is higher,

since error handling can already take place within a workflow, and individual tasks can be

dynamically executed on other workers. The decomposition and distribution of workflows,

coupled with local decision-making in the network, therefore leads to a higher QoS.

5.4 DTN7: An Open-Source Disruption-tolerant Networking
Implementation of Bundle Protocol 7

5.4.1 Introduction

Delay- or disruption-tolerant networking (DTN) is useful in situations where a reliable con-

nection to a communication infrastructure cannot be established, e.g., during environmental

monitoring in remote areas, if telecommunication networks are destroyed as a result of natural

or man-made disasters, or if access is blocked due to political censorship. In DTN, messages are

transmitted hop-to-hop from network node to network node in a store-carry-forward manner.

There might be larger time windows between two transmissions, and the next node to carry a

message might be reached opportunistically or through scheduled contacts.

There are several mobile DTN appications, such as FireChat [Ope19] and Serval [Gar11], that

rely on peer-to-peer networks of smartphones, where the pre-installed Wi-Fi or Bluetooth

hardware of the mobile devices is used to create a large mesh network. µPCN [FW15] is a

special purpose DTN application for planetary communication, and IBR-DTN [Doe+08] is a

popular DTN platform, but does not implement the recently released Bundle Protocol (BP)

Version 7 [BFB22].

In this section DTN7 is presented, which is the first and only freely available, open source

implementation of the most recent draft of Bundle Protocol Version 7 (BP7). DTN7 is designed

to offer extensibility by allowing developers to easily replace or add individual components.

DTN7 is a general purpose DTN software with support for several use cases, such as enabling

communication in disaster scenarios or providing connectivity in rural areas. Our contributions

are:

• We provide a memory-safe and concurrent open-source implementation of BP7, written

in the Go programming language.

• With its highly modular design and its focus on extensibility by providing interfaces to

all important components, DTN7 is a flexible basis for DTN research and application

development for a wide range of scenarios.

• We compare DTN7 with other well-known DTN systems including Serval, IBR-DTN, and

Forban, using the CORE network emulation framework.

• Several experiments to mimic different DTN test cases, i.e., a chain of up to 64 nodes

with different payload sizes, are conducted.

127

5 Smart Adaptive Disruption-tolerant Networking

• The presented DTN7 software
25
, the evaluation framework and its configurations

26
, and

the experimental fragments
27
are freely available.

Parts of this section have been published in Alvar Penning, Lars Baumgärtner, Jonas Höchst,

Artur Sterz, Mira Mezini, and Bernd Freisleben. “DTN7: An Open-Source Disruption-tolerant

Networking Implementation of Bundle Protocol 7.” in: 18th International Conference on Ad
Hoc Networks and Wireless (ADHOC-NOW 2019). Esch-sur-Alzette, Luxemburg, Oct. 2019. doi:

10.1007/978-3-030-31831-4_14.

5.4.2 Related Work

This section briefly reviews relevant publications in the area of DTN software.

DTN Software Implementations

IBR-DTN [Doe+08] is a lightweight, modular DTN software for terrestrial use. The Interplane-

tary Overlay Network (ION) focuses on the aspects of extreme distances in space [Bur07]. DTN2

is the reference implementation of the BP, developed by the IETF DTNworking group [Dem+03].

These three implementations are based on RFC 5050, i.e., BP Version 6 [SB07].

Designed for small satellites in low earth orbit, µPCN can be used to connect different regions

of the world. It also implements BP Version 6, as well as an older draft of version 7 [FW15].

Furthermore, an older version of BP7 is implemented in Terra [Rig18].

Serval focuses on node mobility by providing implementations that run on smartphones, as

well as by incorporating different radio link technologies [Gar11]. Forban is a peer-to-peer file

sharing application that uses common Internet protocols like IP and HTTP to transmit files in

a delay-tolerant manner [Dul16]. With FireChat [Ope19], it is possible to send messages via

DTN without relying on Internet access or direct peer contacts.

Many of the mentioned DTN systems implement the BP as specified in RFC 5050 [SB07].

While some implement a draft of BP7, none of them implements the most recent draft. Serval,

Forban, and FireChat have their own protocol definitions, which are not compatible with the

BP. Furthermore, the mentioned implementations cannot be extended in a modular manner,

are not written in developer-friendly high-level programming languages and are not intended

as general purpose DTN platforms, but are designed for specific use cases. FireChat is not

freely available, and thus cannot be extended.

25https://github.com/dtn7/dtn7-go
26https://github.com/dtn7/adhocnow2019-evaluation
27https://ds.mathematik.uni-marburg.de/dtn7/adhoc-now_2019.tar.gz

128

https://doi.org/10.1007/978-3-030-31831-4_14
https://github.com/dtn7/dtn7-go
https://github.com/dtn7/adhocnow2019-evaluation
https://ds.mathematik.uni-marburg.de/dtn7/adhoc-now_2019.tar.gz

5.4 DTN7: An Open-Source Disruption-tolerant Networking Implementation

DTN Software Evaluations

IBR-DTN, DTN2, and ION were evaluated by Pöttner et. al [Pöt+11]. For a payload of 1 MB,

DTN2 and IBR-DTN produced almost identical results. ION was slower in the conducted

measurements. Furthermore, the interaction of the three DTN implementations was evaluated

by transferring bundles between them, and the times measured varied significantly.

IBR-DTN was used to evaluate the connection between a stationary DTN node and a moving

vehicle [Doe+08]. This vehicle passed the stationary node at an average speed of 20 km/h, and

the transmission rate was measured in relation to the distance. Data could be transmitted

within a range of about 200 meters.

Serval was experimentally evaluated in our previous work (cf. Section 5.1), for scenarios with

48 nodes in a hub topology, 64 nodes in a chain topology, and 100 nodes in disjoint islands

connected over time. The results indicate that Serval can achieve high network loads, while

CPU usage remains relatively low.

5.4.3 Bundle Protocol Version 7

This section gives an overview of bundle protocols, referring to RFC 4838 [Cer+07] and the

current version 7 of the Bundle Protocol (BP) [BFB22].

dtn:s1

dtn:s3

dtn:s2

dtn:b1

dtn:b3 dtn:b2

Data Sinks / Servers Data Sources / Sensor Node

dtn:sink/lux

Payload
Dst
Src

27°C
dtn:s3
dtn:b1/temp

Payload
Dst
Src

3782 lx
dtn:sink/lux
dtn:b2/lux

Figure 5.22: Example sensor node scenario with multiple endpoints.

129

5 Smart Adaptive Disruption-tolerant Networking

Basic Concepts

Endpoints.

In DTN, there are nodes and endpoints. Nodes exchange bundles according to the store-carry-

forward principle. Bundles are addressed at endpoints, or more precisely, their characterizing

Endpoint Identifier (EID), which might not be a currently existing part of the network. Fig. 5.22

shows an example of a scenario, where sensor nodes produce readings to be consumed by data

sinks. The temperature bundle is addressed directly to dtn:s3, where the lux bundle is headed
to dtn:sink/lux, an EID that is handled by two nodes, and thus a multicast. BP7 is endpoint

scheme agnostic and supports the null endpoint for anonymous bundles. In BP version 6, only

endpoints are defined, so it is not possible to address dedicated nodes.

Bundles and Blocks.

Packets in a DTN consist of multiple Blocks to form logical units called Bundles. In Fig. 5.23, an

example bundle containing the mandatory Primary Block, and two Canonical Blocks, namely a

Hop Count Block and the actual Payload Block, is shown, following the example of Fig. 5.22.

Bundle

Primary Block

Version: 7

Control Flags:

Status requested for reception

CRC Type: None

Destination EID: dtn:sink/lux

Source node EID: dtn:b2

Report-to EID: dtn:b2

Creation Timestamp: (0, 23)

Lifetime: 3600000

Hop Count Block

Type Code: 9

Number: 2

Control Flags: None

CRC Type: None

Data: (64, 42)

Payload Block

Type Code: 1

Number: 1

Control Flags: None

CRC Type: None

Data: 0E C6

Figure 5.23: A bundle transmitting a lux value from dtn:b2 to dtn:sink/lux.

Primary Block. Each bundle begins with a (since BP7 immutable) Primary Block (see

Fig. 5.23), containing meta-information about the bundle with the following fields: Version;

Bundle Processing Control Flags to provide information on the bundle, including fragmenting

and reporting information; an optional CRC Checksum (added in BP7 and not available in BP

version 6); Destination EID, Source Node ID and Report-To EID, as endpoints for administrative

records regarding this bundle; Creation Timestamp, consisting of the actual timestamp and an

130

5.4 DTN7: An Open-Source Disruption-tolerant Networking Implementation

incrementing sequence number; Maximum Lifetime of a bundle, expressed in microseconds

after creation time; Fragment Offset and Total Data Length, if fragmented and indicated by

the bundle process control flags.

Canonical Block. Payload and Extension Blocks in Fig. 5.23 are summarized as Canonical
Blocks. These contain a payload in addition to a few block-specific characteristics. A Canonical

Block consists of a Type Code to identify the kind of block, Number to address the specific

block, Control Flags and Data.

The actual payload of the bundle is located in the Payload Block at the end of each bundle. In

addition to sending user data from application programs, status information is also sent within

bundles, called Administrative Records, automatically created and sent by DTN software as

a response to a previous bundle. Extension Blocks are Canonical Blocks containing further

information relevant for a DTN router depending on its configuration. In contrast to BP version

6, the BP7 specification defines the Previous Node Block, Bundle Age Block, and Hop Count

Block, and allows user-defined blocks to be added.

Node Components

Bundle Protocol Agent.

The Bundle Protocol Agent (BPA) offers BP and DTN specific services. It executes procedures

of the BP. For example, communication between Application Agent and Convergence Layer

Adapter (see below) is managed. The BPA also constructs bundles for the Application Agent.

Application Agent.

The interface between the BPA and an application is defined as an Application Agent (AA).
A generic AA needs the ability to receive incoming bundles and compose outbound bundles

for user applications and services. Furthermore, an EID must be assigned for local bundle

delivery.

Convergence Layers.

Bundles are exchanged over connections between nodes of different types and characteris-

tics, and connections are unidirectional or bidirectional, or vary in transmission speed and

bandwidth. Depending on the connection technology used, more or less complex protocols

are required for delivery, called Convergence Layer (CL) Protocols (CLP). A Convergence Layer
Adapter (CLA) is an implementation of a CLP. There are two CLPs defined by the IETF DTN

group to exchange bundles over a TCP connection, the bidirectional TCP Convergence Layer

Protocol (TCPCL) [Sip+19] and the unidirectional Minimal TCP Convergence Layer Protocol

(MTCP) [Bur19]. In addition to transport layer CLs, there are approaches based on other

technologies, e.g., DTN2 defining a Bluetooth and a serial CL, or IRB-DTN featuring an e-mail

CL.

131

5 Smart Adaptive Disruption-tolerant Networking

5.4.4 DTN7

In this section, we present the design and implementation of DTN7.

Requirements Analysis

There are several requirements that should be satisfied by DTN software. First, DTN software

operating on a variety of laptops, smartphones, and routers should run on several hardware

architectures (e.g., x86, ARM, and MIPS), based on the most popular operating systems (e.g.,

Linux, macOS, and Windows). Second, the individual components of the DTN software should

be exchangeable. For example, there is the need to support different storage backends, CLAs,

and DTN routing protocols. A suitable programming interface enabling concurrent execution

is required for the interaction of components. Furthermore, a CLA implementation is required

as well as a peer discovery mechanism to enable automatic establishment of connections

between nodes. Finally, applications should to be independent of the DTN software, to allow

easy creation of further applications and tools. Thus, a convenient interface between the DTN

software and applications is required.

Implementation Decisions

As a result of these requirements, we selected the Go programming language
28

to develop

DTN7. Go offers a large standard library and is rather developer-friendly. Its strengths are

the simple creation and integration of programming libraries. Moreover, Go enforces good

style guides and clean code plus provides memory-safety guarantees to increase security and

stability of written programs. Thus, Go makes maintaining code and bringing in new developers

very easy. The source code including all required dependencies are compiled into a single, static

executable, removing the need for interpreters or further libraries. Furthermore, the Go compiler

allows simple (cross-)compilation for many operating systems and processor architectures.

The concept of concurrency is implemented in Go through the interaction of Goroutines and

Channels; concurrency was one of the design priorities of the language designers.

To support exchangeability of DTN7’s components, we structured our implementation into

Bundles and its corresponding Store, Convergence Layer Adapters, Peer Discovery, the Application
Agent, Routing, and the Core package needed to connect the individual packages. The modules

in the these packages are designed as generic interfaces and example implementations, e.g.,

there exists an interface for routing in general and an epidemic routing implementation. We

decided to use MTCP for exchanging messages between two DTN7 nodes due to its simplicity.

A third party application can also use parts of DTN7 as a library to, e.g., create and serialize

bundles via the corresponding package. To make programming of applications against these

interfaces simple and programming language independent, we decided to use a RESTful API.

132

5.4 DTN7: An Open-Source Disruption-tolerant Networking Implementation

Routing

dtnd

Discovery

StoreCLA

Application
Agent

dtncat
send

fetch

incoming newnew
nodes

in / out

discover

(UDP)

dtnd

transmit

(MTCP)

(REST)

Node

…

dtnmail

dtnsense

Node

Figure 5.24: Architecture and data flow in DTN7

DTN7 Architecture

Fig. 5.24 shows the modules of DTN7 and their interaction. The arrows indicate the way

a bundle is internally processed in DTN7. The links between two distinct DTN7 nodes are

shown by both an active CLA and the Discovery on the figure’s left hand side. Multiple client

connections to the AA from within the node are delineated on the node’s right hand side.

To store bundles locally, a serialized version as defined in BP7 is written to the file system. A

central index of all known bundles manages their meta-data and links point to information

of the specific file. This index supports a fast lookup of bundles. The module providing this

functionality is called Store.

In DTN7, an AA is implemented as a RESTful Web API to support both dispatching and fetching

of bundles. The API does not interact with entire bundles, but only with a subset of its fields.

This allows a client to send a new bundle by only supplying the destination EID and a payload.

Such a request can easily be created from the command line or possible third-party software.

When fetched over the API, selected fields of those bundles are returned and the bundles will

be removed from the store afterwards.

The concept of different CLs and their CLAs is also present in DTN7’s architecture with an

implementation of MTCP. Based on a specific CL’s characteristics, bundles might be transferred

in a uni- or bidirectional way. Thus, a CLA in DTN7 must supply one or multiple modules for

inbound and outbound bundle processing. The unidirectional MTCP is designed using modules

for sending and receiving bundles.

28https://golang.org

133

https://golang.org

5 Smart Adaptive Disruption-tolerant Networking

To support connections in dynamic networks, a Peer Discovery mechanism is provided. It

announces a node’s existence and listens for potential neighbors. This discovery mechanism

broadcasts all of the node’s CLAs continuously and notifies about received CLAs.

The previously defined components are linked together within DTN7’s Core package. A central

processing pipeline consumes both newly created and inbound bundles. Within this pipeline,

a bundle will be marked to be delivered to a subset of known CLAs, to a local AA or to be

discarded for later processing or even removed. The Core’s internal links, visualized in Fig. 5.24,

are related to the concept of a BPA, and serve as an interface between CLAs and the AA.

Every bundle that is not addressed to a particular node will be forwarded over one or multiple

CLAs to neighboring nodes. The decision about which CLAs to select is made by a routing

algorithm. To support the use of different routing algorithms, a generic interface needs to be

informed about inbound bundles and, furthermore, a tight cohesiveness to the core is required.

DTN7 implements an epidemic routing module, which is notified about received bundles,

to memorize both sender and receiver. Before dispatching, the epidemic routing algorithm

compiles a subset of known connections which have not received this bundle yet.

Finally, DTN7 is also intended to be used as a library and allows fast development of DTN

applications. In particular, bundle package creation, serialization, and deserialization might be

useful in other software.

Resulting Programs

DTN7 contains a DTN daemon, referred to as dtnd in Fig. 5.24, for storing and exchanging

bundles and interfacing with applications. Currently, an example DTN application (dtncat in

Fig. 5.24) for sending and receiving bundles, implemented as a command line tool, is included.

dtnd initializes the previously defined modules according to the configuration provided by

the user. dtncat processes user input, which is handed over to dtnd’s AA RESTful interface.

The input is then encapsulated inside the Payload Block of a newly created bundle by dtnd.
This bundle’s Primary Block will be populated with basic defaults, like disabled CRC, and a

delivery report request. As shown in Listing 5.1, dtncat is called by passing parameters on the

command line. The first option selects between receiving or sending bundles. The local dtnd,
running the RESTful API, is addressed by the second parameter. When sending new bundles,

the content is read from the standard input.

Sending a bundle
$ dtncat send http :// localhost:8080 dtn:s2 <<< "3782␣lx"

Retrieving a received bundle
$ dtncat fetch http :// localhost:8080

Listing 5.1: dtncat example

5.4.5 Experimental Evaluation

In this section, we experimentally evaluate DTN7 and compare it with other DTN software.

134

5.4 DTN7: An Open-Source Disruption-tolerant Networking Implementation

Emulation Environment

To evaluate DTN7 in a realistic manner, we emulated up to 64 nodes in the network emulation

framework Common Open Research Emulator (CORE) [Ahr+08]. CORE can emulate nodes

using Linux namespaces to allow the execution of native binary programs, which is not possible

with purely simulation-based approaches like NS-3 [RH10; Sch+11b]. All experiments were

performed on Intel Xeon E5-2698 CPUs with 80 cores at 2.20 GHz and 256 GB RAM. To execute

the total number of 1,440 experiment runs, we used MACI, a framework for extensive and

reproducible experiments [Frö+18].

DTN Software.

We compared DTN7 with three popular DTN software solutions. Serval29 is a software suite
centered around protocols designed for infrastructure independent communication [Gar11]. To

be able to transfer files in intermittently connected networks, Serval relies on Rhizome, a custom

DTN bundle protocol with epidemic routing. In our evaluation, we used the latest stable Serval

release, which is from April 2016, since the recent development version has stability issues.

IBR-DTN30
is an implementation of BP Version 6, aimed to be lightweight and fast [Doe+08].

For comparability, we use the epidemic routing extension instead of the default PRoPHET

protocol used by IBR-DTN. We use the current HEAD of the git repository to include the latest

bug fixes. Forban31 is mainly used as a local peer-to-peer file sharing application using an

epidemic routing protocol based on HTTP. We used the latest HEAD of the git repository, but

had to introduce our own patches to make Forban usable.

Payload Sizes.

DTN software is used in multiple applications and scenarios. Serval, e.g., offers the SMS-like

application MeshMS for short text messages. IBR-DTN can be used in environmental monitor-

ing, where transmission of short audio recordings or images might be required. Therefore, we

selected four different file sizes, representing a wide range of possible applications. All files

were generated randomly with the same seed for reproducibility in six sizes:

• 64 KiB for compressed images or map data;

• 1 MiB representing small images or short audio recordings;

• 5 MiB, e.g., smartphone images and audio recordings;

• 25 MiB representing longer audio recordings or short videos;

• 50 MiB for HD videos typically recorded by smartphones;

• 100 MiB, e.g., 4k smartphone videos [Tro+15; Sch+11a; Bau+16].

29https://github.com/servalproject/serval-dna/tree/batphone-release-0.93
30https://github.com/ibrdtn/ibrdtn
31https://github.com/adulau/Forban

135

https://github.com/servalproject/serval-dna/tree/batphone-release-0.93
https://github.com/ibrdtn/ibrdtn
https://github.com/adulau/Forban

5 Smart Adaptive Disruption-tolerant Networking

Network Topologies.

We used a chain topology of three different lengths, where nodes are connected pairwise, to

benchmark the different DTN software systems. The first node is sending a bundle destinated

to the last node in the chain. To get the baseline performance of the interacting components,

a chain of two nodes was used. We measured the time it takes to read the data, serialize the

bundle, send it over the network, deserialize it at the receiver and deliver it to the application.

With 32 nodes, the forwarding capabilities were investigated. For an even larger scenario, we

used 64 nodes, to evaluate how the DTN software systems behave when node numbers increase.

We used a bandwidth of 54 MBit/s to match the speed of an IEEE 802.11g network.

Measurements.

To measure CPU utilization for each process on every node, we used pidstat, which is part of

the sysstat package32. Additionally, bwm-ng33 was used for network statistics per node and

network interface. Finally, every used DTN software logged both the timestamp of sending and

receiving bundles, such that a detailed analysis of transmission time and network distribution

can be performed.

Results

Transmission Times.

DT
N7

Fo
rb

an
IB

R-
DT

N
Se

rv
al

DT
N7

Fo
rb

an
IB

R-
DT

N
Se

rv
al

DT
N7

Fo
rb

an
IB

R-
DT

N
Se

rv
al

DT
N7

Fo
rb

an
IB

R-
DT

N
Se

rv
al

DT
N7

Fo
rb

an
IB

R-
DT

N
Se

rv
al

DT
N7

Fo
rb

an
IB

R-
DT

N
Se

rv
al

0.0

0.1

1.0

10.0

Tr
an

sm
iss

io
n

Ti
m

e
(s

)

64 KiB 1 MiB 5 MiB 25 MiB 50 MiB 100 MiB

Figure 5.25: Bundle transmission time for the 1-hop topology and different payload sizes

32
http://sebastien.godard.pagesperso-orange.fr/man_pidstat.html

33
https://github.com/vgropp/bwm-ng

136

5.4 DTN7: An Open-Source Disruption-tolerant Networking Implementation

DT
N7

Fo
rb

an
IB

R-
DT

N
Se

rv
al

DT
N7

Fo
rb

an
IB

R-
DT

N
Se

rv
al

DT
N7

Fo
rb

an
IB

R-
DT

N
Se

rv
al

DT
N7

Fo
rb

an
IB

R-
DT

N
Se

rv
al

DT
N7

Fo
rb

an
IB

R-
DT

N
Se

rv
al

DT
N7

Fo
rb

an
IB

R-
DT

N
Se

rv
al

1

10

100

1000
Tr

an
sm

iss
io

n
Ti

m
e

(s
)

64 KiB 1 MiB 5 MiB 25 MiB 50 MiB 100 MiB

Figure 5.26: Bundle transmission time for the 64-hops topology and different payload sizes.

Figs. 5.25 and 5.26 show the bundle transmission times on the y-axes and payload sizes on the x-

axes for the 1-hop and 64-hops topologies, respectively. Regardless of chain length and file size,

DTN7 and IBR-DTN are always the fastest DTN software systems. The larger the files become,

the transfer times of all DTN systems converge. This is due to the network configuration. All

DTN systems manage to completely fill the 54 Mbit/s available, which is easier to achieve with

larger files. As a result, the transfer times for large files hardly vary at all.

For a single hop, Forban and Serval take about the same time for transmitting files (e.g., about

0.6 seconds for 64 KiB files), but Forban shows a higher variance. For longer chains and files

below 50 MiB, the differences between Forban and Serval are more noticable. DTN7, however,

is still up to 140 times (64 KiB over 1 hop) faster than Serval. Particularly in chat or text based

applications, the speed advantage of DTN7 can be crucial if a message arrives below 0.01

seconds rather pdfcthan after one second.

These results indicate that both BP6 and BP7 have a relatively small protocol overhead compared

to the protocols used by Serval and Forban, which is especially noticeable for small files. The

larger the files or the longer the chain, the less weight the low protocol overhead carries.

Furthermore, it is also remarkable that DTN7, which is written in Go, does not take longer

to transmit larger files from end to end in the chain, although IBR-DTN is implemented in

C++ and optimized for speed. In terms of transmission speeds, Forban takes longer than the

other DTN software systems, although differences get smaller the bigger the files are. One

explanation is that Forban has a pull-based approach where it actively downloads new bundles

after an announcement was received. Therefore, the announcement interval is a natural barrier.

If quick data exchange is necessary, the other solutions provide better performance.

137

5 Smart Adaptive Disruption-tolerant Networking

0 25 50 75 100 125 150 175 200

20

40

60

80

100
M

bi
t/s

DTN7

0 25 50 75 100 125 150 175 200

Forban

0 25 50 75 100 125 150 175 200
Time (s)

20

40

60

80

100

M
bi

t/s

IBR-DTN

0 25 50 75 100 125 150 175 200
Time (s)

Serval

25

50

75

100

125

150

175

200

%
CP

U

25

50

75

100

125

150

175

200

%
CP

U

Figure 5.27: CPU and network usage for transmitting 25 MiB over 32 hops.

CPU Usage and Network Utilization.

Fig. 5.27 shows CPU usage and network utilization for transmitting 25 MiB over 32 hops. On

the x-axes, the time for the entire experiment in seconds is shown, the left y-axes denote

the network usage in Mbit/s and the right y-axes show the CPU usage in %, both of the

entire network. The bold graphs denote the sum over all nodes, averaged over all experiment

repetitions. The shaded areas denote the error band.

DTN7 requires about 34.3% of the available CPU (standard deviation of 16.7%). At the beginning

of an experiment, DTN7 shows a short peak in CPU usage resulting from the first node, where

the file is converted to base64, sent to the DTN7 AA, which decodes the file again, packs it into

a bundle, and starts the transmission. Further nodes only have to retransmit the bundle and do

not require the steps mentioned above. Forban uses about 163.1% CPU (646.3%). Forban shows

a small peak at the start of the experiment, indicating the overhead when starting its daemons,

where four Python interpreters have to be started. Additionally, the file has to be hashed at

the beginning of the experiment. Serval consumes 29.3% (24.6%) CPU. Serval has an additional

hashing step, which results in higher CPU load at the start of the experiment. With only 26.9%

(13.1%), IBR-DTN is the most efficient tested DTN software in terms of CPU usage.

In terms of network usage, DTN7 reaches about 42.0 Mbit/s (19.7 Mbit/s) for transmitting

bundles from node to node, while Forban achieves about 32.8 Mbit/s (22.8 Mbit/s). IBR-DTN

and Serval achieve 42.3 Mbit/s (23.7 Mbit/s) and 39.5 Mbit/s (20.0 Mbit/s), respectively. Although

the theoretical total network load for the entire network can be up to 1.674 Gbit/s, the tested

DTN software systems used only the maximum bandwidth per link, which is 54 Mbit/s, in peak

138

5.5 ProgDTN: Programmable Disruption-tolerant Networking

situations. This indicates that every DTN software needs to receive the entire bundle before

transmitting it to the next node.

To summarize, DTN7 requires slightly more CPU utilization than IBR-DTN and Serval, but has

the advantage of transmitting files faster than all other DTN systems in most cases, as shown

in Section 5.4.5.

5.4.6 Summary

We presented an open source DTN implementation, called DTN7, of the recently released

Bundle Protocol BP7, written in the Go programming language. DTN7 is designed to offer

extensibility and supports multiple use cases, such as enabling communication in emergency

and disaster scenarios or providing connectivity for rural areas. Furthermore, we presented

results of a comparative experimental evaluation of DTN7 and other DTN systems including

Serval, IBR-DTN, and Forban. Our results indicated that DTN7 is a flexible and efficient open-

source multi-platform implementation of the most recent version of BP7. DTN7 is not directly

suitable for categorization within the framework of the thesis, but thanks to the modular

development method it forms the basis for the further development of smart systems.

5.5 ProgDTN: Programmable Disruption-tolerant Networking

5.5.1 Introduction

Originating from developments related to the exploration of outer space, disruption-tolerant
networking (DTN) has found its way into numerous terrestrial applications, e.g., in scenarios

where communication networks are destroyed or disrupted and cannot be repaired for days.

Apart from natural disasters, it may be hard for people to communicate via mobile devices

in remote areas without a deployed telecommunication infrastructure. When end-to-end

connectivity is not available, DTN can be utilized to keep communications going without

the need for traditional infrastructures. However, utilizing DTN for communication requires

custom network protocols, since protocols of the widely used TCP/IP stack are not well suited

for such challenging situations. Therefore, several routing algorithms were developed for DTNs.

Some are targeted at general purpose applications, i.e., they rely on the connectivity inside

the network or are based on conventional routing schemes, such as link-state routing. Other

DTN routing algorithms are constructed for specific scenarios, such as the movement of people

during a workday or emergency situations. We argue that each DTN routing algorithm is

designed for a specific scenario in which it achieves very good performance, but has limited

performance in other scenarios.

Conventional network protocols of the TCP/IP stack suffer from the same limitations, which

motivated the introduction of programmable networks in the literature. For example, Software-

defined Networking (SDN) offers programmable means of configuring networks using cus-

tomized algorithms for processing and routing. Typically, this leads to optimized performance in

terms of latency, throughput, and/or resilience. We argue that DTN should also take advantage

of network programmability to profit from its benefits like time and cost savings, reduction of

139

5 Smart Adaptive Disruption-tolerant Networking

human error, customization, and improved performance. However, the SDN approach cannot

directly be transferred to DTN, because SDN, in general, requires a coordinating entity that

deploys (programmable) rules to network nodes. In most cases, a coordinating entity is not

present in DTNs.

In this section, we present ProgDTN, a novel approach to support programmable disruption-
tolerant networking by allowing network operators to program a node’s routing behavior based

on DTN bundle metadata, additional bundle context, and node context. Node and bundle

context can be used to reflect the specifics of a particular scenario, e.g., the speed of a node

in a mobile scenario, the battery level of nodes in a scenario without fixed power supply,

or geographic information of the context of a bundle. ProgDTN consists of a programming

interface that allows a network operator to program the routing algorithm without knowledge

of the router’s interior workings. ProgDTN’s implementation is based on DTN7 [Pen+19], a

flexible and efficient open-source, platform-independent implementation of the Bundle Protocol

version 7 [BFB22], and uses JavaScript as the programming language, because it is widely used

and easy to understand. In our experimental evaluation, we compare ProgDTN to four existing

routing algorithms. We demonstrate that a programmable DTN routing algorithm tailored

to a specific scenario achieves excellent results in terms of up to 99.9% delivery ratio while

reducing unnecessary transmissions by 92.9% compared to other state-of-the-art DTN routing

algorithms in an emergency response scenario. We achieve a low delivery time of bundles

(1 – 15 seconds) and a low overhead in terms of CPU utilization and routing decisions. Our

contributions are:

• We present ProgDTN, a novel approach for programmable DTN routing.

• We show that using ProgDTN, network operators can tailor routing algorithms to their

individual scenarios by incorporating context information.

• We present a comparative experimental evaluation of ProgDTN, achieving excellent

results in terms of delivery ratio, delivery times, and overhead.

• We make ProgDTN’s implementation, our scenario-specific routing algorithm,
34

and

code/data fragments of our experimental evaluation
3536

available under permissive open-

source licenses.

Parts of this section have been published in Markus Sommer, Jonas Höchst, Artur Sterz, Alvar

Penning, and Bernd Freisleben. “ProgDTN: Programmable Disruption-tolerant Networking.”

in: International Conference on Networked Systems (NETYS). Springer. May 2022. doi: 10.1007
/978-3-031-17436-0_13.

5.5.2 Related Work

This section gives a brief overview of related work on context-aware routing in general and

context-aware routing in DTN.

34https://github.com/umr-ds/dtn7-go/tree/progdtn
35https://github.com/umr-ds/progdtn-evaluation
36https://dshare.mathematik.uni-marburg.de/index.php/s/8k6XZgKJp9kTMPS

140

https://doi.org/10.1007/978-3-031-17436-0_13
https://doi.org/10.1007/978-3-031-17436-0_13
https://github.com/umr-ds/dtn7-go/tree/progdtn
https://github.com/umr-ds/progdtn-evaluation
https://dshare.mathematik.uni-marburg.de/index.php/s/8k6XZgKJp9kTMPS

5.5 ProgDTN: Programmable Disruption-tolerant Networking

Context-aware Routing.

Apart from using information about the network topology, context-aware routing algorithms

use additional information to make routing decisions. Here, we focus on context-aware routing

protocols for wireless mobile ad hoc networks (MANETs).

The History-based Routing Protocol for Opportunistic Networks (HiBOp) uses social informa-

tion, such as club memberships or home addresses to infer the likelihood of encounters and

improve routing decisions [Bol+07]. Dynamic Social Grouping-based Routing (DSR) is a routing

algorithm that harnesses social grouping for efficient routing in ad hoc networks [Cab+10].

The Inheritance Inspired Context-Aware Routing Protocol (IICAR) follows a biology-inspired

approach to routing based on Mendel’s laws of inheritance [Ban+19].

The protocol proposed by Biswas et al. [Bis+18] uses the properties of ad hoc wireless networks.

It maintains static context, such as node and interface types and social information, and

dynamic context, e.g., geolocation, channel quality, and encounter frequency. The information

is used to calculate utility scores, combined using a routing metric to determine a delivery

probability for each message. Messages are forwarded to a) the closest short-range neighbor

and b) a long-range neighbor selected based on the delivery probability and the distance.

The algorithm proposed by Errouidi et al. [Er-+17] uses context information to improve resilience

in MANETs. It employs a fuzzy logic system for three context metrics, a node’s remaining

energy storage, distance between peers, and node mobility, to judge its ”stability”. This allows

it to improve routing decisions by avoiding unstable nodes, which improves network stability

and delivery metrics.

Context-aware Delay-tolerant Routing.

The Context-Aware Adaptive Routing (CAR) protocol harnesses context information for routing

decisions DTN and combines synchronous and asynchronous transmission [MHM05; MM09].

Messages are transmitted synchronously using a distance vector routing approach if the recipi-

ent is located in the same neighborhood. If no direct connection between sender and recipient

exists, asynchronous (DTN) transfer is used, where a node computes delivery probabilities of

the directly connected nodes based on its context information. It is up to the network provider

to define concrete attributes, utility functions, and weights for the generic approach.

The Sensor Context-Aware Routing (SCAR) protocol for distributed sensor networks [MM06] is

based on the CAR protocol, omitting the distinction between synchronous and asynchronous

transmissions. The approach only handles a single specific use case and does not attempt to

provide a general routing algorithm.

A further routing scheme that competes with CAR was proposed by Johari et al. as Context-

Aware Community Based Routing (CACBR) [JGA13]. Message forwarding is based on a combi-

nation of network and context parameters, such as communities a peer belongs to, message

delivery and forwarding history, and available buffer space and battery level.

In general, schemes that attempt to harness social and community relations are relatively

common; another example is the Socially-Aware Adaptive Delay Tolerant Network (DTN)

141

5 Smart Adaptive Disruption-tolerant Networking

routing protocol by Ullah and Qayyum [UQ22]. It utilizes a metric called degree centrality to

estimate how well a node is embedded in a community to drive forwarding decisions.

Beak et al. [BSC18] propose a version of the PRoPHET routing algorithm, improved by using

context information. While the authors show that their proposed protocol outperforms reg-

ular PRoPHET, it still relies significantly on the underlying protocol, and the use of context

information is limited.

Another approach was proposed by Rosas et al. [RGH20]. It is not focused on designing a

routing algorithm that includes context information, but instead measures the performance of

different algorithms under different context values and then uses future context information

to choose the optimal one.

To the best of our knowledge, no attempt has been made in related work to create a general-

purpose, context-aware, programmable DTN routing system.

5.5.3 ProgDTN Design

In this section, we present the design of ProgDTN, including DTN fundamentals, system

requirements, context information, and ProgDTN’s architecture.

DTN Fundamentals

The data transmission unit of the bundle protocol is a bundle, which consists of multiple blocks.
Each bundle must contain a primary block containing basic metadata, such as the bundle’s ID,

sender and recipient IDs, and a payload block that carries the bundle’s payload. A bundle can

also include an arbitrary number of extension blocks. While the DTN standard specifies several

extension block types, it allows implementations to specify additional types.

A node in DTN operates in a store-carry-forward manner, i.e., when a bundle is received, it is

stored in local, long-term storage, from where it will be regularly forwarded. When forwarding,

the network daemon invokes the configured routing algorithm to select a subset of currently

connected peers to which the bundle should be forwarded. The actual peer-to-peer connection

is abstracted in a so-called convergence layer (CL) that may use any lower-layer communication

protocol to achieve data transmission. ProgDTN is designed to be entirely independent of any

specific communication infrastructure and works with any standard-compliant convergence

layer.

System Requirements

ProgDTN’s goal is to allow network operators to develop scenario-specific routing algorithms

without modifying the DTN software itself. Furthermore, changes to the routing algorithm

should not require recompilation of the DTN software to reduce the complexity of deploying

new or adjusted routing algorithms. Instead, the forwarding rules are loaded at startup from

a provided script file and interpreted by the DTN software. In this way, algorithms may be

swapped by restarting the DTN software and giving it a different file to load. To specify these

142

5.5 ProgDTN: Programmable Disruption-tolerant Networking

forwarding rules, we use a general-purpose programming language and embed an interpreter

into the DTN software. This allows maximum flexibility without having to learn a new domain-

specific language.

Context Information

ProgDTN belongs to the class of context-aware routing algorithms, i.e., routing decisions may be

based on additional information of the environment in which the network exists. Context refers
to any information about the nodes, bundles they are transmitting, or any other information

that the network operator may deem helpful. ProgDTN does not put any semantic restrictions

on context information, except that each piece of information needs to be uniquely named.

Instead, we provide network operators with a generic, powerful interface for generating and

processing relevant context information.

Context Types. ProgDTN distinguishes between two classes of context information, bundle
context and node context. Bundle context is any additional information attached to an otherwise

normal bundle, e.g., the physical location of the bundle’s recipient, information about the

originator or the recipient, and really anything that the network operator might think of. On

the other hand, node context is information about a specific node, such as the node’s location,

the node’s battery status, and its connectivity status. This information is not usually attached

to other bundles, but if it must be communicated to other nodes, the node broadcasts it using

a special context bundle.

Context Generation. The naive approach for generating context information would be

to have the DTN software itself generate the necessary information. This would, however,

violate the ease of use goal, since it would require modification of the DTN software’s code for

each scenario. ProgDTN adopts an approach where context generation is left up to external

programs. For this purpose, the DTN software exposes an interface through which context

information can be injected. This interface should be based on a widely used communication

protocol/architecture to ensure ease of use.

Context Transmission. Since context information needs to be attached to a bundle, and

since it may be helpful for nodes to be able to exchange their contexts, we defined a custom

extension block to carry context information. This extension block may either be attached to

an existing bundle or be used to exchange context data with peers by sending a special context
bundle. Extending a regular bundle with a context block allows nodes to use this information

when making forwarding decisions.

ProgDTN Architecture

Fig. 5.28 shows the architecture of a DTN deployment utilizing ProgDTN. The yellow circles

depict mobile DTN nodes, whereas the violet circles show data sources in a hypothetical

scenario. Each node is identified by the prefix dtn: followed by a name, such as n1, used as

143

5 Smart Adaptive Disruption-tolerant Networking

dtn:s1

dtn:s3

dtn:s2

dtn:n3
dtn:n2

Data Sources / Sensors

Mobile Nodes

Context
Speed
Battery

dtn:n1
4 km/h
72 %

dtn:n1

Context
Speed
Battery

dtn:n2
45 km/h
90 %

…

2

1

Store

ProgDTN

if ctx[t]==
 … 3

4

Node Connection
Context Transmission
Bundle Transmission

Figure 5.28: Architectural overview of a DTN deployment utilizing ProgDTN

the address for bundle transmissions. The lines between the circles show connections between

the particular nodes. Node dtn:n1 is used to visualize further concepts.

In general, when a bundle enters a DTN node, either by being created or received from a peer, it

is placed into the node’s local on-disk storage (store in Fig. 5.28). The bundle is then passed to

the configured routing algorithm to select peers for forwarding. ProgDTN takes the position of

the routing algorithm, which is visualized by the box entitled ProgDTN. It takes the particular
bundle, which can itself have attached context information, and the context information for its

node (shown as 1 in Fig. 5.28), as well as the peer’s context (2). The context in this example is

the speed and battery level of the transmitting node and for node dtn:n2. The interpreter (3)
then executes the routing script provided by the network operator, which must be aware of the

available context data, and filters the list of connected peers to select the subset for forwarding.

Once the routing program has returned the list of selected peers, the DTN software transmits

the bundle to the selected peers (4).

5.5.4 ProgDTN Implementation

ProgDTN’s implementation is based on dtn7-go, a powerful DTN software suite developed in

the DTN7 project
37
. dtn7-go implements the most recent draft of the bundle protocol (BP)

version 7 [BFB22] in the GO programming language [Pen+19].

Fig. 5.29 shows the components of dtn7-go. The two dotted boxes indicate two DTN nodes,

and the arrows between them show their interaction, data transmission (transmit), and peer

37https://dtn7.github.io/

144

https://dtn7.github.io/

5.5 ProgDTN: Programmable Disruption-tolerant Networking

ProgDTN

if ctx[t]==
 …
 … dtnd

Discovery

StoreCLA

Application
Agent send

fetch

incoming newnew
nodes

in / out

discover

(UDP)

dtnd

transmit

(MTCP)

Node

…

dtnmail

dtnsense

Node

dtn-tool

dtn-ctxinsert

Figure 5.29: dtn7-go with the ProgDTN implementation between CLA and Store

discovery (discover). The arrows within the dtnd box visualize the data flow of bundles within

a node. The right-hand side shows multiple tools that use an application agent (AA) to insert

data to or retrieve data from dtn7-go. The AA then stores the received data in the node’s

local store. The bundle protocol abstracts peer-to-peer communication using convergence layer

adapters (CLAs), which can use a variety of protocols and technologies such as TCP, UDP, or

even e-mail sent over Bluetooth. Each CLA exposes a defined API to the daemon, which can

then transparently send & receive messages without having to bother with data serialization

or transmission. To support connections in dynamic networks, dtn7-go uses a peer discovery

mechanism that continuously broadcasts information on all of the node’s CLAs and notifies

the daemon about newly discovered peers. For forwarding decisions, dtn7-go includes an API

that can be used to implement routing algorithms. Any Go datatype that satisfies this interface
can be used as the router, and dtn7-go ships with various established routing algorithms.

ProgDTN consists of an implementation of that interface and a set of extensions for receiving

and storing bundle and node context.

Using JavaScript for Programmable Routing

We decided to use JavaScript as our general-purpose programming language for programmable

DTN routing due to the following reasons: (a) JavaScript is very popular; according to a 2021

survey conducted by Stack Overflow
38
, nearly 65% of developers work in JavaScript, giving it a

roughly 17% lead over the second-placed general-purpose language Python at approximately

48%; and (b) JavaScript can be embedded into the GO programming language; there are several

JavaScript interpreters written in GO, e.g., goja39, which implements the ECMAScript standard

version 5.1 with some additional features.

38https://insights.stackoverflow.com/survey/2021
39https://github.com/dop251/goja

145

https://insights.stackoverflow.com/survey/2021
https://github.com/dop251/goja

5 Smart Adaptive Disruption-tolerant Networking

Thus, a routing algorithm is specified in a JavaScript file that gets loaded during startup of

dtn7-go and compiled to bytecode representation for faster execution. Whenever a routing

decision is made, the compiled JavaScript routing algorithm is invoked, which invokes a virtual

machine (VM) able to interpret the JavaScript bytecode.

Programmable Routing Decisions

Any custom routing algorithm has to comply with the following API. First, the JavaScript code

receives the bundle itself passed as a JavaScript object
40
, as well as the bundle ID, represented

as a string. Second, the ID of the bundle’s source (as a string) and a list of strings representing

the IDs of all currently available peers are passed to the routing algorithm. The final pieces

of information are the bundle context, the node’s context, and the context of all available

peers. Whenever the algorithm receives context data, this data is encoded as JSON, a data

serialization format that works well with JavaScript. The bundle’s context can be updated using

a callback function whenever this may be necessary. If logging is required, it is possible to

use the passed loggingFunc function to write an arbitrary string to the dtn7-go’s logs. The
algorithm may then use any or all of this data to perform the actual forwarding decision. Any

JavaScript code can be executed here, including third-party libraries. ProgDTN does not place

any restrictions on the possible context data; it is up to the network operator to be aware of

runtime requirements. Finally, the routing algorithm must return a list of node IDs to which

the bundle should be forwarded. dtn7-go then takes care of forwarding the bundles to the

chosen nodes using the corresponding CLAs.

Providing Context

To provide context information about the local node, we implemented a REST interface that

receives information formatted in a key-value manner, where the value contains arbitrary data

formatted as JSON. The context information is then saved in a global dictionary so that newer

data for a given peer overwrites existing data. While the local node’s context information is

vital for routing decisions, so is its peers’ context. Therefore, whenever two peers connect, they

exchange their context information. Finally, for bundle context, the provided REST interface

for bundle submission is extended to add context information to the bundle during its creation,

again as arbitrary key-value pairs.

40
The description of the bundle data structure is omitted for brevity. We refer to https://github.com/d

tn7/dtn7-go/blob/d3b5e62a7f89994ececf98978bae499f32cc920f/pkg/bpv7/bundle.go for further

information.

146

https://github.com/dtn7/dtn7-go/blob/d3b5e62a7f89994ececf98978bae499f32cc920f/pkg/bpv7/bundle.go
https://github.com/dtn7/dtn7-go/blob/d3b5e62a7f89994ececf98978bae499f32cc920f/pkg/bpv7/bundle.go

5.5 ProgDTN: Programmable Disruption-tolerant Networking

Parameter Values

Bundles per Node 10, 50, 100

Payload Size 1 kB, 1 MB

Routing Algorithm Epidemic Routing, Binary Spray & Wait, DTLSR, PRoPHET, ProgDTN

Epidemic, ProgDTN Binary Spray & Wait, ProgDTN

Table 5.8: Evaluation Parameters

5.5.5 Experimental Evaluation

Emulation Environment

Network Emulation.

To perform a large number of experiments, we used the Common Open Research Emulator
(CORE) [Ahr+08], an open-source network emulator

41
. CORE supports the execution of native

binaries without re-implementing protocols, i.e, real-world code can be executed. Furthermore,

we used the MACI experimental orchestration framework [Frö+18] to schedule a large number

of experiments. All experiments were executed on an AMD EPYC 7742 server with 128 physical

cores and 1 TB RAM, which executed up to 3 experiments in parallel.

Network Topology.

We use a network topology that simulates a disaster scenario involving three parties, civilians,
responders, and a coordinator. The scenario consists of 31 nodes arranged in a 2-circle topology,

with the singular coordinator located in the center, five responders arranged in a circle around

the coordinator, and 25 civilians arranged in the outer circle. Each responder is connected to 5

civilians, and the civilian clusters are connected on their edges. Each civilian sends bundles

addressed to the coordinator, simulating information moving up the chain of command. The

coordinator produces broadcast bundles that are supposed to be received by all civilians, which

simulates announcements by the authorities to the population. The experiments simulate a

network with a bandwidth of 54 MBit/s, 20 ms of delay, and a range of about 40 meters.

Experimental Parameters.

All experiments are uniquely defined by a set of four parameters, summarized in Table 5.8

and discussed below. In total, 210 experiments were executed for one hour each. Bundles per
node determine how many bundles each civilian and the coordinator send to the network. To

avoid every node sending its data simultaneously, bundles are sent at (uniformly distributed)

random times throughout the experiment. We used two different payload sizes, 1 kB and 1 MB,

to mimic different use cases, with 1 kB serving as a stand-in for text messages and 1 MB being

41https://coreemu.github.io

147

https://coreemu.github.io

5 Smart Adaptive Disruption-tolerant Networking

around the size of a small image. One of the two payload sizes was used for all nodes during

every experiment. To maintain reproducibility and to reduce the chance of unfavorable initial

conditions, each experiment was re-run five times with pre-determined PRNG-seeds.

Seven routing algorithms are used for comparison: Epidemic Routing [VB00] is the most widely

used routing algorithm in DTN, sending bundles to all peers.

Binary Spray & Wait [SPR05] is a modified version of Spray and Wait. A node holds n copies of

a bundle, half of which are transferred to the first peer. The second peer then receives half of

the remaining copies and so on. Each node that receives multiple copies of a bundle proceeds

in the same way. A node will only forward the bundle to its intended recipient when only a

single copy remains. Spyropoulos et al. [SPR05] suggest a value of 10 as a reasonable initial

multiplicity, which we adopted in our experiments.

PRoPHET [LDS04] exploits the fact that in DTNs, nodes usually encounter each other more

than once. Whenever two peers connect, they compute a probability of meeting again in the

future. This probability declines over time if these particular nodes do not meet again. A node

will forward a bundle to another node if the receiving node’s probability of meeting the bundle’s

recipient is higher than the forwarding node’s probability. We used the same parameters as

the authors in their original paper for calculating delivery probabilities.

Delay-Tolerant Link-State Routing (DTLSR) [DF07] other than classical link-state routing once a

link is lost, it is not immediately removed from routing considerations, but rather “tagged” with

the time since the disconnection. When the routing table is computed, this time is interpreted

as a link cost of Dijkstra’s algorithm to find the shortest path between the current node and

the destination.

ProgDTN Epidemic / Binary Spray & Wait are re-implementations of the respective algorithms

in ProgDTN, which serve primarily to compare computational overheads. All parameters are

the same as in the native implementations.

ProgDTN Emergency is a custom algorithm implemented using ProgDTN and tailored to the

given scenario of our evaluation, where data only flows in two “directions”: from civilians to

the coordinator, or vice versa. Whether a node will forward a bundle to another node depends

on three factors: (a) node type (coordinator, responder, civilian), provided at startup, (b) peer

type, received by a node via a context bundle and (c) bundle type (unicast to coordinator, or

broadcast to all civilians), carried by a bundle in a context block attached at bundle generation

time. Unicasts (i.e., bundles from the civilians to the coordinator) are only forwarded along

the inward direction, from civilians to responders to the coordinator, while civilians do not

send their bundles to each other. The same applies to responders. Broadcasts flow outward, i.e.,

from the coordinator to the responders to the civilians; civilians distribute messages among

each other. In both cases, responders do not forward bundles among other responders, but

only serve as relays between civilians and the coordinator.

Results

We consider six metrics divided into two categories: network utilization and an overhead

analysis. The network utilization metrics are the percentage of bundles successfully delivered,

148

5.5 ProgDTN: Programmable Disruption-tolerant Networking

the duration of delivery, and the load generated in the network. Our overhead analysis considers

the time to decide to whom a bundle should be forwarded, the percentage of bundles that do

not carry a payload (metadata or context bundles), and how heavily a node’s CPU is utilized.

Delivery Ratios.

10 50 100
0

50

100

10 50 100

Routing
Epidemic

Binary Spray

PRoPHET

DTLSR

ProgDTN Emergency

Bundle/Node Bundle/Node

D
el

iv
er

y
(%

)

Payload: 1kB Payload: 1MB

Figure 5.30: Ratio of successfully delivered bundles for different parameters

Fig. 5.30 shows the delivery ratio, i.e., the percentage of sent bundles that reach their destination.

Each group on the x-axis represents a set of bundles per node, the y-axis shows the reached

percentage of delivered bundles, the color denotes the routing algorithm, and each sub-figure

shows the different payload sizes. For unicasts, successful delivery means that the coordinator

receives the bundle, while for broadcasts, all potential recipients (i.e., the civilians) need to

receive the bundle. The performance of ProgDTN Emergency is at least equal to all other routing

algorithms. In many cases, it outperforms the other routing algorithms, with a delivery ratio

of 99.9% in all scenarios. Not even Epidemic Routing (blue) achieves this level of success for

high load scenarios, because it produces the highest load and can easily overload the network.

Furthermore, PRoPHET (orange) is ill-suited for this scenario and achieves only mediocre results

(depending on the experiment, between 43% and 70%). This does not mean that PRoPHET is

a bad routing algorithm, but if a scenario does not conform to its assumptions, it will fail to

achieve its intended result.

Delivery Times.

10 50 100

1

100

10 50 100

Routing
Epidemic

Binary Spray

PRoPHET

DTLSR

ProgDTN Emergency

Bundle/Node Bundle/Node

D
el

iv
er

y
Ti

m
e

(s
)

Payload: 1kB Payload: 1MB

Figure 5.31: Time to deliver a bundle to its destination for different parameters

The next metric is delivery time, i.e., the time it takes for a bundle to reach its intended recipient.

For broadcasts, we consider the delivery time to the first eligible recipient. The results are shown

149

5 Smart Adaptive Disruption-tolerant Networking

in Fig. 5.31; the x-axis shows bundles per node, the y-axis the delivery time on a logarithmic

scale, the color denotes the routing algorithm, and each sub-figure shows the different payload

sizes. ProgDTN Emergency shows results at least on-par with the other algorithms, with a

median below 1 second, regardless of the scenario, and rare cases where the delivery time

exceeds 15 seconds for high load scenarios. Epidemic Routing loses performance in higher-

load scenarios due to excessive network load. In extreme cases, a bundle can take up to 15

minutes to reach its destination. However, the decrease in long-time outliers for the higher-

payload scenario is because we only see initial, fast deliveries for this scenario, while once the

system reaches congestion, bundles do not arrive at all and are thus absent from this graph.

This observation is also consistent with the observation made for the delivery ratios. Under

certain conditions, PRoPHET behaves quite erratic (one hour delivery time), because delivery

probabilities are only updated for new connections, which leads to race conditions. This shows

that PRoPHET it is not well suited for this scenario. However, all these variations of epidemic

routing and PRoPHET are outliers, while the 75% quantile remains quite small, e.g., about 17

seconds for epidemic routing and 1 second for PRoPHET.

Network Load.

0.5 1

100

10k

1M

0.5 1 0.5 1 0.5 1 0.5 1

Bundles/Node, Payload
10, 1kB

10, 1MB

50, 1kB

50, 1MB

100, 1kB

100, 1MB

Time (h) Time (h) Time (h) Time (h) Time (h)

Tr
an

sm
is

si
on

s

Epidemic Binary Spray PRoPHET DTLSR ProgDTN Emergency

Figure 5.32: Total number of bundle transmissions for different parameters

Fig. 5.32 shows the number of bundle transmissions throughout the experiment, where the

x-axis shows the time and the y-axis the transmissions on a logarithmic scale. The color denotes

the bundles per node, the line style and payload size, and each sub-plot shows a routing

algorithm. From Fig. 5.32 it becomes apparent that Epidemic Routing produces orders of

magnitude more transmissions than all other algorithms, i.e., up to 695,000 bundles over one

hour compared to about 50,000 bundles for ProgDTN Emergency and 25,000 bundles for DTLSR

for 100 bundles per node and a payload size of 1 kB. The cause is the inefficiency of Epidemic

Routing; it replicates all bundles to all peers without any concern for whether a transmission

increases the delivery probability. Binary Spray & Wait also produces a relatively high load

level compared to algorithms other than Epidemic Routing, while the remaining algorithms

have a somewhat similar load level. ProgDTN Emergency successfully avoids unnecessary

transmissions and conserves network capacity. If this data is viewed in conjunction with

Figs. 5.30 and 5.31, it is apparent that ProgDTN Emergency achieves high average delivery

ratios of about 99.9% within 1 second, while other routing algorithms suffer in different quality

metrics for various reasons.

150

5.5 ProgDTN: Programmable Disruption-tolerant Networking

Routing Decisions.

10 50 90

0.1

1

10

100

10 50 90

Routing
Epidemic

ProgDTN Epidemic

Binary Spray

ProgDTN Binary Spray

PRoPHET

DTLSR

ProgDTN Emergency

Bundle/Node Bundle/Node

R
ou

tin
g

D
ec

is
io

n
Ti

m
e

(m
s)

Payload: 1kB Payload: 1MB

Figure 5.33: Time to make a routing decision for different parameters

Fig. 5.33 shows the time it takes to perform a routing decision for each algorithm. The x-axis

groups different bundles per node, and the y-axis shows the time in ms it takes the routing

algorithm to finish on a logarithmic scale. Each color represents a routing algorithm, while

the two sub-plots show the results for different payload sizes. The focus of this metric is the

comparison between Epidemic Routing and ProgDTN Emergency and between Binary Spray

& Wait and ProgDTN Binary Spray & Wait, since it shows the overhead introduced by the

JavaScript VM. It is evident that the ProgDTN variants of the two algorithms take longer for

their routing decisions compared to the non-ProgDTN variants. This is not surprising, since

every time a ProgDTN-based algorithm has to make a routing decision, it needs to initialize

and start a JavaScript VM and then execute the actual routing code, which is interpreted rather

than run as native code. However, the mean and 75% quantile is still well below 50 ms even in

those cases. Furthermore, ProgDTN Emergency performs reasonably well with a median of

about 1.5 ms and a 75% quantile of about 3 ms, regardless of the experiment. To summarize, the

JavaScript VM introduces overhead that is compensated by the fact that ProgDTN can be used

to implement a scenario-specific algorithm, reducing the average time to deliver a bundle.

Bundle Overhead.

0.5 1
0

50

100

0.5 1 0.5 1

Bundles/Node, Payload
10, 1kB
10, 1MB
50, 1kB
50, 1MB
100, 1kB
100, 1MB

Time (h) Time (h) Time (h)

B
un
dl
e
O
ve
rh
ea
d
(%
)

PRoPHET DTLSR ProgDTN Emergency

Figure 5.34: Overhead in terms of percentage of bundles sent without a payload

Since ProgDTN makes use of context bundles to let nodes exchange context information

(see Section 5.5.3), the amount of additional traffic generated by these bundles needs to be

151

5 Smart Adaptive Disruption-tolerant Networking

quantified, since it may contradict the qualitative metrics of preserving network bandwidth.

Fig. 5.34 shows the overhead of all algorithms that transmit metadata bundles in terms of the

percentage of sent bundles, where the x-axis denotes the experimental runtime, the y-axis the

percentage of context bundles (in case of DTLSR so-called meta bundles). The color shows

different bundles per node, and the line style represents the two payload sizes. Finally, each sub-

figure shows a different routing algorithm. Note that only the three shown routing algorithms

produce an overhead. Since each node sends a context or meta-bundle upon startup for all

algorithms, they all start at 100% overhead; this percentage does, however, decrease rapidly

as payload bundles start being transmitted. For both PRoPHET and ProgDTN Emergency, we

see an exponential decrease with the overhead percentage converging to zero, but remember

that PRoPHET does not achieve a satisfactory delivery ratio in this scenario. DTLSR, on the

other hand, regularly broadcasts peer information to the whole network, so we see a higher

overhead throughout the experiment.

CPU Usage.

0 0.2 0.4 0.6 0.8 1
0

50

100
Routing

Epidemic

ProgDTN Epidemic

ProgDTN Emergency

Time (h)

C
P

U
 (

%
)

Figure 5.35: CPU usage of three routing algorithms

Fig. 5.35 shows the overhead in terms of CPU usage. The x-axis denotes the experimental time.

The y-axis shows the average CPU usage in percent of all nodes. The colors represent different

routing algorithms. For this evaluation, we only consider Epidemic Routing, ProgDTN Epidemic,

and ProgDTN Emergency to quantify the overhead of the CPU and the potential savings using

a custom routing algorithm. The blue curve, representing Epidemic Routing, gives a baseline for

system load that correlates with network load shown in Fig. 5.32. Since the network saturation

increases over the experimental run, the system load increases in step. The red curve shows

the re-implementation of Epidemic Routing in ProgDTN. As expected, it introduces a higher

CPU usage, which is due to the increased computational load introduced by the constant

re-initialization of the JavaScript VM. The custom routing algorithm, as represented by the

turquoise line, by contrast, shows the smallest CPU load, even though it also makes use

of the same system as ProgDTN Epidemic. The reason is that if there are fewer bundles to

transmit, the JavaScript VM is invoked less often, reducing the overall system load due to fewer

transmissions. Thus, by reducing the number of transmissions, we can conserve computing

power and therefore also electrical power in cases where a device might be battery-powered.

To summarize, ProgDTN Emergency achieves excellent results and outperforms all other routing

algorithms in all metrics. The results of PRoPHET show that a routing algorithm not designed

for a particular scenario does not achieve any satisfactory results. Epidemic Routing achieves

152

5.5 ProgDTN: Programmable Disruption-tolerant Networking

good results for smaller payload sizes and a small numbers of bundles per node, but its delivery

ratios decrease below 50% for high network load, while ProgDTN Emergency still achieves

99.9%. DTLSR also achieves excellent delivery ratios and delivery times, but its overhead in

terms of meta-bundles is significant compared to ProgDTN Emergency. Finally, Binary Spray

& Wait performs considerably well, but requires more transmissions to achieve comparable

results to ProgDTN Emergency.

5.5.6 Summary

We presented ProgDTN, a novel approach to support Programmable Disruption-tolerant Net-
working by allowing network operators to program a node’s routing behavior based on context

information, without requiring knowledge of the router’s interior workings. Our experimental

evaluation showed that a programmable DTN routing algorithm tailored to a specific scenario

achieves excellent results in terms of up to 99.9% delivery ratio while reducing unnecessary

transmissions by 92.9% compared to state-of-the-art DTN routing algorithms in an emergency

response scenario. We achieved a low delivery time of bundles (1 – 15 seconds), and low

overhead in terms of CPU utilization and routing decisions.

Based on the classification in this thesis, ProgDTN can be considered a smart solution. The

classification presented in Figure 5.1 on page 80 compares the approach presented in this

section with the conventional routing algorithms DTLSR, PRoPHET, Binary Spray & Wait, and

Epidemic Routing in terms of information analysis cost and achievable quality. There are two

main QoS metrics: the delivery ratio, i.e., the number of bundles sent that have reached their

destination, and the delivery times, i.e., the time it takes for a bundle to reach its intended

recipient. The bundle overhead is considered as the primary cost metric, i.e., the percentage

of metadata bundles. As additional metrics, local storage, CPU usage, and routing decision

time could be compared, but in the experiments it has been shown that the differences are

negligible.

Delivery

Rate

QoS Deliv-

ery Rate

Median

Delivery

Time (ms)

QoS Deliv-

ery Times

Overall

QoS

Bundle

Overhead

Epidemic 69.46 % 1.00 3.18 1.00 1.00 0

Binary Spray 90.98 % 1.31 1.30 2.45 1.88 0

PRoPHET 70.77 % 1.02 0.72 4.42 2.72 2.35

DTLSR 96.15 % 1.38 0.62 5.13 3.26 19.94

ProgDTN 99.8 % 1.44 0.75 4.24 2.84 2.11

Table 5.9: Classification of the ProgDTN configuration with 50 bundles per node of 1 MB size

In Table 5.9, bundle delivery rates, delivery times, and bundle overhead as presented in Section

5.5.5 are shown. The overall QoS is the averaged QoS of the delivery rates and delivery times.

Regarding information analysis cost, since Epidemic and Binary Spray do not require any

additional communication, there is an overhead of 0. As shown in Figure 5.1, while the overall

153

5 Smart Adaptive Disruption-tolerant Networking

QoS of DTLSR is higher than the other approaches, the costs are disproportionately high.

ProgDTN and PRoPHET are comparable in both QoS and cost, as we can draw from the

experimental evaluation that ProgDTN reaches an almost 100% delivery rate compared to

about 70% for PRoPHET, while the median delivery time only differs by a few nanoseconds.

Depending on the task, the QoS weighting may be different, e.g., for a smart distributed sensing

scenario only delivery might be important, while for an emergency response scenario both

metrics are equally important. In essence, the approach of ProgDTN allows network operators

to trade off information analysis cost for QoS depending on the particular scenario.

5.6 LoRa-based Device-to-Device Smartphone Communication

5.6.1 Introduction

The communication technologies developed and deployed in the last decades are integral parts

of our daily life and are used by mobile phones, computers, or smart applications in homes and

cities. Today’s smartphones, however, highly depend on the availability of telecommunication

infrastructures, such asWi-Fi or cellular technology (e.g., 3G, LTE, or the upcoming 5G standard).

However, there are situations in which either no communication infrastructure is available or

only at a high cost, e.g., in remote areas ([Gar11]), in the agricultural sector ([Eli+18]), as a result

of disasters ([MB07]), or due to political censorship ([Liu+15]). Furthermore, in countries with

less evolved infrastructures, e.g., due to low population densities or due to economic reasons,

cellular networks often cannot be used at all or cannot be established in an economically

feasible manner. In this case, low-cost communication technologies would give people the

possibility to communicate with each other ([KW16]). However, while modern infrastructure-

independent technologies do exist, these are often only accessible to advanced users due to

regulations, high costs, or technical complexity. To make these technologies accessible to a

broad user base, they need to be integrated into devices already known to users.

We propose to use LoRa wireless technology as a communication enabler in such situations.

LoRa (Long-Range) is a long range and low power network protocol designed for the Internet

of Things to support low data rate applications ([Hor10]). It consists of a proprietary physical

layer, using the Chirp Spread Spectrum (CSS) in the freely usable ISM bands at 433, 868, or

915 MHz, depending on the global region. The additional MAC layer protocol LoRaWAN is

designed as a hierarchical topology. A set of gateways is receiving and forwarding messages of

end devices to a central server that processes the data. While LoRa itself has to be licensed by

the Semtech company and implemented in specific hardware, it is independent of LoRaWAN

and can thus be used in a device-to-device manner.

In this section, an approach to equip existing mobile devices with LoRa technology, by dis-

tributing small System-on-a-Chip (SoC) devices supporting multiple Radio Access Technologies

(RATs), is presented. There are several commercially off-the-shelf microcontroller units (MCUs)

available supportingWi-Fi, Bluetooth, and LoRa.We propose to use these low-cost devices to up-

grade existing smartphones, laptops, and other mobile devices for long range infrastructure-less

communication. To reach this goal, we present a custom firmware for Arduino-SDK compatible

boards, called rf95modem. Existing mobile devices can be connected to a board through a serial

connection, Wi-Fi, or Bluetooth. As a general solution, we propose to use modem AT commands

154

5.6 LoRa-based Device-to-Device Smartphone Communication

as an interface for application software. This interface can then be exposed through different

communication channels and used by application software without requiring LoRa specific

device drivers. Since these boards are cheap and do not require laying new cables or setting

up communication towers, these boards can either be distributed to people living in high-risk

areas beforehand or handed out by first responders during the event of a crisis.

To demonstrate the functionality of our implementation, we first present a cross-platform

mobile application for device-to-device messaging. This re-enables basic infrastructure-less

communication capabilities in disasters. Second, we present an integration of our implemen-

tation into a disruption-tolerant networking (DTN) software. Although the low data rates of

LoRa are not sufficient to support multimedia applications, sensor data, e.g., in agricultural

applications or environmental monitoring, as well as context information for further DTN

routing decisions can be transmitted through the LoRa channel. To illustrate the benefits of

our approach, the developed device-to-device messaging app, as well as our DTN integration

are tested through experimental evaluations in an urban and a rural area.

To summarize, we make the following contributions:

• We present a novel free and open source modem firmware implementation for LoRa-

enabled MCUs, featuring a device-driver independent way of using LoRa via serial,

Bluetooth LE, and Wi-Fi interfaces.

• We present a novel device-to-device LoRa chat application for a) Android and iOS smart-

phones and b) traditional computers.

• We present a freely available and open source integration of long range communication

into a delay-tolerant networking software.

• We experimentally evaluate the proposed approach by conducting field tests in an urban

environment as well as in a rural area and performing energy measurements of multiple

devices.

• The presented rf95modem software
42
, the device-to-device chat application

43
, the in-

tegration into DTN7
44

and the experimental evaluation code fragments
45

are freely

available.

Parts of this section have been published in Jonas Höchst, Lars Baumgärtner, Franz Kuntke,

Alvar Penning, Artur Sterz, and Bernd Freisleben. “LoRa-based Device-to-Device Smartphone

Communication for Crisis Scenarios.” in: 17th International Conference on Information Systems
for Crisis Response and Management (ISCRAM 2020). Blacksburg, Virginia, USA, May 2020.

Parts of this section will appear in Jonas Höchst, Lars Baumgärtner, Franz Kuntke, Alvar

Penning, Artur Sterz, Markus Sommer, and Bernd Freisleben. “Mobile Device-to-Device Com-

munication for Crisis Scenarios Using Low-cost LoRa Modems.” in: Disaster Management and
Information Technology: Professional Response and Recovery Management in the Age of Disasters.
ed. by Hans Jochen Scholl, Eric E. Holdeman, and F. Kees Boersma. Springer Nature, 2022.

42https://github.com/gh0st42/rf95modem/, MIT License

43https://github.com/umr-ds/BlueRa, MIT License

44https://github.com/dtn7/dtn7-go, GNU General Public License v3.0

45https://github.com/umr-ds/hoechst2020lora

155

https://github.com/gh0st42/rf95modem/
https://github.com/umr-ds/BlueRa
https://github.com/dtn7/dtn7-go
https://github.com/umr-ds/hoechst2020lora

5 Smart Adaptive Disruption-tolerant Networking

5.6.2 Related Work

[Aug+16] experimentally evaluated the foundations of LoRa. The authors built a LoRa testbed

and conducted different tests including receiver sensitivity and network coverage. LoRa’s Chirp

Spread Spectrum (CSS) modulation technique allows to decode received signals from -120

to -125 dBm, depending on the spreading factor (SF). The network coverage was examined

in a suburb of Paris using SFs of 7, 9, and 12, based on different test locations. With SF7 and

SF9, distances of 2.3 km were reached with less than 50% packet loss. Using SF12, the packet

delivery ratio at the highest distance of 3.4 km was 38%.

[BVR16] investigated the current LoRaWAN protocol and proposed an alternative MAC layer to

be used with LoRa, making use of multi-hop communication. [Wix+16] evaluated the properties

of LoRaWAN for wireless sensor networks, demonstrating reliable usage of LoRa up to 2.2 km

in an urban scenario.

[Bau+18] proposed to use LoRa for environmental monitoring. In the included LoRa evaluation,

ranges of 4.6 to 6.5 km with the base station placed on a high building were achieved depending

on the antenna and the frequencies in use. Furthermore, the concept of a unified radio firmware

was introduced, but only limited functionality was implemented and evaluated.

Long range peer-to-peer links were investigated by [Cal+19]. The authors showed experimen-

tally that with an increased SF the Received Signal Strength (RSS) did not change but the

Signal to Noise Ratio (SNR) was increased, proving the better decoding ability. Distances of up

to 4 km in a line-of-sight and 1 km in a forested terrain were achieved.

[Dee+19] created an overview of wireless technologies for post-disaster emergency communi-

cation. They identified three disaster network scenarios: congested network, partial network,

and isolated network. In isolated networks, the user devices have to deploy a new network to

provide temporal wireless coverage. This could be achieved with drone-assisted communication

or mobile ad-hoc networks (MANETs). The advantage of the latter is high redundancy: a failure

of individual nodes is not necessarily mission-critical.

[Lie+17] analyzed multiple disaster scenarios to highlight the main communication issues that

occurred. The depicted scenarios are based on unavailable or broken communication infras-

tructures. In particular, the authors proposed an architecture that incorporates delay-tolerant

MANETs to be independent of any fixed infrastructure. Additionally, the authors focused on

communication tools that ordinary civilians can use, since civilians typically do not possess

their own dedicated communication facilities, in contrast to disaster relief organizations.

By analyzing 49 crisis technology articles that focus on mobile apps in disaster situations,

[Tan+17] illustrated that disaster communication is shifting away from authority-centric

approaches towards approaches that integrate and engage the public. The authors argued

that supporting on-site collaboration (e.g., by chatting) is the main purpose of mobile apps for

disaster situations.

According to [Kau+18], the widespread use of smartphones provides opportunities for bidi-

rectional communication between authorities and citizens. The authors developed the app

156

5.6 LoRa-based Device-to-Device Smartphone Communication

112.social for communication between authorities and citizens during emergencies. The au-

thors argued that further research in the area of infrastructure-less technologies for emergency

communication apps is required to provide new opportunities.

[Sci+18] presented an infrastructure-less solution for emergency communication by combining

LoRa modules with smartphones. In their approach, the LoRa transceiver was hooked directly

to the smartphone via USB to achieve higher communication ranges compared to conventional

wireless transmission technologies (e.g., Wi-Fi). Thus, only Android devices work with this

approach, and the solution is tightly coupled to the emergency communication app provided

by the authors. [Olt+13] used an USB dongle to access ZigBee nodes through an Android app.

These USB connected devices were later also identified by [STD20] as being problematic and

tackled through the addition of an extra Bluetooth bridge. This setup is still tailored to the

provided emergency application of the authors and has higher complexity, bill of materials,

and energy consumption compared to our approach.

5.6.3 Design

In this section, the design goals of the proposed approach are discussed. First, general prin-

ciples of using LoRa on smartphones are covered. Second, design goals of a generic LoRa

modem firmware are presented. Third, requirements for a device-to-device chat application

are examined. Finally, thoughts on integrating LoRa into disruption-tolerant networking are

presented.

Enabling LoRa on Smartphones

To extend smartphones and other common devices by infrastructure-less communication

technologies, a generic interface must be designed. While these devices offer a variety of

communication technologies, only few are shared across different categories of devices. Ethernet

and USB may be available on most devices including laptops and routers, but smartphones can

utilize these connections only using special adapters, if at all. However, all of the mentioned

devices offer Wi-Fi and/or Bluetooth interfaces. Furthermore, the used approach should be

based on low-energy solutions, since in the described scenarios power supply may be limited

or not available. In the following, we present a modem firmware, called rf95modem, for LoRa

MCUs that can enable access to the LoRa hardware through other communication channels.

Modem Firmware

Figure 5.36 shows how different devices can be connected to a modem board. There are several

commercial off-the-shelf micro-controller boards available that include a LoRa transceiver and

thus can be used for the proposed functionality. With our approach, we aim to support the

majority of these boards by providing a hardware abstraction layer across all of them. Thus, the

provided implementation supports a wide variety of available boards, e.g., the LilyGO TTGO

157

5 Smart Adaptive Disruption-tolerant Networking

900MHz

4:40

Bluetooth LE

Serial

Wi-Fi

Figure 5.36: ESP32-based modem board and its connection options for smartphones, single-

board computers, and laptops.

LoRa series
46
, Adafruit’s Feather 32u4 and M0 boards

47
or the Heltec Automation WiFi LoRa

32 and Wireless Stick (Lite)
48
. Some of these boards only provide LoRa and a serial interface

via USB, but others also provide Wi-Fi and Bluetooth. The modem firmware is supposed to be

controllable through AT commands similar to classic modems or various smartphones. Thus,

no specific device drivers are needed to send and receive data via the rf95modem firmware.

Finally, the firmware should be flexible enough and easily configurable to only ship the code

actually needed for the device and the scenario in which it is used.

Incentivizing LoRa Usage

An important challenge in establishing emergency networks is the availability of hardware

and software to users when an emergency happens. If users find themselves in an emergency

situation with an infrastructure failure, they either have to wait until the infrastructure is

restored, they are equipped with new technology, e.g., from the emergency services, or they

can use existing and already known devices and technologies. The latter case has the clear

advantage that rudimentary communication and, in particular, emergency calls are possible

without involving third parties. For the technology presented here to have an impact, it is

necessary for users to be able to use it meaningfully outside of a crisis, to gain experience with

it, and to avoid the need for elaborate steps in the event of a crisis. In this section, we outline

some use cases where LoRa-based communication is helpful in everyday life and can get users

to familiarize themselves with LoRa technology.

46http://www.lilygo.cn/pro.aspx?FId=t3:50003:3, Xing Yuan Electronic Technology Co., Ltd.,

LongGang, Shenzhen, China

47https://www.adafruit.com/product/3178, Adafruit Industries, LLC, 150 Varick Street, New York 10013,

USA

48https://heltec.org/proudct_center/lora/lora-node/, Heltec Automation, Longtan Industrial Park,

Chengdu, China

158

http://www.lilygo.cn/pro.aspx?FId=t3:50003:3
https://www.adafruit.com/product/3178
https://heltec.org/proudct_center/lora/lora-node/

5.6 LoRa-based Device-to-Device Smartphone Communication

A strong use case for LoRa outside of emergency communication are outdoor activities, in

which people are in areas of bad or completely missing cellular coverage. While in skiing

areas cellular networks are built due to commercial interest, many activities depending on less

infrastructure suffer from amissing communications infrastructure. Using LoRa communication

among the participants of a group or even among different groups in the same area can be

very useful for coordination, e.g., if a part of the group separates and looks for food, water

or firewood. Even in the case of unintentional separation, e.g., if the group gets lost while

canoeing, this infrastructure-free communication can be helpful to find each other again.

There are several commercially available products that support the case for a companion device

offering infrastructure-free communication, such as GoTenna
49
, MeshTastic

50
, or Beartooth

51
.

A second incentive for using LoRa is gamification, e.g., by deploying beacons through volunteers

in certain locations. Beaconing can be implemented as a service on already existing LoRa

infrastructure, such as on LoRa gateways or even on weather stations or other IoT devices. The

goal of the game would be to collect as many beacons as possible and thus prove that a player

has actually visited the locations. To make cheating in the game more difficult and to introduce

another component for the competition of different players, the beacons are generated and

signed based on a timestamp.

A third use case for LoRa in everyday life is a public message board that is enhanced by local

information. Important information of the city, e.g., for visitors but also for people who live

in the city can be announced via LoRa, e.g., local weather recordings, traffic information, or

information in potentially dangerous situations, such as power outages, fires or terrorist attacks.

The inherent property of a location-based limitation allows effective and efficient distribution

of location-based information and can also be used for marketing purposes.

A Device-To-Device Messaging Application

To enable communications in rural areas or in situations after disasters, mobile applications play

an outstanding role for various reasons and support a variety of communication technologies

like cellular, Wi-Fi, and Bluetooth. Therefore, we designed a mobile application to support

off-grid communication in the scenarios mentioned above. In particular, in crisis situations,

it is important that users do not first have to familiarize themselves with new paradigms or

UI/UX concepts and are not confronted with technical terms that are incomprehensible to

laypersons. Therefore, our application should use Bluetooth Low Energy (BLE) as the primary

connection technology. Bluetooth is widely accepted as a technology to create one-to-one

connections and exchange data between the involved peers, whereas Wi-Fi is usually used

to access information from a central place. Therefore, the Bluetooth paradigm fits better to

the given scenario. Additionally, Bluetooth is more energy efficient compared to Wi-Fi, which

makes it the appropriate technology to use in this case. To further reduce barriers in app

usage, our app should automatically connect to nearby modem devices without any further

actions required by the user. This increases the chances of instant access to the communication

infrastructure in cases of emergencies. The app should also be able to receive messages in the

49https://gotenna.com
50https://meshtastic.org
51https://beartooth.com

159

https://gotenna.com
https://meshtastic.org
https://beartooth.com

5 Smart Adaptive Disruption-tolerant Networking

background, e.g., when the user leaves the application. Additionally, the user should not worry

about using a specific mobile device. It is therefore crucial to provide a platform-independent

application that is usable on the most popular mobile platforms iOS and Android.

To get people in contact as fast as possible without prior exchange of IDs, usernames or alike,

the application should follow a public message board paradigm, similar to Twitter, where users

can post short messages to a publicly visible channel. Here, users can send messages visible for

all and ask for help or provide status information. This approach gives users easy and fast access

to a communications method. Users should have an easy and fast way to find new channels

and create channels for specific topics. Finally, users should be presented with a common and

familiar look-and-feel including accessibility features so that no one is excluded.

Disruption-tolerant Networking

For crisis scenarios, DTN is a technology to enable infrastructureless communication using

an emergency infrastructure in conjunction with existing devices of users ([Bau+16; Lie+17]).

DTNs benefit from a large number of devices storing and forwarding messages to other devices

when they become available. Today, end user focused DTNs are mostly based on ad-hoc Wi-

Fi and Bluetooth, since these are available in the mobile devices used by the users. Due to

slow data rates and duty cycle restrictions introduced by regulation, LoRa in DTNs is not

suited for larger data transmissions, such as multimedia content, but is helpful to transmit

context information or small messages. LoRa can be used to connect different local clouds of

people, where smaller messages available inside the cloud can be transmitted to another cloud.

Modern DTN routing algorithms use context information to reduce overheads introduced

by unnecessary transmission ([Gra+18a]). We propose to add LoRa to existing delay- and

disruption-tolerant networks to enable larger spatial low-bandwidth coverage, in order to

propagate small messages and context information. To facilitate the use of LoRa in DTN

networks, an exemplary integration should be implemented that can use LoRa via Bluetooth,

Wi-Fi, or a serial connection and thus is available on mobile devices and static nodes added in

crisis scenarios.

5.6.4 Implementation

In this section, the implementations of the rf95modem firmware, the device-to-device messaging

application, and the integration into disruption-tolerant networking software are presented.

Modem Firmware

Since a rf95modem should be controlled by AT commands over all of its available connection

mechanisms, handling such commands is an essential part of the implementation. Therefore,

this functionality is shared across all supported hardware platforms and connection mecha-

nisms, as shown in Figure 5.37. Here, the software components are displayed in blue while the

rest represents the underlying hardware modules. For interaction with users and software, the

serial device interface, usually accessible via USB, is always active. Furthermore, the in-/output

160

5.6 LoRa-based Device-to-Device Smartphone Communication

MODEM Logic

RF95

Serial BLE WiFi Display

ESP32 Cortex M0 ATmega
32u4

Figure 5.37: Overview of the rf95modem architecture.

functions may also be hooked to the Bluetooth Low Energy or WiFi modules we developed,

if enabled at compile time. Any output is mirrored to all enabled interfaces that can be used

simultaneously.

To achieve optimal results on various hardware platforms and configurations, all features and

hardware configurations can be set using build flags. For example, the SPI pin configuration

and the underlying CPU architecture must be configured, as well as the base LoRa frequency.

Currently, we support ESP32-based boards with RF95-compatible LoRa transceivers as well as

some Cortex M0 and ATmega32u4-based boards, such as the ones produced by Adafruit for

the Feather line of devices.

For the ESP32 boards, we provide a WiFi mode featuring two different ways of communication

that can be used in parallel. In both cases, an access point is opened by the device itself for

modem users to connect to. The first mode is UDP-based and just broadcasts the modem

output to the local network and interprets incoming AT commands via datagram packets. This

is especially useful if many local devices want to listen on incoming transmissions. The second

mode is the TCP exclusive mode. Here, a single TCP connection is accepted that can then control

the model similarly to a serial interface. Since the ESP32 boards also feature Bluetooth, they can

be used to announce a BLE characteristic for interaction with the rf95modem. This interface acts

similarly to the others by interpreting strings received via a write characteristic as AT modem

commands. The output is shared via a notify characteristic to which devices can subscribe. BLE

is supposed to have a payload limit of 20 bytes, and thus splitting the serial output into smaller

chunks is necessary. Our tests on various platforms, e.g., iPhones and Raspberry Pis, have

shown that sending much larger packets via BLE is often also possible and much more efficient.

Therefore, sending overlong frames via BLE can optionally be activated during runtime via a

specific AT command. Finally, there is also a software module to support OLED displays as

they are pretty common on TTGOs and Heltecs ESP32 devices. If enabled at compile time,

these can be used to display status information such as the current frequency, packets received,

and number of packets transmitted, which can be used for debugging or providing statistical

information at a glance without the need for special hardware or software.

Since all board-specific features can be configured at compile time, the firmware can be custom-

tailored to fit even very resource-limited devices. Enabling all features at once results in a large

161

5 Smart Adaptive Disruption-tolerant Networking

a) Login screen b) Chat interface

Figure 5.38: Console-based rf95modem LoRa chat example.

firmware, which requires more flash memory and a custom partition layout, but still works

on the most common ESP32 boards. Due to the fact that all output is mirrored between the

interfaces, one can easily use two interfaces in parallel, e.g., debugging the BLE communication

via an attached serial cable. The firmware is completely written in C/C++ using the Arduino

SDK and PlatformIO as a build system.

A Device-To-Device Messaging Application

To satisfy the requirements of the messaging application, we provide two different approaches.

First, we provide a console-based user interface for traditional computers, as shown in Fig-

ure 5.38
52
. Second, for the mobile version of the application (BlueRa), we used the Flutter UI

toolkit
53
. Flutter allows developers to create platform independent apps for both major mobile

operating systems, iOS and Android, using the same code base.

Figure 5.39 gives a simplified overview of the components of the app. The top block shows the

UI classes. The application starts at the home screen, which contains a path to the settings, a

list view of the available channels and a path for joining to new channels or to create channels.

On the left, users can change their usernames or manage the app’s Bluetooth connection, each

in their own screens (the username settings screen is not shown in the figure). When the app’s

route heads over to the JoinChannelScreen, a list of available channels that the user has not
joined yet is presented. Additionally, this screen enables the user to create new channels. The

final screen is the chat screen itself, where the user can see a history of the messages in this

particular channel as well as a text field for creating and sending new messages.

Figure 5.40 shows the chat screen for the announcements channel. Using this common chat

UI/UX, the user gets a familiar look and can start messaging immediately, without the need of

getting familiar with a special UI.

As indicated by the Channel module in Figure 5.39, a channel has a name, an indicator whether

the local user has joined this channel and a list of messages. A message, on the other hand,

52https://github.com/gh0st42/rf95modem-rs
53https://flutter.dev

162

https://github.com/gh0st42/rf95modem-rs
https://flutter.dev

5.6 LoRa-based Device-to-Device Smartphone Communication

UI

SettingsScreen
UserSettingsButton
BluetoothSettingsButton

HomeScreen
SettingsButton
List(Channel)
JoinChannelsButton

BluetoothSettingsScreen
RF95Connector

JoinChannelsScreen
CreateChannelButton
List(Channel)

ChannelChatScreen
List(Message)
SendMessageButton

Data

Message
Username
Timestamp
Text
Channel
FromLocalUser

Channel
Name
Joined
List(Message)

Communication

RF95Connector
Device
ReadCharacteristic
WriteCharacteristic

Figure 5.39: Overview of the components of the app.

contains the name of the user who sent this message, a timestamp, the text itself, the channel

name and an indicator whether the message was sent from the local user.

The connection to the rf95modem device is implemented in its own module, RF95Connector.
This module holds the device ID and Bluetooth connection state, as well as the read and write

characteristics for the serial communication service. Additionally, this module also implements

data and message handling. When sending a new message, all required data is serialized to

the appropriate format and sent to the modem using the write characteristic. Furthermore, a

receive listener gets notified, as soon as new data is available in the read characteristic. The

received data is parsed and the internal channel- and message database is updated. If the

channel of the received message is already present, the message is appended to the channel’s

message list. Otherwise, a new channel in the local database is created with the received

message. This new channel will be presented in the JoinChannelScreen, so that users can join

this channel if they want to.

We used a simple communication protocol for sending and receiving messages. It consists of

the channel name, a user name, an optional location and the actual message separated by

vertical bars. Following this simple protocol design, it is possible for any communication device

to communicate with the app, regardless of the capabilities and available serialization libraries

like JSON, CBOR, or Protocol Buffers.

163

5 Smart Adaptive Disruption-tolerant Networking

Figure 5.40: Screenshot of the chat screen for the announcements channel.

Disruption-tolerant Networking

To use LoRa in disruption-tolerant networking, we have extended the DTN7 implementation
54

introduced by [Pen+19]. Within the DTN context, the communication interface for bundle

exchange between nodes is called convergence layer. We have implemented the convergence

layer interface provided by DTN7 to achieve LoRa support.

To integrate rf95modem’s serial link into DTN7, we have first developed a library
55
, written in

the Go programming language. This library’s main task is to provide Golang typical interfaces

54https://github.com/dtn7/dtn7-go
55https://github.com/dtn7/rf95modem-go

164

https://github.com/dtn7/dtn7-go
https://github.com/dtn7/rf95modem-go

5.6 LoRa-based Device-to-Device Smartphone Communication

for writing and reading data streams through rf95modem. Furthermore, status information of

the modem can be read and reconfigured.

Fragment

+ TransmissionID: byte
+ SequenceNo: byte
+ StartBit: bool
+ EndBit: bool
+ FailBit: bool
+ Payload: []byte

OutgoingTransmission

IncomingTransmission

Transmission

+ TransmissionID: byte
+ Payload: []byte

+ IsFinished(): bool

ConvergenceReceiver

+ Receive(): chan Bundle

ConvergenceSender

+ Send(Bundle)

Convergence Layer

BBC

Connector

Rf95Modem

Modem

+ Mtu(): int
+ Send(Fragment): error
+ Receive() (Fragment, error)

Fragment
generation

Fragment
assembly 0..*send / receive

Fragments

Figure 5.41: Simplified implementation model of the Bundle Broadcasting Connector.

Until now, DTN7 only had support for unicast convergence layers, while the transmission of

LoRa packets corresponds to a broadcast. Since most broadcast technologies are similar in

structure, we first developed a generic broadcasting convergence layer, the Bundle Broadcasting

Connector (BBC). Its simplified implementation model is shown in Figure 5.41.

Themain component of the BBC package is the connector that implements DTN7’s convergence

layer interfaces for both sending and receiving bundles. The connector itself communicates with

a modem, which is an interface implemented in rf95modem-go and a mock object for testing.

Each modem reports its MTU such that transmissions can be fragmented accordingly.

With regard to transmissions, the BBC makes a distinction between incoming and outgoing

ones. Both types have an identifier and can determine whether they have finished. If a bundle

should be sent via our BBC, an outgoing transmission with a new identifier will be generated.

This identifier is derived from the node. Every node is initialized with a random identifier,

which is then incremented for each transmission. The payload is the xz56 compressed bundle.

As long as the transfer is not completed, the connector requests a new fragment. Its length

including headers must not exceed the modem’s MTU. This is then handed to the modem,

which broadcasts it via LoRa in our case.

The network protocol specification of a fragment is shown in Figure 5.42. A fragment itself

consist of a header of two bytes, followed by the payload. In the header, the identifier of the

transmission is referenced next to a sequence number. Each fragment contains the incremented

56https://tukaani.org/xz/format.html

165

https://tukaani.org/xz/format.html

5 Smart Adaptive Disruption-tolerant Networking

0 1 2 3 4 5 6 7

Transmission ID

Sequence No. Start End Fail

 Header

Payload

Figure 5.42: Protocol specification of a fragment.

sequence number of its predecessor. Thus, lost fragments can be detected in advance. In

addition, the header has three flags. The start bit indicates the beginning of a new transmission,

while the end bit indicates its end. A fail bit is set for status packets that imply the absence of

fragments.

When receiving fragments, the modem forwards them to the connector. This checks whether

the transmission identifier is already known. If this is the case, the fragment is added to

the incoming transmission. Otherwise, a new incoming transmission is created. Once the

transmission is finished, the entire payload is extracted and decompressed. The resulting

bundle will be passed back to DTN7’s logic. However, if a reception error occurred, e.g., due to

a skipped sequence number, a status packet is sent. This packet is equal to the last fragment,

except that the fail bit is set and the payload is empty. Reception of such a packet by the sender

marks the transmission as faulty. As a result, DTN7 will re-trigger the transmission at a later

time.

5.6.5 Experimental Evaluation

In this section, LoRa protocol properties are discussed, and the presented implementations are

evaluated through experiments.

LoRa in Device-to-Device Scenarios

LoRa as a long range protocol is limited in terms of bandwidth, since the resilient encoding

scheme introduces some overhead and a duty cycle needs to be followed to fairly use the shared

medium. To understand the limitations of LoRa communication, some application-oriented

examples are discussed.

Figure 5.43 shows the payload sizes compared to the airtime required for sending with different

spreading factors (SF), where the coding rate is set to 4/5. The presented SF and channel

bandwidth examples are taken from the EU standards ([All18]). The message length of LoRa

is limited depending on the SF to limit the airtime each individual message requires. The

highest SFs are limited to a payload of 51 bytes. Using SF9, the payload can can go up to 115

166

5.6 LoRa-based Device-to-Device Smartphone Communication

0 50 100 150 200
Payload Size (Bytes)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Pa

ck
et

 A
irt

im
e

(s
)

SF12/125kHz
SF11/125kHz
SF10/125kHz
SF9/125kHz
SF8/125kHz
SF7/125kHz
SF7/250kHz

Figure 5.43: Exemplary packet airtime in different LoRa profiles.

bytes, and in the fastest SFs 8 and 7, messages can contain up to 222 bytes. SF12 packets,

with the maximum payload of 51 bytes, take up to 1.92 seconds airtime, while 222 bytes in

SF7/250 kHz only take 0.16 seconds. When using LoRa for emergency communication, different

profiles can be used to model, e.g., the importance of messages. Public service announcement

of governmental institutions, including messages of rescuers can be sent in more resilient

configurations, while chats of users helping each other in emergency situations can be limited

to smaller areas, to cope with the limitations of the protocol.

Device-To-Device Smartphone Communication

We evaluated our proposed infrastructure-less LoRa communication via real world tests that

cover two scenarios: (a) city area communication, and (b) rural area communication.

The motivation for scenario (a) are communication demands in disaster situations. By having

a low-cost companion device that extends the infrastructure-less communication range of our

everyday devices could be a real benefit for such scenarios. However, the inherent characteristics

of cities, e.g., the high density of buildings, are a major problem for each wireless technology.

Scenario (b) is motivated by the fact that some rural areas, also in industrial countries, are still

not covered by mobile networks (GSM, 3G, 4G, 5G). The expectations of the tests in the rural

areas therefore differ, since regions without obstacles might easily get good coverage, while

areas with many trees might suffer from worse connections.

167

5 Smart Adaptive Disruption-tolerant Networking

Experimental Setup

For the conducted tests, we used one fixed and one mobile station. The fixed station consists

of a laptop logging the incoming messages. Figure 5.44 shows the mobile station, consisting of

a smartphone in combination with a Heltec Wireless Stick driven by a Powerbank. The default

antenna was replaced by a +3dBi model, connected via SubMiniature version A (SMA). The

antennas of each station were 1.5 meter above the ground, in order to model realistic usage in

device-to-device scenarios.

Figure 5.44: Mobile station: smartphone, power bank, and Heltec wireless stick.

First, we selected one exemplary region for each of our two considered scenarios. The fixed

station was then placed in the middle of the selected area and started listening for incoming

messages. For reproducibility and accuracy, we scripted message generation and sending on

the mobile station, such that every 15 seconds one message including a GPS position was

sent via Bluetooth LE and broadcasted by the companion device. The mobile station was then

moved away from the static station until no message could reach its counterpart anymore. To

observe a realistic model of device-to-device communication, the mobile station was moved in

multiple directions. The tests in both scenarios were repeated using two LoRa profiles provided

by rf95modem: (a) Medium Range: Bandwidth: 125 kHz, Cr: 4/5, SF7, and (b) Long Range:

Bandwidth: 125 kHz, Cr: 4/8, SF12. Due to the simplicity of our test procedure, we did not get

the maximum possible distances of our exemplary regions, but two real world setups, with

distances that work even with the simple out-of-box experience of the rather low-cost Heltec

wireless sticks.

168

5.6 LoRa-based Device-to-Device Smartphone Communication

Results

By analyzing the logs of the smartphone applications that transmit GPS locations of each sent

message, we were able to calculate the distances of reliable communication setups between all

participants for each scenario.

Scenario Mode Maximum Distance

City (a) Medium Range 1.09 km

(b) Long Range 2.89 km

Rural Area (a) Medium Range 1.31 km

(b) Long Range 1.64 km

Table 5.10: Maximum distances achieved in the different areas and tested LoRa profiles in the

conducted experiments

Table 5.10 shows the maximum distances of the conducted tests. For the Medium Range

configuration, 1.09 km in the city area and 1.31 km in the rural area could be achieved. With

the rather high data rate of 5.47 kbps, the mode is a good choice in dense areas, where a

larger amount of messages might occur, and airtime is limited. In the Long Range profile, 1.64

km could be achieved in the rural area, while in the city scenario, some messages could be

transmitted from 2.89 km range.

Figure 5.45 shows the results of the conducted tests in the city area. The orange dots denote the

Medium Range profile, while the red dots show the successful transmissions in the Long Range

profile. In the size of the markers, the Received Signal Strength Indicator (RSSI) is visualized.

The larger the marker, the better the RSSI is. Note that in LoRa a higher SF enables a higher

chance of successful decoding under worse RSSI values. In the presented results, it is evident

that LoRa works well as long as no obstacles are in the way. The maximum distance in the

city area was achieved in the valley going through the city. Even though obstacles, such as

buildings, were in the way, the signal could reach the other peer well. When moving behind a

hill, such as in the western or eastern parts of the presented map, the signal was not able to

penetrate the obstacle.

In Figure 5.46, the successful LoRa transmission of the rural area are presented. As excepted,

the transmission range in the forested area is worse compared to the unforested area. In the

presented example, the northern part of the map consists of a forested area, while the southern

part is mostly not forested. From the plot, it can be observed that in the non-forested valley area,

RSSI is high, and all LoRa messages are successfully transmitted in both modes. When forested

areas and hills are in the line of sight, the RSSI worsens and quickly becomes unavailable. In

Long Range mode, transmission in forested places improves and messages are successfully

transmitted through up to 600 meters of forested area.

In Figure 5.47, the observed RSSI values in relation to the distances are presented. With the

Long Range profile, signals with RSSI values of up to -140 dBm can be decoded successfully,

while in the Medium Range profile the limit is around -130 dBm.

169

5 Smart Adaptive Disruption-tolerant Networking

Figure 5.45: Successful LoRa transmissions in the city area.

In general, this shows that LoRa is a viable option to enable device-to-device communication

in crisis scenarios, where infrastructure is destroyed or temporarily not available. The different

profiles of LoRa can be used to limit communication to a certain area and therefore allow

higher data rates, or cover a larger area and therefore reach out to more people.

170

5.6 LoRa-based Device-to-Device Smartphone Communication

Figure 5.46: Geo-positions of successful LoRa transmissions in a rural area.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Distance (km)

140

120

100

80

60

RS
SI

 (d
Bm

)

City, Medium Range
City, Long Range
Rural Area, Medium Range
Rural Area, Long Range

Figure 5.47: Received Signal Strength Indicator in relation to transmission distance in the

proposed device-to-device scenario.

171

5 Smart Adaptive Disruption-tolerant Networking

Interfacing Emergency Networks

When transmitting data over a disruption-tolerant network, an overhead is generated. This

is caused by the additional meta-data that a DTN bundle carries, e.g., the sender, receiver, or

other blocks of information. In addition, there is now a second overhead for the fragmentation

header of the BBC. Due to the small size of a LoRa packet, it is advisable to examine the total

size of a transmission and the number of fragments. The benefits or costs of the xz compression

should also be considered.

For our evaluation, we created two types of payload data: randomly distributed data and the

lorem ipsum placeholder text. The respective payloads were generated in the sizes of the power

of two, from 21
to 211

. For this purpose, the 445 byte long lorem ipsum text was shortened or

repeated accordingly. This payload was wrapped into a DTN packet, sent from dtn://source/
to dtn://destination/ with an additional age block to set the lifetime to one hour. The

LoRa maximum payload can be up to 251 bytes in size, as instructed by rf95modem in our test

configuration.

1 512 1024 2048
Payload Size (Byte)

1
128
256

512

1024

2048

Tr
an

sm
iss

io
n

Si
ze

 (B
yt

e)

Data Source
Lorem Ipsum
Random
Compression
none
xz

1 16 128 2048
Payload Size (Byte)

1

2

3

4

5

6

7

8

9
Fr

ag
m

en
ts

Setting
Lorem Ipsum (none)
Lorem Ipsum (xz)
Random (none)
Random (xz)

Figure 5.48: Total transmission size and amount of fragments for different payloads.

The overhead of a DTN bundle is 77 bytes without compression. In Figure 5.48, the final

transmission size and the number of required fragments are shown for the two characteristics

of the payload data and its size. It is noticeable that for a random payload the transmission size

is slightly larger. However, the number of fragments is almost always the same. Furthermore,

user data is usually not randomly distributed. This is where the advantage of the compression

comes into effect, as it becomes evident especially in the low number of fragments with

compressed payloads.

We also carried out a small field test. For this purpose, three DTN nodes were installed, each

equipped with a rf95modem for 868 MHz in the Short Range profile: 500 kHz, Cr: 4/5, SF7.

The nodes were positioned so that only one node had direct radio contact with the other two.

Every time a packet is forwarded in a DTN, some meta-data is updated, e.g., the Previous

Node to specify the last relaying node. To verify the packet forwarding, we inspected the

Previous Node from the received packet. If this value does not match the packet’s sender, it

was successfully forwarded. To perform this evaluation, we prepared three nodes, n0, n1, and

n2. n1 was positioned in the midpoint, further n0 and n2 were not supposed to have direct

contact. Outgoing from n0, packets were sent addressed to n2. These should be transferred

172

5.6 LoRa-based Device-to-Device Smartphone Communication

from n0 to n1 first and forwarded from n1 to n2 afterwards. We then sent DTN packets with a

small payload so that they fit into a single LoRa packet. As a result, we observed situations

where the Previous Node was adjusted accordingly. In such a case, the round trip time took 1.7

seconds from initiating the transmission to receiving the acknowledgement of reception.

Energy Considerations

While the energy consumption of smartphones is a well studied field and battery lifetimes

of these devices are up to some days, the companion devices studied in this section are not

evaluated that well. Thus, we measured multiple devices targeted by the proposed firmware in

terms of energy usage in different energy states, namely receiving, sending, and deep sleep.

From these measurements, the required battery capacities can be inferred.

Board Receiving Sending Deep Sleep Additional Features Price

TTGO T-Fox 27 dB 392 mW 1,771 mW 61 mW WiFi, BLE, OLED, RTC 20 €

TTGO T-Fox 20 dB 400 mW 902 mW 61 mW WiFi, BLE, OLED, RTC 20 €

TTGO LORA ESP32 404 mW 782 mW 68 mW WiFi, BLE 15 €

TTGO LORA32 V2.0 393 mW 689 mW 57 mW WiFi, BLE, OLED, SD 20 €

TTGO LORA32 V2.1_1.6 387 mW 785 mW 57 mW WiFi, BLE, OLED, SD 20 €

Heltec Wireless Stick 391 mW 923 mW 76 mW WiFi, BLE, OLED 12 €

Adafruit Feather 32u4 LoRa 72 mW 648 mW 49 mW - 35 €

Adafruit Feather M0 LoRa 95 mW 697 mW <1 mW - 35 €

TTGO T-Beam v0.7 723 mW 1,125 mW 393 mW WiFi, BLE, GPS 20 €

Table 5.11: Energy consumption in receiving, sending, and deep sleep modes of rf95modem
compatible boards

The energy consumption was measured using an ODROID Smart Power Meter
57
connected to

the microUSB connector of the board and supplied 5 V.

In Table 5.11, the average energy consumption of the listed boards is presented. Since the

boards need to be online to receive messages from other boards, the receiving mode has the

highest impact on energy consumption.

The power consumption of the measured boards when receiving data shows a broad variance,

e.g., from about 72 mW for the Adafruit Feather 32u4 LoRa board up to 723 mW for the TTGO

T-Beam v0.7 board. While sending data, the required power differences become more balanced.

When deployed in sensor networks, the deep sleep power consumption becomes important.

Four of the tested boards require 49 to 76 mW in this mode, while one board requires below 1

mW. The values for deep sleep are likely caused by powering the boards through the microUSB

connection, which requires a transformation to the voltage required by the microprocessors.

Also, most boards contain a serial to USB converter, which cannot be turned off when powered

via USB.

57https://www.hardkernel.com/shop/smart-power/

173

https://www.hardkernel.com/shop/smart-power/

5 Smart Adaptive Disruption-tolerant Networking

To put these numbers into perspective, we assume a powerbank with a capacity of up to 20,000

mAh. Such powerbanks are widespread and used by smartphone users to recharge their phones.

This capacity at 3.3 volts relates to 66 Wh, and thus can power the TTGO and Heltec hardware

for more than 160 hours. The maximum receiving time can be achieved using the Feather 32u4

LoRa board with more than 900 hours of receiving time.

Scalability

When speaking of LoRa, the question regarding usability with respect to large networks and

radio interference arises. As mentioned earlier, LoRa, or more precisely any protocol in the same

frequency band, must follow a strict duty cycle of 1% with respect to time. This is mainly to

allow for fair use of the radio spectrum and to reduce collisions of packets leading to data loss.

In an emergency scenario with users sending messages in an uncontrolled and unrestricted

manner, however, it is hardly possible to enforce any such limitation. Thus, in this section we

investigate the limitations of LoRa with respect to three aspects: (a) how many active users

can be in the network before rendering it unusable due to too many collisions, (b) how many

people can be reached in which distance (i.e., how far do LoRa packets travel), and (c) what

can be done to circumvent saturated networks with respect to practical applicability.

Experimental Setup To perform large-scale tests with a high number of devices sending

data using LoRa, we rely on the NS-3 network simulator [RH10]. NS-3 allows us to simulate a

high number of users using different physical layer implementations as well as a variety of

path-loss- and propagation models. However, currently, NS-3 does neither support LoRa as

the physical layer nor the LoRaWAN data link layer. Thus, we use the LoRaWAN plugin for

NS-3 presented by Magrin et al. [MCV17]. By omitting the data link layer implementation and

sending data directly to the physical layer, the used LoRaWAN plugin can also simulate the

LoRa physical layer without the LoRaWAN data link layer, which emulates the usage of our

proposed application.

Due to the duty cycle requirements of LoRa, one main goal of this test is to explore how our

system performs under different amounts of network traffic. Furthermore, it is more likely

that such a LoRa communication application as proposed in this paper is reaching its limits

in urban environments than in rural areas due to the different population densities. Thus,

we modeled a city including suburban areas of 10 km x 10 km. We assume a population of

100,000 inhabitants, whereas their distribution follows roughly a normal distribution on both

sides of the square, where the mean is set to the center (5,000) and the standard deviation to

1,000. This results in a population distribution that is densest at the center of our hypothetical

city and decreases with higher distances. Figure 5.49 visualizes this distribution. Each cell in

the grid represents a 100 by 100 m square, where an empty cell is blue and a more crowded

cell gets brighter. We used this distribution since it roughly resembles the distribution of a

city: many people live and spend their time in the city center, while the outer areas of a city,

i.e., the suburbs, are populated less densely. Regarding the number of users, we assume that

realistically at most 1 % of the population would use such an application. Thus, we simulated

scenarios of 100 (0.1 % of the population), 500 (0.5 % of the population), and 1,000 users (1

% of the population). Finally, we modeled three different user behaviors: users sending only

174

5.6 LoRa-based Device-to-Device Smartphone Communication

Parameter Values

Simulation time 1 hour

Area 10 km x 10 km

Seed 35039

Repetitions per configuration 5

Base frequency 868.0 MHz

Users 100, 500, 1000

Messages per user 3, 10, 50

LoRa configurations (SF, BW, Payload)

1. SF7, 250 kHz, 222 bytes

2. SF7, 125 kHz, 222 bytes

3. SF7, 125 kHz, 51 bytes

4. SF9, 125 kHz, 51 bytes

5. SF12, 125 kHz, 51 bytes

Table 5.12: Experimental configurations

a few messages (3), e.g., because they are currently helping others or because they are busy

doing other things during an emergency. On the other end, we modeled users sending many

messages (50), e.g., because they are actively searching for people. Finally, an average user was

modeled to send 10 messages. During a simulation, each user sends the specified number of

messages during the simulation period of one hour, where the time a user sends its messages

is uniformly distributed across the entire simulation time.

The next parameter set refers to the LoRa parameters. For the base frequency, we used 868.0

MHz since it is predominantly and almost exclusively used in Europe. Furthermore, to test

the capabilities of different LoRa settings and their effect on both the maximum transmission

distance as well as interferences under high loads, we used five different configurations: 1.

SF7 with a bandwidth of 250 kHz using a payload size of 222 bytes, 2. SF7, 125 kHz, and 222

bytes payload, 3. SF7, 125 kHz, and 51 bytes payload, 4. SF9, 125 kHz, and 51 bytes payload, 5.

SF12, 125 kHz, and 51 bytes payload. These payload sizes were chosen as they are both the

maximum payload size of a LoRa packet for the given configuration (except configuration 4.)

and, at the same time, also provide a good reference size for typical short messages. Table 5.12

summarizes these parameters.

Furthermore, each experiment was repeated 5 times, to cope with side effects due to unfortunate

randomness, e.g., during user positioning. Finally, as the experiments require randomness for

distributing the users within the simulation area and selecting sending times within the

simulation time, we used a starting seed of 35039 and incremented this number for every

iteration of the 5 simulation repetitions resulting in 805 overall simulation runs.

175

5 Smart Adaptive Disruption-tolerant Networking

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

1000

2000

3000

4000

5000

6000

7000

8000

9000

Position (m)

P
os

iti
on

 (
m

)

Figure 5.49: User Distribution.

Applicability and Limitations Since LoRa is intended to be used as a low-bandwidth

technology, one of the primary questions one needs to ask when considering feasibility is at

what point will traffic saturate the network.

In Figure 5.50, each plot represents one distinct simulation parameter set, as described in the

previous section. Each row containing three figures shows results for different messages per

user, each column represents a different number of users. Within each figure, each bar on the

x-axis shows a different LoRa configuration with respect to SF, bandwidth and payload and the

y-axis shows the percentage of attempted transmissions which resulted in one of five states.

Note that due to the broadcast nature of LoRa, a single transmission will lead to n-1 reception

events (where n is the number of users) with potentially different results:

• Success represents successful transmissions, i.e., a user received the packet and was able

to successfully decode it.

• Failure (Signal Strength) represents users being unable to receive a packet because the

signal attenuation due to path loss was too high.

• Failure (Interference) is an unsuccessful reception due to multiple, simultaneous trans-

missions interfering with each other.

176

5.6 LoRa-based Device-to-Device Smartphone Communication

SF7, 250kHz, 222B

SF7, 125kHz, 222B

SF7, 125kHz, 51B

SF9, 125kHz, 51B

SF12, 125kHz, 51B

0

50

100

SF7, 250kHz, 222B

SF7, 125kHz, 222B

SF7, 125kHz, 51B

SF9, 125kHz, 51B

SF12, 125kHz, 51B

SF7, 250kHz, 222B

SF7, 125kHz, 222B

SF7, 125kHz, 51B

SF9, 125kHz, 51B

SF12, 125kHz, 51B

0

50

100
0

50

100

Packet State Success Failure (Signal Strength) Failure (Interference) Failure (Invalid Receiver State) Failure (Invalid Sender State)

Configuration Configuration Configuration

%
%

%

Users: 100 Users: 500 Users: 1000
M
essages

perUser:3
M
essages

perUser:10
M
essages

perUser:50

Figure 5.50: Transmission Results.

• Failure (Invalid Receiver State) means that the receiving LoRa module was in a state

in which it was unable to receive the packet. This occurs since LoRa modules cannot

simultaneously transmit and receive data.

• Failure (Invalid Sender State) is a packet reception that did not occur because the packet

was not sent at all. This can be due to either one of two reasons. One possible reason

is the sender being in receive mode when the packet was meant to be sent. Since LoRa

modules cannot send data while they are receiving, this results in a failure. The other

possible reason for this failure mode is that a LoRa module can only send a single packet

at once, thus if one tries to send a second packet while the first is still being transmitted,

the sending fails.

It can be observed that with increasing load, be it due to a higher number of users, or more

packets sent per user, or both, the probability that a packet will be received successfully

decreases. While an increase in messages seems to impact delivery somewhat more strongly

than an increase in users, the difference seems comparatively small. However, as either, or

both, load factors increase, the delivery probability quickly drops to or below 50 %.

Interference between senders plays virtually no part in the measured decrease of the delivery

ratio. Rather, the majority of unsuccessful transmissions are due to invalid hardware states,

with an invalid sender state quickly becoming the vast majority of failure conditions, followed

by an invalid receiver state. Failures due to signal attenuation do not change in any meaningful

way in between load scenarios, which is to be expected since greater or smaller loads do not

change physical constraints that are responsible for these failures. Only the most congested

scenarios result in a significant decrease of this type of failure, but this is most likely simply due

to the overwhelming effect of the invalid state failures that overpower all other conditions.

177

5 Smart Adaptive Disruption-tolerant Networking

The only parameter that has a major effect on the delivery range is the spreading factor, with

SF9 having already greatly decreased signal-strength failures, and SF12 effectively eliminating

them altogether. However, the tradeoff of higher spreading factors is obvious, since they are

the most susceptible to state failures as the load increases. Comparing the three rightmost

columns, which are identical except for different SFs, it becomes obvious that any spreading

factor greater than seven is infeasible for our use case with respect to the ratio of successfully

received packets compared to failed transmissions. Higher spreading factors increase the time

it takes to send the same amount of data. Transmitting a 222 bytes large packet using SF7 and

125 kHz bandwidth takes roughly 370 ms whereas sending 51 bytes using SF12 requires about

2800 ms airtime, i.e., 7.6 times more. This also increases the likelihood of the LoRa module being

occupied in the sending state where it can neither receive packets nor accept new packets for

transmission. The fact that sending takes longer in SF12 explains this observation.

Figure 5.51 is generated from the same data as Figure 5.50 but shows the total number of

events, rather than the percentage-based normalized values in Figure 5.50. The differences in

load that are separating the simulation scenarios can be best understood when having this

view on the data.

To summarize, it can be seen that the probability of successfully delivering a packet is highly

susceptible to network congestion. To cope with this challenge, we need to find mitigations

that allow us to prevent saturating the LoRa band, one of which we are going to present in the

following section.

While congestion may be the principal issue in the way of real-world feasibility, transmission

distance is another. Since LoRamessages are single-hop broadcasts, if two users are too far apart

for direct transmission, they can effectively not communicate. Therefore, we have to answer

the question of how far LoRa packets get depending on the experimental configuration.

Figure 5.52 shows the reception events in their spatial distribution, where the meaning of

the colors of the packet states is the same as in the above figures. Note, that in Figure 5.50

(Transmission Ranges) the failure (Invalid Sender State) is not shown because packets that could

not be sent do not have any location information and thus no distance associated. Furthermore,

the x-axis denotes the LoRa configuration, where every group of boxes is associated with

one LoRa configuration, and the y-axis denotes the distance in meters that a packet traveled

between sender and receiver.

One insight of the evaluation is that the general results of the distance evaluation do not

depend on the load of the network, i.e., they are largely independent of how many users are

sending in the network and how many packets each user sends. Thus, Figure 5.52 only shows

distances of packets for a single number of users (500) and a single configuration for the

messages per user (10). SF, bandwidth, and payload are set as discussed previously. As can be

seen in Figure 5.52, the configured bandwidth and packet payload do not affect the distance

of a transmitted packet. The first three groups show SF7 but with different bandwidths and

payloads. The distance of successful transmissions, however, does not change. With a lower

bandwidth of 125 kHz interferences occur after a slightly shorter distance, but only visible in

outliers, while the quartiles and medians do not differ significantly. The difference between

the payload with SF7 and 125 kHz bandwidth with respect to interferences can also be seen in

the outliers of the green boxes of groups 2 & 3. Here we can see that a smaller payload results

178

5.6 LoRa-based Device-to-Device Smartphone Communication

SF7, 250kHz, 222B SF7, 125kHz, 222B SF7, 125kHz, 51B SF9, 125kHz, 51B SF12, 125kHz, 51B
0

0.5M

1M

1.5M

2M

2.5M

Packet State Success Failure (Signal Strength) Failure (Interference) Failure (Invalid Receiver State) Failure (Invalid Sender State)

Configuration

Nu
m

be
ro

fE
ve

nt
s

a) 10 messages per user, 500 users.

SF7, 250kHz, 222B SF7, 125kHz, 222B SF7, 125kHz, 51B SF9, 125kHz, 51B SF12, 125kHz, 51B
0

10M

20M

30M

40M

50M

Packet State Success Failure (Signal Strength) Failure (Interference) Failure (Invalid Receiver State) Failure (Invalid Sender State)

Configuration

Nu
m

be
ro

fE
ve

nt
s

b) 50 messages per user, 1,000 users.

Figure 5.51: Transmission Results (Absolute).

179

5 Smart Adaptive Disruption-tolerant Networking

SF7, 250kHz, 222B SF7, 125kHz, 222B SF7, 125kHz, 51B SF9, 125kHz, 51B SF12, 125kHz, 51B

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Packet State Success Failure (Signal Strength) Failure (Interference) Failure (Invalid Receiver State)

Configuration

Di
st

an
ce

(m
)

Figure 5.52: Transmission ranges for 500 users and 10 messages per user.

in less interference, which is validated by the above evaluation of the transmission results.

The most influential factor with respect to transmission distances is the SF. Higher SFs result

in farther successful transmissions and fewer failures due to low signal strength. However,

this increase in transmission range also leads to a bigger area where interference can occur,

as evident in the last group of boxes representing SF12. This is explainable by the fact that

higher SFs result in an increased airtime. Thus, for SF12 it is more likely that interferences

occur, which is also reflected in the increased distance of interferences. The same argument

also applies for an increased range of failures due to invalid receiver states. The longer the

transmission takes, the higher is the probability that a user is currently in the sending state

and not able to receive an incoming packet across all distances.

In summary, these results show that LoRa is able to cover a large area of a city. Users are able

to reach other users within a radius of up to 2.9 km for SF7, 4.2 km for SF9 and 6.4 km for

SF12. Due to interferences in the ranges around 2.4 km (SF7), 3.3 km (SF9) and 4.4 km (SF12)

on the average, the usable radius is about 1.7 km, 2.2 km and 2.5 km, respectively. However, it

must be noted that the average transmission range is a result of our user distribution. With a

different geographic distribution of users, the mean transmission range also changes due to

interferences in different distances, but not the maximum. These results show that LoRa and

especially our approach is suitable to provide emergency communications with respect to the

communication range. With this transmission range, people in affected areas can communicate,

coordinate themselves, and ask for help with a high chance to reach first responders that might

not be in proximity, but are still able to receive messages due to the high LoRa transmission

range.

Building LoRa Communities As a result of the issues discussed in the previous section,

a single LoRa channel is of limited use to a city public, such as for the distribution of public

information or emergency messages. Luckily, the different international frequency bands

available for LoRa provide us with a way to implement multiple, non-interfering channels,

which can be used for better practical usability in a scenario as ours. In addition to these

separately usable frequencies, chirp spread spectrum modulation has the advantage that the

spreading factors are orthogonal, which means that messages sent with one spreading factor

180

5.6 LoRa-based Device-to-Device Smartphone Communication

do not interfere with the transmission of messages from another spreading factor. Following

the LoRa Alliance’s definition of 8 channels in the 868 MHz band and the common spreading

factors 7-12, a total of 48 independent channels are available. These channels can be used by

different communities and institutions, whereby the channel distribution is either agreed upon

in advance or negotiated among the users at a central coordination channel.

Parameter Values

Users 100

Messages per user 1, 10, 20, . . . , 200

LoRa configurations (SF, BW, Payload)

SF7, 125 kHz, 222 bytes (cf. 2.)

SF9, 125 kHz, 115 bytes

SF12, 125 kHz, 51 bytes (cf. 5)

Table 5.13: Experimental configurations for additional edge-case tests

To get an impression of the usability of a single channel, we performed additional simulations

in which the channel was used by 100 users with different message rates (1 - 200 messages per

user and hour). For this experiment series, we used spreading factors 7, 9, and 12, and their

respective maximum message lengths. A summary of the updated values used for these tests

can be found in Table 5.13.

50 100 150 200

0

20

40

60

80

100

50 100 150 200 50 100 150 200

Packet State Success Failure (Signal Strength) Failure (Interference) Failure (Invalid Receiver State) Failure (Invalid Sender State)

Messages per User Messages per User Messages per User

%

Configuration: SF7, 125kHz, 222B Configuration: SF9, 125kHz, 115B Configuration: SF12, 125kHz, 51B

Figure 5.53: Message receiving performance for different spreading factors and variable mes-

sages per user for a community of 100 users.

Figure 5.53 shows the experimental results of the proposed experiment in a community of 100

people. As already indicated in the previous experiments, the rate of successfully delivered

messages is limited by the range, especially in smaller spreading factors. For SF7, 27.6 % -

33.2 % of the messages are lost due to low signal strength, while SF9 incurs 6.3 % - 9.9 %

loss. When using spreading factor 12, the transmission time of the packets is so high that a

successful transmission is no longer possible even with a low number of messages per user. The

capacity limit of the channel can be derived by determining the intersection of the successful

deliveries and the transmission prevented by simultaneous reception, i.e., Invalid Sender State.

181

5 Smart Adaptive Disruption-tolerant Networking

Following this scheme for 100 users, a SF7 channel has a capacity of 90 222-bytes messages,

a SF9 a capacity of around 60 115-bytes messages and a SF12 channel is limited to around

20 51-bytes messages. These metrics, alongside with the range benefits and drawbacks of

individual spreading factors can help communities to decide about a configuration to establish

useful communication.

5.6.6 Summary

In this section, we presented an approach to facilitate long range device-to-device communica-

tion between smartphones in crisis situations. Our approach relies on inexpensive microcon-

trollers with integrated LoRa hardware that we enabled to receive and forward messages via

Bluetooth, WiFi or a serial connection. We developed a dedicated firmware, called rf95modem,

to provide this functionality not only in crisis situations, but also in several other applications,

such as providing a communication fallback during outdoor activities, geolocation-based games

or broadcasting of local information. To illustrate the practical relevance of our approach, we im-

plemented a novel device-to-device LoRa chat application for iOS, Android, and laptop/desktop

computers. Furthermore, we integrated LoRa using rf95modem into the disruption-tolerant net-

working software DTN7. ur experimental evaluation based on real world device-to-device LoRa

transmissions in urban and rural areas, as well as scalability tests based on simulations of LoRa

device-to-device usage with up to 1.000 active users showed that our approach is technically

feasible and enables low-cost, low-energy, and infrastructure-less communication.

The approach presented here for integrating LoRa into existing devices is not to be understood

directly as a smart system in the sense of this thesis, but rather as a support for the further

development of smart systems. The integration into DTN7 and a scenario-specific implemen-

tation or optimization based on it using LoRa technology could then be considered a smart

solution in the sense of this thesis.

182

6
Smart Transitional Wireless Networking

In this chapter, novel approaches in the field of smart transitional wireless networking are

presented. In traditional networking applications, a certain protocol combination is selected

during development and used under quite different circumstances. In contrast to parame-

ter adaptation, which is a common practice, the replacement of a mechanism by another

mechanism with better performance and quality is a new paradigm.

A fundamental requirement for transitional networks is the decision basis on which transitions

are performed, in particular the classification of network traffic flows. A novel data-driven

network traffic flow classification approach based on statistical properties of individual network

flows is described in Section 6.1.

Service announcements, such as in adaptive peer-to-peer networks discussed in the previous

section, often rely on fixed announcement intervals. Section 6.2 presents multiple approaches

to realize dynamic announcement intervals, to reach the goal of fast reception from at least

one node, while trying to keep overall communication overheads low.

In Section 6.3, a data-driven approach to perform Wi-Fi/cellular transitions is presented. Data

provided by multiple smartphone sensors, e.g., Wi-Fi RSSI, acceleration, compass, step counter,

air pressure, are used to predictWi-Fi connection losses and transition to cellular connections.

The achievable quality and information analysis cost of the approaches presented in this

chapter are shown in Figure 6.1. The information analysis cost of the contributions presented in

the area of smart transitional wireless networks is particularly associated with computations.

The smart use of already existing data with the help of modern data-driven and machine

learning based algorithms allows to increase the quality of a system or algorithm. In the three

contributions, different quality metrics are considered. In the case of dynamic announcement

intervals, the metric is the delay achieved for the discovery of a group of network peers, i.e.,

the QoS. In unsupervised traffic flow classification, the QoR is improved, specifically precision

and recall of the compared algorithms. In seamless vertical handovers, the QoE perceived by

users is derived and optimized. In the case of video streams, these are stalling events and video

quality adaptation, which are decisive for the perceived quality, according to the recognized

models.

Contributions to pkt2flow used in Section 6.1
1
, as well as collected data, trained models and

a demo application of the data-driven handover mechanism
2
are released under open-source

licenses.

1https://github.com/jonashoechst/pkt2flow
2https://umr-ds.github.io/seamcon/

183

https://github.com/jonashoechst/pkt2flow
https://umr-ds.github.io/seamcon/

6 Smart Transitional Wireless Networking

Information Analysis Cost

A
ch

ie
va

bl
e
!

al
it

y
(Q

oS
/Q

oE
/Q

oR
)

low

medium

high

low medium high

Android
Handovers

Dynamic Announce-
ment Intervals

[IEEE WONS’17]

Unsupervised Traffic
Flow Classification

[IEEE LCN’17]

Computation

Communication

Storage

QoS

QoE

QoR

Seamless Vertical
Handovers

[IEEE LCN’19]

Port-based Traffic
Classification

Deep Packet
Inspection

Static Peer
Discovery

MPTCP
Handovers

Figure 6.1: Information analysis cost and achievable quality of smart transitional wireless

networking approaches

6.1 Unsupervised Traffic Flow Classification Using a Neural
Autoencoder

6.1.1 Introduction

The growing popularity of smartphone and tablet usage poses challenging demands on mobile

communication. Apart from browsing the web, real-time and high-bandwidth services, such as

Voice-over-IP (VoIP) or video live streaming, are increasingly used in today’s mobile applications.

With the paradigm shift towards Software-Defined Networking (SDN) in the network core

and Software-Defined Wireless Networking (SDWN) in the network edge [Ber+14], dynamic

flow configurations can heavily profit from network traffic classification for priorization and

resource management.

Currently, Internet traffic classification is used to improve Quality-of-Service (QoS) or Quality-

of-Experience (QoE) [NA08; Li+13]. Traffic classification methods can be grouped into port-

based, payload-based and statistical methods [DPC12]. Since many applications do not rely on

184

6.1 Unsupervised Traffic Flow Classification Using a Neural Autoencoder

fixed port numbers and ports can be easily redirected or obfuscated, port-based methods are

inadequate for characterizing the properties of network traffic.

Payload-based methods use certain fields of application layer protocols to classify traffic. In

particular, Deep Packet Inspection (DPI) uses fixed protocol signatures of the packet payload

[Li+13; Qin+15]. However, payload-based methods fail whenever connections are encrypted.

Furthermore, they can be easily circumvented, and changes of the application protocols may

also lead to false classifications.

Statistical approaches [MZ05; Erm+07; Zha+15b; Zha+13] typically use packet inter-arrival

times, packet sizes and their statistical properties (e.g., average, maximum, minimum). They

often rely on machine learning algorithms for performing traffic classification, in particu-

lar supervised learning algorithms that require labeled data for training to build a suitable

classification model. The labels are often obtained from validated application ports or other

labeling mechanisms (such as DPI), resulting in classification mechanisms that replicate the

labeling methods, rather than revealing new structures independent of prior knowledge. In

many cases, web browsing is equated with HTTP(S) traffic, while Skype traffic is assigned to

video conferences. This is misleading in various ways, since nowadays HTTP(S) is the basis for

many applications other than browsing the web.

0 20 40 60 80 100 120
time (s)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

tr
a
ff

ic
 (

b
y
te

s/
s)

0

200

400

600

800

1000

1200

p
a
ck

e
t

si
ze

 (
b
y
te

)

forward
backward

a) Audio call

0 10 20 30 40 50 60
time (s)

0

50000

100000

150000

200000

250000

tr
a
ff

ic
 (

b
y
te

s/
s)

0

200

400

600

800

1000

1200

1400

1600

p
a
ck

e
t

si
ze

 (
b
y
te

)

forward
backward

b) Website interaction

0 20 40 60 80
time (s)

0

20000

40000

60000

80000

100000

120000

tr
a
ff

ic
 (

b
y
te

s/
s)

0

200

400

600

800

1000

1200

1400

1600

p
a
ck

e
t

si
ze

 (
b
y
te

)

forward
backward

c) Buffered videostream

Figure 6.2: Traffic utilization and packet sizes of example flows.

In this section, a novel approach to unsupervised traffic flow classification using statistical

properties of flows and clustering based on a neural autoencoder, is presented. In contrast

to previous work, the neural autoencoder is used to automatically cluster traffic flows, e.g.,

into downloads, uploads, or voice calls, independent of the particular network protocols, such

as FTP or HTTP(S), used for performing these tasks. A novel time interval based feature

vector construction is proposed. By separating flows into exponentially growing time periods

and computing their statistical properties individually, a weighted bandwidth graph is fed

into the neural autoencoder. A semi-automatic cluster labeling method facilitates traffic flow

classification independent of known traffic classes. An experimental evaluation on real data

captured from about 25 mobile devices performing daily work over a period of 4 months is

presented. The obtained results show that 7 different classes of mobile traffic flows are detected

sufficiently fast with an average precision of 80% and an average recall of 75%. When only

specific classes for quality-of-service optimizations are considered, F1 scores of over 90% are

achieved. Thus, our main contributions are:

185

6 Smart Transitional Wireless Networking

• We present a novel unsupervised machine learning approach based on a neural autoen-

coder for network traffic flow classification.

• We propose a novel feature extractionmethod relying on statistical values in exponentially

growing time slots of flows.

• We suggest a novel protocol-independent cluster labeling and classification approach

suitable for QoS/QoE optimization at the network edge.

• We describe an efficient implementation of the neural autoencoder together with an

experimental evaluation to demonstrate the feasibility of our approach.

Parts of this section have been published in Jonas Höchst, Lars Baumgärtner, Matthias Hollick,

and Bernd Freisleben. “Unsupervised Traffic Flow Classification Using a Neural Autoencoder.”

in: 42nd Annual IEEE Conference on Local Computer Networks (LCN 2017). Singapore, Oct. 2017.
doi: 10.1109/LCN.2017.57.

6.1.2 Related Work

The survey of Nguyen and Armitage [NA08] compares the results of various machine learning

approaches applied to network traffic classification. Traffic classification based on machine

learning is still an open field [NAS15].

Classification approaches based on multiple identification methods reaching from packet

headers to full flow examination and even host history inclusion have been presented [MP05;

Erm+07] to classify traffic into 10 classes, such as INTERACTIVE, MAIL, WWW or MULTI-

MEDIA. Moore et al. [MZ05] use Bayesian analysis techniques with 248 per-flow features to

reach a basic classification accuracy of 65%. By improving the basic methods, 95% classification

accuracy is reached.

Kim et al. [Kim+08] criticize the high variability in data sources and classification targets.

The authors propose to use overall accuracy, precision, recall and F-Measure as performance

metrics, as well as 4 different publicly available datasets created between 2004 and 2006. They

also compare different machine learning approaches and reach 94.2%-97.8% accuracy using a

Support Vector Machine (SVM) [VC74].

Semi-supervised methods have been proposed [Erm+07] to find clusters of traffic flows using

the K-means algorithm [Llo82]. The clusters are labeled afterwards using a small set of labeled

flows. The authors also propose a real-time classification method where multiple layers offer

classifications based on packet milestones. Vladutu et al. [VCD16] present a semi-supervised

framework for flow classification using generated traffic and thus the resulting semantic

categories.

Zhang et al. [Zha+13] present an unsupervised clustering algorithm based on statistical prop-

erties of flows as well as payload-based clustering. The authors use 13 different classes as their

ground truth, made up of different protocols, such as HTTP and SSH. The flows are clustered

using several configurations of the K-means algorithm. The generated clusters are labeled by

the application flows dominating the specific cluster. Using this method, the authors reach an

accuracy of over 90%.

186

https://doi.org/10.1109/LCN.2017.57

6.1 Unsupervised Traffic Flow Classification Using a Neural Autoencoder

name description unit default

packets # packets - 0

bytes # bytes - 0

bytes_avg avg. packet size byte 0

bytes_std stdev. packet size byte 1

iat_avg avg. packet inter-arrival s 0

iat_std stdev. packet inter-arrival s 1

tra f f ic_avg avg. speed byte/s 0

tra f f ic_std stdev. speed byte/s 0

dscp_median median DCSP flag - 0

Table 6.1: Statistical flow properties

The majority of methods proposed in the literature are based on supervised learning methods.

Using unsupervised clustering instead, the methods do not rely on the ground truth of the

labeling mechanisms. Clearly, at some point labels have to be attached to be able to compare

the mechanisms, but the actual learning is independent of pre-labeled flows that are hard to

obtain in good quality and/or high numbers [NA08; Zha+13].

6.1.3 A Neural Autoencoder for Traffic Flow Classification

This section presents the design of the proposed neural autoencoder for traffic flow classification.

First, the process of crafting useful feature vectors is discussed. Then, the design of the neural

autoencoder for clustering is presented. Finally, we describe the mapping between the found

clusters and labels relevant for our use case.

Our use case is motivated by the advent of SDN and SDWN where traffic classification is no

longer useful only on central network devices, but also in the network edge and end user devices.

Network properties like wireless access can be switched dynamically if the flows’ properties

are known. To achieve network edge traffic classification, the used algorithms need to be

computationally inexpensive, since most mobile end user devices have only limited resources

(e.g., WiFi routers, smartphones, 3G/4G routers).

Feature Vector Construction

We try to keep the number of statistical features low to reduce computational demands and

memory usage. In addition to statistical features, such as number of packets/bytes, avg./stdev.

packet size and inter-arrival time etc., the median of the Differentiated Services Codepoint
(DSCP) field is used. This IP header field is a successor of the Type-of-Service (ToS) field and is

used to indicate network demands of packets.

187

6 Smart Transitional Wireless Networking

All features are computed in each flow direction, namely forward (client to server) and backward

(server to client). For TCP flows, clients and servers are defined by the connection handshake.

Since UDP is a connection-less protocol, a UDP flow is defined as a repeated exchange of

packets between the same sender IP/port and recipient IP/port combination.

In Figure 6.2, three examples of network flows are presented. The red and blue lines show

the forward and backward traffic. Each red and blue dot stands for a single TCP forward

or backward packet, respectively. Comparing the presented examples, great differences in

bandwidth consumption, inter-arrival times and packet sizes can be observed.

For Figure 6.2a and Figure 6.2c, the most important criteria for clustering are available after a

short period of time. This perception can be used to improve flow clustering, in particular with

respect to future online classification. To use this knowledge, the feature vector is constructed

using exponentially growing time periods for statistical flow property computation. In this way,

information from the beginning of flows is less reduced compared to information from the

later parts. Using this method, it is also possible to constitute the duration information of flows

while using a fixed length feature vector, as required by most machine learning algorithms. The

feature vector is constructed using exponentially growing intervals of up to 2048 seconds.

(1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048)

There are two possible computationmethods. In the cumulativemethod, the interval boundaries

range from the beginning of the flow until the end boundary. The used values are statistical

properties up to the current time. The second method is non-cumulative and therefore each

interval only contains the statistical information of packets handled in the interval itself. The

values of an interval are completely independent of the previous interval.

In total, each feature vector has 216 features: 2 half flows * 12 intervals * 9 statistical features.

Clustering via a Neural Autoencoder

Neural autoencoders [Son+13; Hua+14] are useful for dimension reduction and classification.

The general approach of neural autoencoders is a model that is trained to reconstruct an original

input vector from a smaller representation. It is trained using the squared reconstruction error

as its cost function.

In Figure 6.3, our classification approach is presented. The classification approach consists of

multiple steps. First, the feature vector is normalized using the standard score.

yi =
xi − µi

σi

While this seems to be the preferred mode, mean-only, standard deviation-only and no stan-

dardization are also evaluated in our approach, to potentially save computational overhead.

The resulting vector is mainly used to train the autoencoder and afterwards only for feature

188

6.1 Unsupervised Traffic Flow Classification Using a Neural Autoencoder

x1 x2 xn…

y1 y2 yn…

h1 h2 hp…

x3

y3

Softmax

Encoding

Normalization

w1

Feature vector

s1 s2 sp…

c

Reduction

Cluster number

Figure 6.3: Neural autoencoder clustering.

encoding. Then, the Softmax (normalized exponential) function is applied to the encoded

values.

si = σ(h)i =
ehi

∑P
p=1 ehp

The actual class is then determined by selecting the index of the greatest element in the Softmax

vector. This method is a rather modest classification method with the advantage of producing

highly differing cluster sizes. Our autoencoder is trained using the summed squared error in

combination with the Adaptive Moment Estimator (Adam)[KB15].

Cluster Labeling

The obtained clusters from the previous step need to get a semantic label. Therefore, we use

a semi-automatic method comparable to Zhang et al. [Zha+13] and Vladutu et al. [VCD16].

Both labeling methods obtain a ground truth set of labeled flows. Zhang et al.[Zha+13] use

189

6 Smart Transitional Wireless Networking

Class Principal feature Example mobile application

Browsing ephemeral Wikipedia, Spiegel, Heise

Interactive long lasting Online Games, Facebook, Twitter

Download large downstream Updates, Dropbox

Livestream constant bitrate Streaming, iTunes Webradio

Videostream periodic buffering Youtube, Vimeo, Facebook, Twitch

Call low iat, symmetric Skype, Apple FaceTime, Google Hangouts, WhatsApp

Upload large upstream YouTube, Facebook, WhatsApp

Table 6.2: Manually extracted classes

application layer protocols, while Vladutu et al. [VCD16] use generated traffic and thus the

applications’ names as the ground truth. Both methods have disadvantages in generalizing

their classification approach, since only cherry-picked protocols are investigated.

To overcome these disadvantages, we have defined our own set of classes, based on the clusters

extracted by the neural autoencoder and popular application categories. These 7 classes, their

main features and examples of mobile applications, namely Browsing, Interactive, Download,
Livestream, Videostream, Call and Upload, are presented in Table 6.2.

Figure 6.2a shows an example of a flow from the Call class. The primary features of a low

inter arrival time and relatively low but varying packet sizes are visible in the figure. While the

backward bandwidth is continuously above 5 kB/s, the forward bandwidth keeps dropping to

very low values. This behavior can be explained by codec properties, such as sparse encodings

of conversation breaks.

In Figure 6.2b, an example flow of browsing Twitter is presented. Peaks in backward bandwidth

of up to 200 kB/s are visible, while the forward bandwidth stays pretty low. This graph is typical

for user interactions with either social networks or even remote server management, e.g., via

SSH. A relatively small amount of input data, e.g., scrolling, clicking, entering a command, leads

to a back flow of data. The connection is held over a longer period of time, in this example for

60 seconds.

The last example is presented in Figure 6.2c. It shows the flow properties of a buffered video

stream. In modern audio/video streaming protocols (e.g., Apple HLS, MPEG DASH), segments

of the stream are delivered as individual files. If the local buffer runs low, another segment

is downloaded. The graph of the last figure is caused by the typical bandwidth usage of this

behavior.

6.1.4 Implementation

In this section, the implementation of our network traffic classification approach is presented.

Our main intention is to make use of existing tools, formats and protocols where appropriate

190

6.1 Unsupervised Traffic Flow Classification Using a Neural Autoencoder

and with portability in mind. First, an overview of how test and training data is gathered is given.

Then, the separation of flows and extraction of statistics is described. Finally, classification

using our neural autoencoder and automated cluster labeling are presented.

Data Capture The data used in our work was captured in an office network used by roughly

10 users including 5 frequent users with an overall count of roughly 25 devices. The data was

collected in two configurations over a 4-months period: (a) by only dumping WiFi traffic of

smartphone devices, and (b) by a full take of traffic including laptop and desktop devices. While

the focus of our work is on mobile devices, many desktop applications display similar behavior

as their mobile app versions.

The office network was set up using a Netgear WNDR40003 router. To enable full featured

WiFi and traffic capturing, the alternative firmware DD-WRT (v3.0-r30016 mega(06/24/16))4 was
installed. The data was then captured in the pcap file format using tcpdump5. Local traffic was
excluded using a Berkeley packet filter.

Name Interf. Start End Size Packets

wifi-2,4 eth1 2016-09-05 2016-12-14 12.7 GB 31.5 M

wifi-5 eth2 2016-09-05 2016-12-14 36.8 GB 43.4 M

full br0 2016-12-16 2017-01-19 30.0 GB 51.5 M

Table 6.3: Captured Data

As outlined in Table 6.3, the data was captured in two phases. In the first phase, traffic was

captured on both wireless interfaces with 12.7 GB used over the 2.4 GHz network and 36.8

GB transferred via the 5 GHz network. In the second phase, all traffic was captured, explicitly

including wired machines. Local traffic was excluded from all sets. The data was captured in

two phases. In the first phase, traffic was captured on both wireless interfaces with 12.7 GB used

over the 2.4 GHz network and 36.8 GB transferred via the 5 GHz network over a three months

period. In the second phase, all traffic was captured, explicitly including wired machines. Local

traffic was excluded from all sets, resulting in 30 GB over a one month period.

Data Processing In the first step, the tool pkt2flow
6
splits up the input file to one pcap per

flow before the statistical values of flows are computed. The cluster labeling is implemented in

the same way as proposed by Zhang et al. [Zha+13] and Vladutu et al. [VCD16].

Flow Separation While there are many tools to compute flow statistics from pcap files, most

are trimmed to efficiency and are not extensible in a simple manner. We therefore decided to

3https://www.netgear.com/support/product/WNDR4000.aspx
4https://www.dd-wrt.com/wiki/index.php/Netgear_WNDR4000
5http://www.tcpdump.org
6https://github.com/jonashoechst/pkt2flow

191

https://www.netgear.com/support/product/WNDR4000.aspx
https://www.dd-wrt.com/wiki/index.php/Netgear_WNDR4000
http://www.tcpdump.org
https://github.com/jonashoechst/pkt2flow

6 Smart Transitional Wireless Networking

split up the flow separation and the statistics computation. In the first step, the tool pkt2flow
7

splits up the input file to one pcap per flow. To implement the presented neural autoencoder,

the open source library TensorFlow [Mar+15] was used.

Statistics Computation To compute the statistical values of flows, a tool was written using

Python and the libpcap Python library pypcap8. The feature vector was computed as described

in Section 6.1.3. To evaluate different autoencoder configurations quickly, the flow statistics

were saved to intermediate files using the Python pickle file format.

Neural Autoencoder and Classification To implement the presented neural autoencoder,

the open source library TensorFlow9
is used. The cluster labeling is implemented according

to by Zhang et al. [Zha+13] and Vladutu et al. [VCD16]. The labeled data is clustered using

the already trained network. The cluster then gets assigned the most frequent label from the

previously labeled data. If there are clusters that contain no labels, no cluster label is assigned

and the cluster may need further manual inspection.

6.1.5 Experimental Evaluation

In this section, the proposed method is evaluated. To find an optimal configuration, the

parameters influencing the classification quality are investigated.

Aggregation Method Two aggregation methods were examined. The cumulative method

(cum) is around 15% worse than using the non-cumulative version (noncum), where the flow is

separated into multiple segments and the statistical values are computed individually.

Number of Clusters The number of clusters is defined by the number of hidden nodes

of our neural autoencoder. A small number of clusters can lead to bad results in terms of

discrimination between different subclasses, but the analysis is simpler when smaller numbers

of clusters are used. Not every cluster needs to have a meaning, since accidental correlations

can also be identified. Hence, a larger number of clusters is not problematic. When a large

number of clusters is chosen, small or empty clusters may occur, which can just be discarded.

On the other hand, a large number of clusters leads to a more precise distinction between

classes. In our parameter scan, we evaluated 10, 15, 20, 30, 40, 60, 80 and 100 clusters. The

experiment shows (Fig. 6.4) that a sweet spot can be identified when 60 clusters are used, since

the averaged results are not significantly better when more clusters are used.

Scaler The scaler has a major impact on the classification results. While average precision

and recall are only at roughly 50% when no scaler is used, the standard scaler improves average

precision and recall up to around 60%.

7https://github.com/jonashoechst/pkt2flow
8https://pypi.python.org/pypi/pypcap
9https://www.tensorflow.org

192

https://github.com/jonashoechst/pkt2flow
https://pypi.python.org/pypi/pypcap
https://www.tensorflow.org

6.1 Unsupervised Traffic Flow Classification Using a Neural Autoencoder

10 15 20 30 40 60 80 100
number of clusters

40%

45%

50%

55%

60%

avg precision

avg recall

avg f1-score

Figure 6.4: Classification quality vs. number of clusters

precision recall F1 score

videostream 0.47 0.80 0.59

upload 1.00 0.85 0.92

livestream 0.86 0.67 0.75

browsing 0.91 0.50 0.65

download 0.80 0.80 0.80

call 0.87 1.00 0.93

interactive 0.71 0.60 0.65

avg/total 0.80 0.75 0.76

Table 6.4: Classification quality

ClassificationQuality Table 6.4 shows the obtained classification quality. The neural au-

toencoder in the configuration with 100 clusters, learning in 30 epochs with a standard scaler

based on the full dataset produced the best result. These 100 clusters are mapped by our

classifier to our 7 chosen classes. An average precision of 80% and an average recall of 75% are

achieved, which results in an F1 score of 76%.

In a QoE sense, live applications should be classified with a high recall. The details of the

classification are presented in Table 6.5. The classification of call is remarkable, since it has

a recall of 100%. The livestream class has rather bad values, since it is confused with the

interactive and the videostream class. Since interactive subsumes different scenarios including

social network browsing, high bandwidth image downloads and video streams can also be part

of interactive flows, which can explain this confusion. A subclassification of the interactive
class should be considered to improve the results.

Execution Time Our runtime experiments were performed on a 2 x 2.26 GHz Intel Xeon

quad-core machine. While the generation of flow objects from the pcap file took around 2.20

ms per flow and the computation of the feature vectors took about 1.67 ms per flow, the actual

193

6 Smart Transitional Wireless Networking

video-
stream

upload live-
stream

brow-
sing

down-
load

call inter-
active

videostream 16 0 1 0 1 1 1

upload 0 17 0 0 0 2 1

livestream 1 0 6 0 0 0 2

browsing 8 0 0 10 1 0 1

download 3 0 0 1 16 0 0

call 0 0 0 0 0 20 0

interactive 6 0 0 0 2 0 12

Table 6.5: Classification confusion matrix

0 20000 40000 60000 80000 100000
Flows

0

100

200

300

400

500

ti
m

e
 (

s)

classification (ms)

classification

read flows

compute feature vector

Figure 6.5: Time needed for reading flows, computing feature vector and classification

classification only took 0.006 ms per flow. With a rate of over 200,000 flows per second, our

method can be used at the network edges, where access points or mobile devices themselves

can classify the traffic and dynamically change connection properties using SDN and SDWN

technology to ensure optimal resource usage.

Figure 6.5 shows the time used for reading the flows, computing the feature vector and the actual

classification. Since classification itself is very fast, it is additionally depicted on a millisecond

scale as the semi-transparent yellow line in the graph. The experiments were performed on

a 2 x 2.26 GHz Intel Xeon quad-core machine. The figure shows the computation times for

reading flows from disk, computing the feature vector and the actual neural classification. The

194

6.1 Unsupervised Traffic Flow Classification Using a Neural Autoencoder

first value is only displayed for comparison, since it is not needed in an online classification

scenario. The feature vector computation is not yet optimized for performance and currently

represents the biggest share of the classification runtime.

The actual classification outperforms both other steps. While the generation of flow objects

from the pcap file takes around 2.20 ms per flow and the computation of the feature vectors

takes about 1.67 ms per flow, the actual classification only takes 0.006 ms per flow. With a rate

of over 200,000 flows per second on the target machine, the results show the feasibility of the

method for edge nodes and in particular mobile devices.

6.1.6 Summary

In this section, a novel approach to unsupervised traffic flow classification using statistical

properties of flows and clustering based on a neural autoencoder that has been used to cluster

traffic flows into downloads, uploads, calls, browsing, videostream, live stream or interactive

communication, independent of the particular network protocols used for performing these

tasks, was presented. A novel time interval based feature vector construction and a semi-

automatic cluster labeling method have facilitated traffic flow classification independent of

known traffic classes. Our evaluation using four months of captured traffic has shown that our

7 classes of traffic flows are detected sufficiently fast with an average precision of 80% and an

average recall of 75%.

The novel approach to traffic flow classification is a smart solution in the sense of this thesis.

The information analysis cost and achievable quality presented in Figure 6.1 on page 184 can

be compared with conventional methods, such as port-based classification or deep packet

inspection. In the early days of the Internet, certain functionalities were implemented by specific

protocols. For example, separate protocols for file transfer (FTP), for interactive connections

(Telnet) or voice connections (SIP) were usually also linked to separate port numbers that

could be used to classify the connections. However, some of these tasks are now implemented

using the WWW to be more available and are thus only recognizable as HTTP traffic, which

means that the quality of the classification based on port numbers has greatly decreased.

Deep packet inspection uses certain recurring byte sections that lie within the transmitted

data to make classification possible. However, the effort required to recognize these patterns

for thousands of different protocols is very high and leads, among other things, to delays

in recognition. However, as more and more data is encrypted, the quality of this method is

also increasingly limited. By restricting the data to statistical information and evaluating it,

it is possible to achieve a high quality of the same classes even with changing protocols. The

information analysis cost on the other hand is higher than with port-based classification, since

only the port number has to be looked up in a table. However, deep packet inspection usually

requires complex pattern matching algorithms, which usually have different runtimes due to

the memory accesses for different classes. The statistical information required in this approach

is collected when the packets are forwarded and does not involve a large information analysis

cost; inference using the machine learning model is also feasible in a few milliseconds, as shown

above.

195

6 Smart Transitional Wireless Networking

6.2 On Dynamic Announcement Intervals in Wireless
On-demand Networks

6.2.1 Introduction

Several network protocols rely on nodes broadcasting announcements to other nodes. Examples

include service discovery (Bonjour/ZeroConf, Samba), routing algorithms (RIP, OLSR), and peer-

to-peer or delay-tolerant networking (DTN) systems (Forban10, Serval11). While the traffic

generated by periodically sending announcements might be negligible in wired networks with

high-speed links, bandwidth in wireless networks, such as 802.11, Bluetooth or various mobile

ad hoc networks (MANETs), is precious and limited. For example, spontaneous smartphone

networks become more and more important not only by providing pervasive wireless Internet

access during large human crowd gatherings, but also during emergency situations or post-

disaster recovery [Alo+14].

Group 1 Group 2 Group 3

Figure 6.6: Drive-by store-and-forward data exchange.

s=77m

r=40m
v=50 km/h

Figure 6.7: Drive-by window of opportunity example.

In an emergency communication scenario, the main goal is to spread messages and files

produced at a disaster site fast among reachable nodes. Therefore, data is passed around in an

epidemic fashion to as many neighboring peers as possible. Typically, some nodes are more

static, such as devices of people trapped in their houses or small emergency camp sites forming

islands, while other nodes are on the move (by bike, car, foot), which by passing through these

islands act as carrier-pigeons to distribute information further (see Fig. 6.6). These islands have

10
http://www.foo.be/forban/

11
http://www.servalproject.org/

196

6.2 On Dynamic Announcement Intervals in Wireless On-demand Networks

a higher density than typical sensor networks. To make optimal use of the short time in case

of a drive-by, it is important to find a peer for data exchange very fast. Since any peer can

initiate data synchronization, a special treatment of mobility is not necessary. Depending on

the used wireless technology, a mobile phone might have an effective range of 14-80 meters to

communicate with others. Thus, if we assume a WiFi radius of 40 meters and a static node

being 10 meters away from a street, a car driving on the street would be in the WiFi range

for about 77 meters (see Fig. 6.7). The car passing by, assuming it moves at about 50 km/h,

would have just under 6 seconds for node discovery and exchange of data. This is plenty of

time for transferring, for example, two 6 megapixel pictures and setting up connections via a

standard 54 Mbps link. Therefore, for the fast moving node, one of the more static peers is

sufficient to start a data transfer. Since all information gets replicated in this scenario, the fast

moving node does not need to know all possible neighbors. The static node can distribute the

data further among its neighbors. Discovering all direct peers as fast as possible is neither
necessary nor beneficial for the static nodes. Under these assumptions, it is reasonable to use

dynamic announcement intervals instead of the typically used static announcement intervals.

Furthermore, dynamic announcement intervals require not only less network resources, but

also potentially save more battery capacity than static announcement intervals.

In this section, several approaches to realize dynamic announcement strategies that facilitate

fast reception from at least one other node while trying to keep the overall communication

overhead as low as possible, are presented. Experimental results in terms of performance

properties and energy consumption are presented to illustrate the benefits of dynamic an-

nouncement intervals in wireless on-demand networks. In particular, the section makes the

following contributions:

• Various strategies for realizing dynamic announcement intervals optimized for different

network setups are presented.

• An experimental evaluation of all proposed strategies, including static and random

announcement strategies, with respect to bandwidth usage, announcement distribution

and energy consumption is presented.

• Test environments suited for various topologies, such as large stable networks, islands

merging and networks splitting, are investigated.

• The results are directly applicable to local peer-to-peer content distribution systems in

emergency scenarios, such as Forban and Serval.

Parts of this section have been published in Lars Baumgärtner, Pablo Graubner, Jonas Höchst,

Anja Klein, and Bernd Freisleben. “Speak Less, Hear Enough: On Dynamic Announcement

Intervals inWireless On-demandNetworks.” in: 13th Conference onWireless On-demandNetwork
Systems and Services (WONS 2017). Jackson Hole, USA, Feb. 2017. doi: 10.1109/WONS.2017.7
888768.

6.2.2 Related Work

There are several publications that investigated problems associated with static announcement

intervals in various protocols and application scenarios.

197

https://doi.org/10.1109/WONS.2017.7888768
https://doi.org/10.1109/WONS.2017.7888768

6 Smart Transitional Wireless Networking

Natsheh et al. [Nat+07] proposed a solution based on fuzzy logic to optimize hello messages in

dynamic ad-hoc routing. Their work focused on the mesh routing use case, and experiments

with a maximum of 35 simulated nodes were presented. Furthermore, Khalaf et al. [KAB10]

investigated the broadcast storm problem in mobile ad hoc networks. The authors presented a

probabilistic approach to improve the situation in a mesh routing scenario.

Ahmed et al. [ABK15] addressed the problem of beaconing in vehicular ad hoc networks

(VANETs). Combinations of controlling a beacon’s transmission power, transmission rate, and

contention window at the MAC layer were proposed to achieve efficient beacon communication

in VANETs. Another approach devoted to improve the problems related to static beaconing

intervals in ad hoc networks was presented by Tahar et al. [Tah+16]. Hess et al. [HHO14]

investigated peer discovery in mobile opportunistic networks by considering the mobility of

nodes.

Peng [Pen15] proposed an adaptive mobility-aware MAC protocol for wireless sensor networks.

Apart from optimizing the number of messages, the energy consumption was investigated. Lim

et al. [LYD09] presented an approach called RandomCast to improve the energy efficiency of

802.11 ad hoc networks. In this approach, the sender can specify the desired level of overhearing

of neighboring traffic, trying to find a balance between energy consumption and routing

performance.

Using perfect difference sets for neighbor discovery, Link et al. [Lin+11] presented an energy

efficient approach for wireless networks. The authors focused on sensor networks and DTNs

with sporadic communication, whereas we focus on networks with higher communication

frequencies in local clusters.

Peer-to-peer content distribution is another scenario where announcements are relevant, and

a trade-off must be made between central tracker-based peer discovery and distributed peer

discovery. Dán et al. [DCC11] presented a hybrid approach that uses individual trackers and

a gossip protocol to improve peer discovery. By hopping between swarms and redistributing

known peers, efficiency is increased.

Liu et al. [Liu+15] developed a censor-ship resistant delay-tolerant network for message

exchange and evaluated it with respect to performance and energy consumption. To avoid

energy draining broadcasting with fixed intervals, the authors adopted an approach presented

by Zheng et al. [ZHS03] based on asynchronous wake-ups for ad hoc networks. Another

delay-tolerant networking system designed specifically for data synchronization in emergency

situations was presented by Paul et al. [Pau+16]. While optimizations are proposed to speed

up file transfers and syncing, the actual peer discovery was realized by simple broadcasts with

fixed announcement intervals.

During an experimental evaluation of Serval as a delay-tolerant emergency communication

platform, Baumgärtner et al. [Bau+16] found that regular broadcasts used for node discovery

or announcements of routing and data storage information especially in networks with many

direct peers require high network bandwidth. The study showed that around 2 seconds of

announcement delay was the best trade-off between quick peer discovery and conserving

energy with the stock implementation made available by the Serval Project.

198

6.2 On Dynamic Announcement Intervals in Wireless On-demand Networks

By exploiting social network characteristics for assisting ad hoc peer discovery, Zhang et

al. [Zha+15a] attempted to find optimal beacon probing rates with constant intervals for each

group of users. As stated by Wang et al. [WSM07], peer discovery itself can be as energy

consuming as making phone calls.

Trifunovic et al. [Tri+11] presented a solution for opportunistic networks of stock mobile devices

using 802.11. Since ad hoc mode and Bluetooth pairing does not really work in practice on

current mobile devices, open access points and intelligent switching of clients between these

access points were used.

While most of the mentioned work is highly specific to the studied use cases, the general picture

is that adaptive or dynamic announcement intervals usually outperform static ones, not only

with respect to network performance, but also regarding energy consumption. In our scenario,

we consider small dense clusters of nodes where a few nodes act as mobile bridges between

these islands, in contrast to most sparse sensor networks. Furthermore, most approaches focus

on lower layer technologies, whereas our algorithms can be applied on the application layer

without operating system support.

6.2.3 Dynamic Announcement Intervals

In this section, several dynamic announcement strategies, the constraints associated with

them, and quality properties to evaluate their performance, are presented.

Announcement Strategies

We have developed several novel strategies for realizing dynamic announcement intervals. Each

strategy has access to the current announcement delay, the global number of announcements

seen at the last observation interval and the current number of unique peers. Our strategies

are described in the following:

Static

The Static announcement strategy is the basic announcement approach used by most current

broadcast protocols. There is a fixed interval defined for every node in which an announcement

is sent. This also means that the generated global traffic is growing linearly with the node count.

By default, this interval is set to a 2 second delay in our tests, which also is the recommended

value for MANET NHDP [CDD11].

Random

In the Random strategy, every node chooses a random announcement delay. This delay is a

random number between a minimum and a maximum (as described in Section 6.2.3) for every

observation interval. The distribution of the random numbers, depending on the network size,

heavily influences the performance of this strategy, as well as the duration of the observation

interval.

199

6 Smart Transitional Wireless Networking

RandomSweet

In this strategy, Random is extended. The announcement interval is only set randomly if the

current global announcement rate is higher than one announcement per second or less than the

minimum number of announcements per second (see Section 6.2.3). Thus, if the network has

reached a stable state, this strategy does not change anything and sticks to the last randomized

delay for each node. This stabilizes the network if by chance optimal delay combinations are

found, at least until nodes join or leave the network.

Step

After every observation interval, the Step strategy checks the global announcement count. If

the count is higher than one announcement per second, the node’s announcement delay is

increased by one second. If the count is lower than 0.5 announcements per second, the node’s

announcement delay is decreased. This leads to gradually narrowing down to a must suitable

announcement delay over time.

StepRand

In this strategy, Step is extended by adding randomness to each step. While the conditions

remain the same as in Step, a random value between 0 and 0.5 seconds is added or subtracted

to the announcement delay.

MaxFirst

MaxFirst is a rather defensive strategy: whenever a high global announcement rate is detected

(more than one announcement per second), the node’s announcement interval is set to the

observation interval, i.e., the maximum possible announcement delay is tried first, hence

the name. Then, if less than 0.5 global announcements per second are present, the strategy

decreases the announcement delay by one second per iteration, until the local minimum of

0.5 seconds is reached. Thus, a very low announcement frequency is favored, which should be

beneficial in larger or fast growing networks.

MinFirst

MinFirst reversesMaxFirst, and thus is an aggressive announcement strategy. Whenever less

than 0.5 announcements per second are detected globally, the announcement delay is set to

the local minimum of 0.5 seconds. Otherwise, the announcement delay is increased by one

second per iteration, until the observation interval is reached. This strategy supports scenarios

where most of the time only very few peers are in direct vicinity of each other.

200

6.2 On Dynamic Announcement Intervals in Wireless On-demand Networks

Unsteady

In the Unsteady strategy, each announcement delay is computed only on the basis of the

number of unique peers known by a node and not on the global announcement rate like in

the other algorithms. The goal is to reach a global rate of one announcement per second.

Looking at the current peer count, an announcement interval is computed to complement the

announcement intervals of the other nodes. Using this method, the strategy should be able to

adapt to new situations as fast as defined by the observation interval.

Constraints

To guarantee that a node can be discovered, we define an observation delay, with the same

value for all nodes. This is the time between re-evaluation and before another change in the

announcement frequency can happen. Each node has to announce itself at least once per

observation interval. All nodes must set the announcement delay after the observation delay is

over. This enables a better comparability between the announcement strategies.

The observation delay is set to 20 seconds in all our experiments, since the baseline for static

announcements is 2 seconds. Therefore, it is reasonable to re-evaluate the situation after 10

standard announcements. The higher the delay, the longer it takes for the network to adapt to

new situations. A very short delay in conjunction with the premise that each node should at

least send one announcement per interval leads to higher loads, especially with higher node

numbers. Thus, a delay of 20 seconds ensures that within this interval all peers in the direct

neighborhood are discovered.

Quality Properties

To evaluate and compare different strategies for dynamic announcement intervals, universally

applicable quality properties must be defined. Our main goal is to globally have one announce-

ment per second at any given time, not less, but also not much more to conserve resources.

This goal is motivated by the drive-by scenario described in Section 6.2.1, in which 10% of the

window of opportunity would be used for peer discovery under this assumption.

Global Announcement Rate

The Global Announcement Rate is measured by counting the announcements per second. This

parameter is the main optimization goal for our algorithms, since it is directly correlated with

the bandwidth used for peer discovery.

201

6 Smart Transitional Wireless Networking

Global Announcement Gaps

The Global Announcement Gaps are measured by the time periods between two announcements.

The Global Announcement Gaps are important to observe, since they reveal how long a new peer

needs until it receives an announcement from the rest of the network. Although this value is

roughly the inverse of the Global Announcement Rate, its distribution can reveal other aspects,

as observed in our experiments.

Adaptation Rate

The Adaptation Rate represents the time needed for an announcement strategy to adapt to a

new situation. It describes the situation that all nodes are started at the same time, and defines

the moment when no significant change in the number of announcements is recognizable.

6.2.4 Implementation

In this section, implementation issues of our announcement strategies and the network using

them are discussed.

Mesher

To investigate dynamic announcement intervals, we extended a simple broadcast service to

provide easily exchangeable announcement algorithms for peer discovery. Mesher12 is a simple

local chat written in Google’s Go language by one of the authors, and therefore is easily

extensible. It utilizes broadcast packets for neighbor discovery and for exchanging public chat

messages.Mesher uses a static announcement interval of 2 seconds in its default configuration,

and thus the network traffic is growing linearly with the node count. Each announcement

contains the elliptic curve public key of the sending node, the services provided by the node,

512 bytes random data to simulate database states and a cryptographic signature, resulting in

642 bytes per broadcast packet. Other protocols might use larger or smaller announcement

packets, depending on the type of state that is broadcasted.

Dynamic Interval Computation

To evaluate various interval computation methods including dynamic changes, the correspond-

ing algorithms needed to be easily exchangeable. Therefore, we decided to implement the

algorithms using an embedded JavaScript engine, and defined an interface to hand over useful

information to access it in the main Go binary:

• get_announce_count()

• get_and_reset_announce_count()

12Mesher, available online: https://github.com/gh0st42/mesher

202

6.2 On Dynamic Announcement Intervals in Wireless On-demand Networks

Listing 6.1: Basic layout of the announcement strategies

var observation_interval = 20000;
var total_count = 0;
var min_delay = 500;

set_announce_delay(2000);
for (;;) {

sleep(observation_interval);
var cur_count = get_and_reset_announce_count ();
var cur_delay = get_announce_delay ();

// call scheduler and set new delay there
scheduler(cur_count , cur_delay);

}

• get_peer_count()

• get_announce_delay()

After analyzing the provided values, the algorithms are able to set a new announcement interval

using set_announce_delay(Int).

Announcement Strategies in Mesher

For all announcement strategies, we used the same template (see Listing 6.1) in JavaScript
where one specific function is responsible for computing any changes. Each strategy gets

the current announcement delay and the global number of announcements seen in the last

observation interval. This setup proved to be perfect for rapid prototyping of new algorithms

without recompilation or modifications of the main binary.

6.2.5 Experimental Evaluation

To evaluate our announcement strategies, several setups were used, including emulations with

many nodes as well as physical machines connected over various network links.

Network Emulation

For network emulation, we selected the Common Open Research Emulator
13
(CORE), which is

scriptable using Python and in this way allows versatile creation of experimental configurations.

This system uses Linux and lightweight virtualization to provide a networking testbed for

unmodified, regular Linux binaries. All announcement strategies are evaluated under four

different network scenarios described below:

13
CORE: http://www.nrl.navy.mil/itd/ncs/products/core

203

6 Smart Transitional Wireless Networking

Centralized Network

In the Centralized Network configuration, all nodes are connected centrally and hence are

located in the same collision domain. This setup is similar to a classic network hub or a local

ad hoc wireless network in the sense that each node can directly communicate with all of its

adjacent peers. As long as the network is not oversaturated, every node gets the announcements

of every other node.

Growing Network

In the Growing Network configuration, nodes are added periodically to the network. Ideally,

the announcement strategies should adapt to the new situation fast and down-regulate their

announcement counts. Each second, a new node joins the network, and adaptation is required

to maintain optimal resource usage.

Merging Network

In the Merging Network configuration, two equally sized Central Networks merge at a fixed

point in time, doubling their size instantaneously. Using this configuration, adaptation rates

for abruptly changing network configurations can be observed.

Splitting Network

In the Splitting Network configuration, the network is split in two halves at a fixed point

in time. By creating two independent networks, the announcement strategies need to react

fast to satisfy the defined quality properties and avoid prolonged periods of silence between

announcements.

Physical Testbed

To evaluate the proposed announcement strategies under realistic conditions, a physical testbed

was created. It consists of several Raspberry Pi 3 Model B
14
single-board computers, running

under the vendor-provided Debian-Linux-based Raspbian
15
operating system. This platform is

comparable to mobile phones in terms of energy consumption and therefore allows us to obtain

realistic energy and power consumption measurements when evaluating the announcement

strategies.

We set up eight Raspberry Pis as network participants, as well as an additional Raspberry Pi as

a system under test (SUT). The energy consumption of the SUT was measured using an Odroid
Smart Power measurement device, an external power meter. The data points were logged at 5

Hz to another device, in order to prevent disruption of the measurement.

14
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

15
https://www.raspbian.org

204

6.2 On Dynamic Announcement Intervals in Wireless On-demand Networks

Experimental Results

In this section, the announcement strategies described in Section 6.2.3 are evaluated using the

network configurations of Subsection 6.2.5. Based on the quality properties of Section 6.2.3,

the strategies are compared to each other.

To test our strategies, the centralized network configuration was evaluated with different node

counts. For each of the eight announcement strategies, the tests were performed using 2, 5,

10, 25, 50, 100 and 200 nodes, resulting in 56 configurations. These configurations were each

executed using two nodes starting mechanisms: a) the batch node start, in which all nodes

were started randomly in the observation interval window; b) the delayed node start, where a

node was added every second, resulting in a linearly growing network.

In addition, two dynamic network configurations were used: Split, where the central network
was split in two halves, andMerge, where two equally sized networks were joined. Summing

up the different configurations, 224 independent experiments were performed.

Basic Capabilities

0 50 100 150 200 250
time (s)

0

2

4

6

8

10

12

14

a
n
n
o
u
n
ce

s
/

se
co

n
d

MaxFirst-n025

MinFirst-n025

Random-n025

RandomSweet-n025

Static-n025

Step-n025

StepRand-n025

Unsteady-n025

Figure 6.8: Announcements/second in a static network of 25 nodes.

In Fig. 6.8, the announcement rate for all strategies in a static networkwith 25 nodes is visualized.

The strategies share the same observation interval, and therefore the first 20 seconds are the

same, since they also start with the same announcement interval of 2 seconds. The Static
strategy preserves this announcement interval, and the globally generated traffic remains the

same for the whole experiment.

205

6 Smart Transitional Wireless Networking

Unsteady and MaxFirst show very low announcement rates in this network configuration.

Unsteady uses the node count (see Sec. 6.2.3) and computes its maximum announcement delay,

which in this case is greater than the observation delay and sets this maximum. MaxFirst
jumps to the maximum possible announcement delay, since the observed announcement

count is high. Since the situation does not change, both algorithms stick to their decision in

future observations. This similarity changes for lower node counts. Considering Figure 6.9a,

MaxFirst sets the same very low announcement rates in the beginning, which leads to low

global announcement rates and finally to big gaps between each two announcements. Unsteady
(Fig. 6.9h) compensates this problem and starts with higher announcement rates in smaller

networks.

MinFirst and Step also behave similarly, since the down steps are implemented the same way.

Both algorithms extend their announcement delay by 1 second, starting at a delay of 2 seconds.

StepAndRand also is in the same group and only differs from Step by adding a random value

with a maximum of 0.5 seconds. All three algorithms achieve the goal of a less saturated

network and also approach the same minimum as MaxFirst and Unsteady.

In this network configuration, RandomSweet as well as Random show a similar behavior. The

announcement rate drops directly after the initial observation, but stays higher than for the

other strategies that achieve a low announce rate after around 200 seconds. To get similar

results as, for example,MaxFirst, all nodes would need to pick a pretty high delay by chance,

and the more nodes in the network, the more unlikely it is that all nodes do this in the same

observation interval.

100

101

102

a
n
n
o
u
n
ce

s
/

se
co

n
d

a) MaxFirst b) MinFirst c) Random d) RandomSweet

0 50 100 150 200 250
time (s)

100

101

102

a
n
n
o
u
n
ce

s
/

se
co

n
d n002

n005

n010

n025

n050

n100

n200

e) Static

0 50 100 150 200 250
time (s)

f) Step

0 50 100 150 200 250
time (s)

g) StepRand

0 50 100 150 200 250
time (s)

h) Unsteady

Figure 6.9: Comparison: announcements produced by the proposed strategies in different static

network configurations.

Bandwidth Savings

A major goal for using dynamic announce intervals is the reduction of bandwidth in such

protocols. Table 6.6 shows the announcement rates of the proposed strategies compared to the

206

6.2 On Dynamic Announcement Intervals in Wireless On-demand Networks

Name
Nodes 2 5 10 25 50

Static 291 732 1460 3658 7296

Random 34,4% 47,0% 37,0% 37,9% 37,3%

RandSweet 58,1% 41,7% 29,0% 35,6% 37,7%

Step 101,7% 45,4% 35,2% 33,2% 33,4%

StepRand 99,7% 42,5% 32,5% 30,1% 30,2%

MaxFirst 99,0% 21,2% 17,1% 17,0% 17,1%

MinFirst 84,9% 44,3% 34,7% 33,3% 33,5%

Unsteady 188,7% 56,8% 32,5% 17,7% 17,1%

Table 6.6: Announcements of the strategies compared.

static announcement strategy. For this table, the announcements sent by one node in the batch

node start is used. This number also includes the observation delay in which all strategies

follow the static behavior.

All non-static strategies converge for growing node counts. Step, StepRand andMinFirst use
around a third of the number of announcements compared to Static.MaxFirst andUnsteady take

advantage of their fast adaptation rate and are able to save around 80% of the announcements.

This means that only one fifth of the bandwidth is used without sacrificing any comfort or

usability of the protocol.

Table 6.6 also shows that the proposed strategies benefit the most from their dynamic behavior

for networks with 2 to 10 nodes. After that, only minor improvements can be achieved. The

announcement rate of Static can be altered easily by hand and could therefore also reach the

goal of a lower global announcement rate for big networks, but would then lose the ability to

perform good in small networks without manual interaction on each node.

Unsteady uses more bandwidth than Static for a minimal network. This allows fast discovery of

new peers in an existing network and addresses the real-world problems described in Figure 6.7.

Random and RandomSweet have a lower total announcement count in small networks. This

shows that these strategies are inferior in terms of discovery times. The remaining Step-based
strategies show satisfactory results in small and bigger networks in terms of bandwidth usage,

but take a longer time to reach an optimal resource usage.

Adaptation Rate

Unsteady andMaxFirst have a very high adaptation rate, since they set their final announcement

delay after the first observation interval for all static network configurations, as presented in

Figure 6.9h.MaxFirst is able to achieve fast adaptation rates for big networks, whileMinFirst is
able to achieve this in small networks, as a result of their designs. A disadvantage of MaxFirst

207

6 Smart Transitional Wireless Networking

is shown in Figure 6.9a: For small networks, the announcement rate also drops to the minimum

in the first place, so discovery may be worsened.

The adaptation rate of the Step-based algorithms depend on the number of nodes. As outlined

in Figure 6.9f, in a network of 5 nodes around 70 seconds and in a network of 10 nodes around

150 seconds are needed to fully adapt.

In Figure 6.10, a splitting network configuration with 10 nodes is presented. The Step-based
strategies reach their target announcement rate immediately. In RandomSweet and Unsteady,
new announcement rates are visible after about 30 seconds. Both strategies reach announcement

rates as in the united, central network. This understanding only slightly differs in the merging

network: The Step based algorithms need longer, while Unsteady and MaxFirst adapt in the

observation interval.

0 50 100 150 200 250
time (s)

0

1

2

3

4

5

6

a
n
n
o
u
n
ce

s
/

se
co

n
d

split

MaxFirst-n010

MinFirst-n010

Random-n010

RandomSweet-n010

Static-n010

Step-n010

StepRand-n010

Unsteady-n010

Figure 6.10: Splitting network configuration with 10 nodes.

The observed adaptation rates are also valid for the merging network configuration:MaxFirst
and Unsteady adapt in a 30-seconds window, while the Step strategies take a longer time.

For the network of 5 nodes, the Step strategies also achieve an adaptation rate of around 40

seconds. Especially in small networks, this rate is important, since the announcement gaps are

compensated quickly.

Figure 6.11 shows a delayed start of 100 nodes, with one node starting per second. Compared

to Static, the proposed algorithms are able to keep the announcement rates low. Since every

node announces using the default interval for the first 20 seconds, the announcement rate

grows even in the very agile Unsteady and MaxFirst strategies. Immediately after all nodes are

spawned, the algorithms are able to adapt to the situation.

208

6.2 On Dynamic Announcement Intervals in Wireless On-demand Networks

0 50 100 150 200 250 300
time (s)

0

10

20

30

40

50

60
a
n
n
o
u
n
ce

s
/

se
co

n
d

MaxFirst-n100

MinFirst-n100

Random-n100

RandomSweet-n100

Static-n100

Step-n100

StepRand-n100

Unsteady-n100

Figure 6.11: A growing network with 100 nodes.

Announcement Gaps

Figure 6.12 shows a violin plot of the global announcement gaps for a static network with

10 nodes. The mean gap correlates with the global announcement rate, and so does the variance.

Having this in mind, the perceptions of Subsection 6.2.5 are backed by this plot. Although

MaxFirst does not have the highest announcement gap, it produces a relatively high percentage

of longer gaps, while all other strategies only have a low number of outliers in this area. This

is also the case for a network of 5 nodes. Yet larger network configurations do not show the

same characteristics. This behavior can be ascribed to the observations made in the previous

section.

What stands out is that compared to Static, all strategies perform worse with respect to the

maximum announcement gap. This can be put in perspective by examining the upper quartile:

For all algorithms except forMaxFirst, the upper quartiles of the announcement gaps are below

2 seconds.

Energy Consumption

Our initial assumption was that a reduced number of announcements would reduce the

consumed energy proportionally. We evaluated this assumption in a wireless network of 9

ARM-based nodes as described in Section 6.2.5. In these experiments, each node acted as sender

and receiver simultaneously. One node (system under test - SUT) was connected to an external

power meter (ODROID SmartPower), which logged the power and energy consumption of the

209

6 Smart Transitional Wireless Networking

node at a 5 Hz rate. Additionally, we ran every experiment with two different network interface

configurations, with a different idle power consumption each: ad hoc mode (Pidle=1.37 W) and

managed mode (Pidle=1.45 W).

To measure the higher end of the power consumption, two additional announcement strategies

sending announcements at a high rate are introduced: Static05 and Static01, with 2 and 10

announcements per second, respectively.

MaxFirst

MinFirst

Random

RandomSweet
Static Step

StepRand

Unste
ady

0

1

2

3

4

5

6

a
n
n
o
u
n
ce

 g
a
p
s

(s
)

Figure 6.12: Announcement Gaps in a static network of 10 nodes.

To compute the energy consumed by our software, the average idle power is subtracted from

the measured power in the given 300 seconds measurement interval:

E :=
∫ 300

0
Pmeasured(t)dt− 300 ∗ Pidle (6.1)

In the physical testbed with 9 nodes, the default Static strategy uses 1.99 mWh. Static05 and
Static01 use 11.97 mWh and 32.52 mWh for their announcements, respectively. Based on these

numbers, a correlation between the number of announcements (sent and received) and the

consumed energy is found and presented in Table 6.7.

While the correlation between the number of announcements and the energy consumption is

reasonable for large numbers of announcements, this correlation is not substantial for lower

numbers of announcements. The general trend seems to be correct (correlation coefficient

r = 0.985), since all proposed strategies need less energy than Static. In contrast, there are

examples in which this correlation seems to be vice versa, e.g., when comparing MaxFirst and
RandomSweet.

To summarize, the energy measurements of our experiments show that for high numbers

of announcements the energy consumption is increased. Side-effects of the programming

language, as well as the relatively low energy impact of the announcements of Mesher disturb
the energy measurements. Nevertheless, a general trend is clearly evident.

6.2.6 Summary

In this section, it was shown that without relying on application-specific properties, optimiza-

tions for network protocols relying on announcements can be achieved. We have compared

eight dynamic announcement strategies, including a standard static announcement strategy

210

6.2 On Dynamic Announcement Intervals in Wireless On-demand Networks

Name # Ann. E (mWh) rel. Ann. rel. E ratio

Static 1323 1.99 1.00 1.00 1.00

Static05 5404 11.97 4.08 6,00 1.47

Static01 29342 32.52 22.18 16.31 0.74

MaxFirst 256 1.17 0.19 0.59 3.04

MinFirst 473 1.26 0.36 0.63 3.04

Random 434 1.34 0.33 0.67 2.04

RandomSweet 342 0.73 0.26 0,37 1.42

Step 495 1.20 0.37 0.60 1.61

StepRand 460 1.12 0.35 0.56 1.61

Unsteady 514 1.38 0.39 0.69 1.78

Table 6.7: Correlation of energy consumption and announcements in a physical testbed of 9

nodes.

and a random announcement strategy. While a random announcement strategy might preserve

more bandwidth than a static announcement strategy, it has negative side-effects compared to

the other proposed announcement strategies. By dynamically changing the announcement

interval and depending on the number of nodes involved, we were able to reduce the band-

width required for announcements by more than 80% compared to a static announcement

strategy. Nevertheless, our requirements of fast discovery of at least one node are still met. The

evaluation of the proposed announcement strategies in terms of energy consumption show

that announcements do effect battery lifetimes and are thus worth to be reduced.

The algorithms for dynamic announcement intervals presented here are a smart solution in

the sense of this thesis. The information analysis cost and achievable quality shown in Figure

6.1 on page 184 can be classified using two technical metrics. The QoS refers directly to the

expected delay in service discovery. Conventionally, static announcement intervals are used,

thus the quality is highly variable. In a small group, it takes a comparatively long time for a

node to make a discovery, while in a large group, the announcements can generate cross-talk.

The information analysis cost is mainly expressed by the unnecessarily sent announcements.

The solution presented here allows an efficient discovery in scenarios and groups of different

sizes with a comparatively low information analysis cost overhead.

211

6 Smart Transitional Wireless Networking

6.3 Learning Wi-Fi Connection Loss Predictions for Seamless
Vertical Handovers Using Multipath TCP

6.3.1 Introduction

Smartphones have become our daily mobile companions to provide wireless access to com-

munication, information, and entertainment services. Since a large amount of data is not

downloaded in advance but streamed on demand via the Internet, seamless connectivity using

both Wi-Fi and cellular interfaces is desirable. The mobility of smartphone users leads to the

problem of deciding when to use which wireless connection. Most smartphones use Wi-Fi as

their default interface, since many cellular data plans will be throttled after exceeding a certain

limit. The decision when to perform vertical handovers is often based on the Wi-Fi received

signal strength indicator (RSSI) and timeouts for the transmission of packets. However, if a

user is leaving a location while listening to a music stream or watching a streamed video, the

established Wi-Fi connection eventually becomes unavailable and the streaming process stops.

The mobile operating system detects the connection loss some time after the connection is

lost. Finally, the application needs to reestablish the connection.

In this section, a novel approach to predict Wi-Fi connection loss before the connection breaks

to perform seamless vertical Wi-Fi/cellular handovers, is presented. Our approach relies on

data collected by multiple smartphone sensors (e.g., Wi-Fi RSSI, acceleration, compass, step

counter, air pressure) to predict Wi-Fi connection loss and uses Multipath TCP (MPTCP) to

dynamically switch between different wireless connectivity modes. We train a random forest

classifier and an artificial neural network on roughly 20 GB of sensor data collected by five

smartphone users over a period of three months. The trained models are efficiently executed

on smartphones and reliably predict Wi-Fi connection loss 15 seconds ahead of time, with a

precision of up to 0.97 and a recall of up to 0.98. Furthermore, we present results of four DASH

video streaming experiments that run on an Android smartphone and make use of available

Wi-Fi/cellular networks. The neural network predictions for Wi-Fi connection loss are used

to establish MPTCP subflows on the cellular link. Our experiments show that the proposed

approach provides seamless wireless connectivity, improves quality of experience by increasing

mean opinion scores (MOS) from 2.7 to up to 3.8 for certain scenarios, and requires up to 50%

less cellular data compared to handover approaches without Wi-Fi connection loss predictions.

The data set, analysis scripts, experimental logs, and the mobile app developed in this paper

are publicly available
16
. To summarize, we present:

• a novel approach to predict Wi-Fi connection loss for performing seamless vertical

handovers,

• a neural network to learn and predict Wi-Fi connection loss based on a novel combination

of smartphone sensors,

• a vertical handover method that uses MPTCP for switching between wireless connection

modes at runtime,

16
https://umr-ds.github.io/seamcon/

212

6.3 Learning Wi-Fi Connection Loss Predictions for Seamless Vertical Handovers

• an implementation on off-the-shelf smartphones to demonstrate its performance in

real-world scenarios; our results show significant improvements in terms of Quality of

Experience and the amount of cellular data consumed.

Parts of this section have been published in Jonas Höchst, Artur Sterz, Alexander Frömmgen,

Denny Stohr, Ralf Steinmetz, and Bernd Freisleben. “Learning Wi-Fi Connection Loss Predic-

tions for Seamless Vertical Handovers Using Multipath TCP.” in: 2019 IEEE 44th Conference on
Local Computer Networks (LCN 2019). Best Paper Award. Osnabrück, Germany, Oct. 2019. doi:

10.1109/LCN44214.2019.8990753. url: https://umr-ds.github.io/seamcon.

6.3.2 Related Work

Predicting Wi-Fi Connection Loss

Several approaches to predict Wi-Fi connection loss for performing handovers have been

proposed in the literature [ABG14]. Nasser et al. [NGA07] use neural networks to predict

Wi-Fi connection loss events based on RSSI. Horich et al. [HJG07] use a fuzzy logic controller

(FLC) for making decisions about performing handovers, where the parameters for the FLC are

learned using a neural network.

Lin et al. [LWL08] propose to use standardWi-Fi connection properties and a neural network to

predict Wi-Fi connection loss. Monsour et al. [MEO17] use a combination of user velocity and

the Allan variance of the RSSI to predict Wi-Fi connection loss, and use PMIPV6 to manage the

predicted Wi-Fi connection loss. Khan et al. [Kha+17] propose a fuzzy logic system to predict

Wi-Fi loss events based on various parameters, such as delay, jitter, bit error rate, packet loss,

communication cost, response time, and network load.

These approaches are limited to information of wireless connections, which may be helpful

to create metrics for Wi-Fi quality, but is not always the best information for predicting Wi-

Fi connection loss. In contrast, our approach considers information from a wide range of

smartphone sensors that indicate the usage context, leading to high-quality predictions.

Other approaches incorporate the mobility of the users [NN08] or higher level features like

social group affiliation, time-of-day, and average duration a user spends in a particular net-

work [Wan+11].

The predictions in all of these approaches depend on external factors and indicators. In contrast,

our approach only requires information that every current mobile device provides and thus

can be used in a straightforward, economically attractive manner. To best of our knowledge,

there is no work that uses smartphone sensor data to predict Wi-Fi connection loss.

Performing Vertical Handovers

There are extensions to the traditional Internet Protocol that allow users to keep a session

alive when (vertical) handovers are performed [Per10]. These approaches are based on home

and foreign agents that forward traffic for the mobile host. Although they are around for a

long time, mobile IP is not supported widely. Ma et al. [Ma+04] propose a vertical handover

213

https://doi.org/10.1109/LCN44214.2019.8990753
https://umr-ds.github.io/seamcon

6 Smart Transitional Wireless Networking

method based on the Stream Control Transmission Protocol. While the proposed method is

network-independent and thus does not require home and foreign agents, traditional TCP-based

applications cannot benefit from the advancements. MPTCP is a TCP extension supporting

multiple subflows for a single TCP connection [For+13]. MPTCP improves throughput and

reliability in data center and mobile environments [Rai+12; Che+13]. Paasch et al. [Paa+12]

evaluate MPTCP as a vertical handover mechanism. The authors propose three MPTCP modes

for handover scenarios, namely Full, Backup, and Single-Path Mode. The first two modes

maintain subflows on all interfaces, while the Single-Path Mode exploits the break-before-make

design of MPTCP. Pluntke et al. [PEK11] use MPTCP as a vertical handover mechanism to shift

connections between cellular and WiFi connectivity and finally to save energy. De Coninck

and Bonaventure [DB17] futher improve the handover by speeding up packet retransmissions

after the cellular subflow is established.

The handover mechanisms in these approaches are either reactive, resulting in temporary

connection losses, or use redundancy, leading to high bandwidth consumption, which is often

contrary to the users’ preferences.

6.3.3 Conceptual Overview

Figure 6.13 shows the components of our approach and the workflow. First, raw sensor data is

collected by amobile app developed for our work and uploaded to a server for further processing.

The raw data is appropriately preprocessed and enriched with additional higher level features.

The resulting data is then used to train and evaluate a random forest classifier and different

neural network architectures. The data preprocessing operations as well as the trained models

are transpiled to Java code and integrated into the mobile app on the smartphone, which in

turn makes online predictions for Wi-Fi connection loss 15 seconds ahead of time. Based on

these predictions, vertical Wi-Fi/cellular handover is performed using MPTCP. We explain the

main steps of our approach in more detail below. Neural network model building and Wi-Fi

connection loss predictions for performing MPTCP handovers on a smartphone are discussed

in Sections 6.3.4 and 6.3.5, respectively.

Smartphone Sensors

Modern smartphones offer a variety of sensors that directly or indirectly measure different

properties, as explained below. Even though every individual feature might not be a good

Wi-Fi connection loss indicator, combinations of seemingly irrelevant features can improve the

prediction accuracy.

Motion Depending on the abstraction level, direct motion sensor readings (e.g., accelerometer,

gyroscope, magnetometer), sensor readings cleaned from unwanted influences (e.g., gravity,

linear acceleration, rotation vector), or higher level sensor readings as hardware processed

triggers (e.g., significant motion, step counter, step detection), are good predictors for user

movement.

214

6.3 Learning Wi-Fi Connection Loss Predictions for Seamless Vertical Handovers

Offline Learning

Feature Selection

…
rssi_56
rssi_57
rssi_58
rssi_59
steps_00
steps_01
steps_02
steps_03
steps_04
…
{

accel_x
accel_y
accel_z

music_vol
ring_vol
ring_mode

is_charging
bat_percent

…

Machine LearningModel Evaluation

Mobile Application

Data CollectionOnline Prediction

4:45

Sensor Readings

Figure 6.13: Mobile application and offline learning.

Orientation Orientation sensors can reveal more specific situations, where a phone is in

the pocket or laying on a table. The proximity sensor is typically used to detect whether the

smartphone is held to the ear, but can also be a good hint for other situations, e.g., to detect

whether the smartphone is face down on the table.

Environment Environmental sensors include sensors for measuring ambient light to control

screen brightness, humidity, air pressure, and ambient temperature. Rapid changes in these

sensor readings can reveal a sudden change of the smartphone situation, e.g., going outdoors.

Global position GPS can be useful in combination with a world map of Wi-Fi availability.

Due to quality concerns with indoor GPS traces and high energy consumption, we discarded

GPS in our work.

User interactivity The user’s current context can be derived from various indicators, like

device state (interactive, idle, power save), current charging state, audio state (speaker, head-

phones, and their volumes), and ringer mode.

Wi-Fi properties Wi-Fi properties, obtained by the radio interface, provide insights into the

current connection quality along with reachable networks. Relevant indicators include RSSI,

data link layer speed, and used frequency bands.

215

6 Smart Transitional Wireless Networking

Sensor Data Preprocessing

To learn Wi-Fi connection loss predictions, the sensor data needs to be preprocessed. The time

component of the sensor readings needs to be incorporated in the feature vector.

Sensor sampling The used heterogeneous sensors have different reading frequencies.Motion

and orientation sensors can be read with a rather high sampling rate R of 50 Hz, while other

sensors are available and useful just under 1 Hz. As a trade-off between energy consumption

and sensor data quality, we chose a sensor data sampling rate of R = 1 sample per second.

Sensors with lower sampling rates are filled until a new value becomes available.

Observation and predictionwindow To enrich the discrete sensor readings and to consider

the temporal component, the sensor readings are processed in an observation window OW. We

use an observation window of 60 seconds, which is derived from common walking speeds and

Wi-Fi access point ranges. The earlier a Wi-Fi connection loss is predicted, the more effective

the transition between Wi-Fi/cellular is. To define an upper bound on the prediction window,

the quality characteristics of the used network protocols are important. Transport protocols,

such as TCP, use slow-start to avoid congestion. To compensate for this low-bandwidth start, an

early prediction is useful. As a trade-off between performance and farsightedness, and to avoid

long-running redundant MPTCP connections, which are energy and data plan consuming, we

use a prediction window of up to 15 seconds.

Feature vector The feature vector presented to the learning algorithm consists of the sensor

readings in the observation window. Each individual sensor contributes OW × SR values to the

feature vector. In the selected configuration, this results in 60 values per sensor. Furthermore,

all features are normalized by removing the mean and scaling to unit variance, as required for

the machine learning algorithms used in our approach.

Precision and Recall

When the Wi-Fi connection loss is predicted too early or too often, this can result in higher

consumption of the commonly restricted data plans of the users. Predicting it too late, on

the other hand, can result in a dissatisfactory QoE. The primary goal is to reach a high recall

in predicting Wi-Fi connection loss. In terms of energy efficiency, the secondary goal is to

reach a high precision predicting Wi-Fi connection loss, thus not performing unnecessary

handovers.

6.3.4 Learning Wi-Fi Loss Predictions

In this section, our novel data-driven approach to predict Wi-Fi connection loss is presented.

216

6.3 Learning Wi-Fi Connection Loss Predictions for Seamless Vertical Handovers

Data Set

We collected about 20 GB of smartphone sensor data from 5 users, with more than 900,000

unique samples, over a period of three months. The users were advised to let the mobile

application run throughout the day, thus the traces contain data from the users’ daily lives.

Training and test set Machine learning methods require separate data sets for training and

testing to verify the generalization abilities of the trained models. We investigated different

ways of building training and test sets: (a) we randomly split the available samples into, e.g.,

70% training and 30% test data, and (b) we split by users, to learn and test with different

users.

Feature Vectors

All features collected on the smartphones can be used as predictors for Wi-Fi connection loss.

We used two feature vector sets, namely the Full and the Reduced Feature Vector.

Full Feature Vector The data collected by the different users shows that some features are

not available on all devices. The 25 features selected for the full feature vector consist of values

of all available sensors: Atmospheric pressure: x, delta; Linear acceleration: x, y, z, length; Step
counter: delta; Power: is charging, battery percentage; Gravity: x, y, z; Gyroscope: length;
Magnetic field: x, y, z; Orientation: x, y, z; Rotation: x, y, z; Wi-Fi: f requency, speed, RSSI.
Thus, the feature vector consists of 25× 60 = 1500 features (i.e., with a 60 seconds observation

window).

Reduced Feature Vector Many of the sensors, like linear acceleration and gyroscope,

described in Section 6.3.3 share underlying features due to their physical properties. The

number of sensors can be reduced by leaving aside these sensors. For the Reduced Feature
Vector, we used the following sensors: Atmospheric pressure: delta; Linear acceleration: length;
Step counter: delta; Power: is charging; Gravity: z; Wi-Fi: f requency, speed, RSSI.

Sensor Data Example

Figure 6.14 shows an example of several sensor data values collected by a smartphone. The

figure shows the computed ground truth and a prediction probability value of a neural network

based on the Full Feature Vector, i.e., a probability value < 50% means that a Wi-Fi connection

loss is predicted and vice versa. The graphical representation of the sensor values shows that

no obvious correlation between one of the sensors and the prediction ground truth exists.

Nevertheless, each of the sensors shows some information that could be useful. For example,

the atmospheric pressure sensor rises from t = 100 to t = 115, which could be caused by

changing the floor in order to leave the building or by a changing ventilation. In combination

with the step counter delta, the first option is more likely, also resulting in a higher likelihood

for a Wi-Fi connection loss. Another example is the gravity sensor’s z axis that reports about

217

6 Smart Transitional Wireless Networking

100

50
R

SS
I

(d
B

)

1.00625
1.00650
1.00675

Pr
es

su
re

(k
PA

)

0

5

St
ep

s
pe

r
 S

ec
on

d

0 20 40 60 80 100 120 140
Time (s)

0.0

0.5

1.0

G
ro

un
d

 T
ru

th

0

100

PH
Y

Sp
ee

d
(M

B
it/

s)

0.5
2.0
3.5

Ac
ce

l.
le

ng
th

0

5

G
ra

vi
ty

z-
ax

is

0.0

0.5

1.0

Pr
ed

ic
tio

n

pstart p1p2 loss pend

Figure 6.14: Different sensors leading to an early (p1) and an ideal (p2) prediction of Wi-Fi

connection loss, based on a trained model with randomly split data.

9.81 for the time period from t = 20 until t = 35, which together with the linear acceleration

sensor is a good sign for laying flat on a table. This again reduces the likelihood of a Wi-Fi

connection loss event.

For the neural network shown on the bottom in Figure 6.14, a 60 seconds observation window

has to be filled before the first prediction is performed at pstart. The classification ends at pend,

since the operating system reports that Wi-Fi is unavailable. Since Wi-Fi becomes unavailable

at loss, the ground truth is 0 from p2 ongoing, matching the 15 seconds prediction window. The

neural network classifier matches the ground truth quite well, with the exception of p1, where

the classifier predicts the loss slightly too early. This example shows that the combination of

sensors available on today’s smartphones can lead to an effective prediction ofWi-Fi connection

loss.

Machine Learning Results

This section presents results of training different methods with the data to predictWi-Fi connec-

tion loss: (a) a random forest classifier [LW02], and (b) amulti-layer neural network. In particular,

we use the MLPClassifier and RandomForest implementations of scikit-learn [Ped+11].

Random forest Since random forest learning depends on equally distributed samples, the

data is down-sampled accordingly to match this criterion. The random forest consists of

10 random trees, learned using the Gini criterion. The overall performance of the random

218

6.3 Learning Wi-Fi Connection Loss Predictions for Seamless Vertical Handovers

Metric Forest NN 1 NN 2 NN 3

Loss Prec. 0.89 0.95 0.97 0.97

Loss Recall 0.98 0.94 0.95 0.95

F1-score 0.93 0.94 0.96 0.96

Table 6.8: Reduced Feature Vector, randomly split data, different learners and configurations.

forest is satisfactory, since all values are greater than 0.97. However, the precision of the Wi-

Fi connection loss class was not very high (0.86), ultimately resulting in triggering early or

unnecessary handovers.

RSSI-only neural network Another basic learning approach is to limit the learner to only

use the timeseries of RSSI values, as presented in Section 6.3.2. During our experiments, different

configurations of the neural network were evaluated. The overall performance is comparable

to the performance presented in the related work. The classification quality of the Wi-Fi

connection loss class did not exceed an F1-score of 0.95.

RandomData Split The results for neural networks learned with randomly split data depend

on the neural network architectures. Table 6.8 provides an overview of different classifier

approaches with the Reduced Feature Vector. Classifier NN 1 consists of 100 hidden neurons,

NN 2 of (300, 200, 100) neurons, and NN 3 of 5 hidden layers containing (400, 400, 400, 400,

400) neurons. All results were achieved using 70% of the data set exclusively for learning and

the remaining 30% for testing. In our experiments, NN 1 can reach a classification quality

comparable to the random forest classifier. The F1-score of the Wi-Fi connection loss class

reaches up to 0.94, with either a high precision or a high recall, but never both. In general, the

negative class, representing stable Wi-Fi connections, is predicted well by all tested neural

network classifiers. The experiments show that neural networks can reach both high precision

and high recall in the positive Wi-Fi connection loss class.

The results presented in Table 6.8 show thatNN 2 andNN 3 provide reasonably good performance

for both precision and recall in the Wi-Fi connection loss class. Even the neural network NN 2
consisting of three layers shows significant improvements compared to the flat neural network

discussed in the previous paragraph. It reaches an F1-score of 0.96 with slightly lower recall or

precision.

Other neural network architectures with up to 10 hidden layers were tested. Both precision

and recall could not be improved. Splitting the data randomly, NN 2 and NN 3 perform equally

well and enable a prediction with 97% precision, 95% recall, and a combined F1-score of 0.96.

User-based Data Split When testing for previously unseen users, the precision of the loss

worsens in our prediction. With 0.93, 0.92, and 0.79 precision in the Wi-Fi loss class, the Reduced

219

6 Smart Transitional Wireless Networking

Feature Vector generalizes better compared to the Full Feature Vector resulting in 0.91, 0.72, and

0.68 precision.

The results show that the neural networks are capable of generalizing even among different

users and devices. A good classification can be achieved using a neural network with the

Reduced Feature Vector. Providing a reasonably well basic functionality in the starting phase,

with data collected on the device, the classification can be improved during usage.

For the further model application evaluation, the Reduced Feature Vector NN 3 model was

selected.

6.3.5 Experimental Evaluation

As presented in Section 6.3.4, the learned neural network models reliably predict Wi-Fi con-

nection loss with a high precision and recall. To show the usefulness of these results, we

evaluated the performance when performing handovers in real-world mobile usage scenarios.

In the following, we present a seamless Wi-Fi/cellular handover during DASH video streaming

sessions.

Seamless Network Connectivity App

To gather the training data, perform the prediction, and test the applicability of the approach,

we implemented a mobile application that performs the following tasks:

Sensor data collection and preprocessing The sensor readings described in Section 6.3.3

are cached in memory and written periodically to a local SQLite database on the smartphone.

When a run ends, the database is uploaded to a server. To execute the neural network on the

smartphone, the sensor values are preprocessed similarly to the offline learning process. The

mean, variance, and the observation window determined offline are used.

Online prediction The offline learned neural networks are transpiled to Java using the

sklearn-porter[Mor] framework, which allows execution of the same neural networks trained

with sklearn on the device. This execution on the Android device allows us to achieve low

delays in predictions, independence of Internet access, and protects user privacy.

Demonstration & reporting We demonstrate the feasibility of the proposed approach

using an embedded DASH video playback functionality. Here, the goal is to highlight potential

in improved playback quality and stability made possible by seamless connectivity. We use the

open movie Elephants Dream, streamed from a server in the university network. The video

was pre-encoded using the h.264 encoder for video and AAC for audio, in three bandwidths 1,

2 and 4 MBit/s and a segment length of 2 seconds. For video playback, the JavaScript-based

DASH.js player (v 2.5.0) was used with a buffer size of 10 seconds in conjunction with the BOLA

adaptation algorithm. To analyze the QoE, we collect and report raw video metrics in each

220

6.3 Learning Wi-Fi Connection Loss Predictions for Seamless Vertical Handovers

streaming session while the video is playing to the server including stalls, playback bit rates,

quality adaptations, and buffer levels for later evaluation.

MPTCP handovers We use the Wi-Fi connection loss prediction to trigger the cellular

subflow establishment for MPTCP before the Wi-Fi connection is lost. We implemented our

approach on top of theMPTCP kernel implementation for Android
17
and theMultipathControl18

app of De Coninck et al. [De +16]. Furthermore, the video server uses MPTCP version 0.92

with the redundant scheduler and the fullmesh path manager enabled.

Experimental Setup

Our experiments consist of 3 connectivitymodes in 4 scenarios each performed 5 times, resulting

in a total of 60 iterations. The experiments were performed on a Google Nexus 5 smartphone

running a rooted Android and the MPTCP Kernel version 0.89.5. The following connectivity

modes were evaluated:

• Stock Android: The default Android mechanism was used to detect Wi-Fi unavailability.

During these tests, no transition mechanism was used to have a baseline to compare

with.

• MPTCP : To see how MPTCP can improve handover situations, it was enabled for the

entire run in these tests. The cellular uplink was used as the second interface, and both

client and server used the default scheduler.

• Seamless: During these tests, the Reduced Feature Vector neural network in configuration

NN 3 was used, since it showed the most promising results. MPTCP is enabled when a

Wi-Fi loss is predicted and disabled when Wi-Fi is available and no loss is predicted for 5

seconds.

The following set of routes is chosen to evaluate scenarios in which Wi-Fi connection losses

can occur. Figure 6.15 shows the room plan of the university building where the tests were

performed.

Scenario 1: Leaving the office Starting in the office, the smartphone is connected to the

office Wi-Fi. The tester leaves after 120 seconds of video playback and heads towards the exit

of the building. After the Wi-Fi connection is lost (determined in advance, roughly 50 meters)

the tester waits for 10 seconds and ends the scenario.

Scenario 2: Visiting a colleague The beginning is similar to Scenario 1, but the tester walks
around about 20 meters away from the office, visiting a colleague, but not leaving the Wi-Fi

range. The tester stays for 10 seconds and then walks back to the office.

17
https://multipath-tcp.org/pmwiki.php/Users/Android

18
https://github.com/MPTCP-smartphone-thesis/MultipathControl

221

6 Smart Transitional Wireless Networking

S4: Roaming
S3: Staircase
S2: Colleague
S1: Leaving

Office AP
AP floor 5
AP floor 4
AP floor 3

Figure 6.15: Map with Wi-Fi APs and scenarios routes.

Scenario 3: Using the staircase Starting as before, the tester leaves the office on the same

route, but then uses the staircase to go up one floor and stays there for 10 seconds. The scenario

shows the impact of a Wi-Fi connection that, while remaining available, is not usable.

Scenario 4: Wi-Fi roaming support Starting in the office, the device is connected to the

university network. The tester leaves after 120 seconds and heads towards the other end of the

building, roaming between multiple possible Wi-Fi APs shown in Figure 6.15. The tester stays

near the exit for 10 seconds and then walks back the same route. This scenario is created to

further investigate the support of roaming gaps in corporate wireless networks where roaming

might be available, but is not sufficient to achieve a high QoE.

222

6.3 Learning Wi-Fi Connection Loss Predictions for Seamless Vertical Handovers

MeasuringQuality of Experience

The DASH video streaming technology is widely available, used bymany vendors, and evaluated

well. To measure the perceived QoE, several technical values are captured that are used to

compute mean opinion scores (MOS) [Sto+16], as discussed below.

Direct Measurements

During the experiments, the DASH video player reports different technical parameters to a

server. At the beginning of a video, the initial buffer has to be filled. This takes time, resulting

in initial stallings that are perceived to be more disturbing the longer they take. Furthermore,

stalling events during the video are also reported. Apart from the stallings, the number of adap-
tations is counted, since many adaptations also negatively influence the QoE. In addition, the

percentage of time spent in the highest achieved quality is measured. From a user’s perspective,

it is better to hold a certain quality as long as possible, even if it is not the best quality available.

Since stalling events and quality adaptations partly depend on the buffer level (i.e., how much

playable video is in the buffer), the buffer level is also captured. The buffer level should be as

constant as possible for about 10 seconds.

Finally, a packet dump is performed on the server to allow further analysis of the connections

created by MPTCP.

QoE Metrics

Apart from directly evaluating the metrics discussed above, derived metrics are used to capture

relations between these metrics and their impact on QoE. The QoEstall (Equation (1)) is derived

on a MOS scale (where 1 denotes a bad user experience and 5 an excellent one) based on the

stalling durations and frequencies during video playback. Furthermore, MOSquality (Equation

(2)) is deduced based on playtime in the highest achieved quality (t). L denotes the average

length of all conducted stallings (initially or during video playback) and N the number of

stallings, again either initially or during playback. Since our work focuses on Wi-Fi connection

loss events, we do not evaluate initial stallings.

MOSstall = 3.5× e−(0.15×L+0.19)×N + 1.5 (6.2)

MOSquality = 0.003× e0.064×t×100 + 2.498 (6.3)

MOScombined =
MOSstall + MOSquality

2
(6.4)

Finally, Stohr et al. [Sto+16] propose the average MOS, denoted as MOScombined (Equation (3)),

denoting a total user perception not only depending on stalling or quality adaptations. We use

MOScombined to evaluate QoE.

223

6 Smart Transitional Wireless Networking

(a) Scenario 1: Leaving

Mode # St. ∅ St. # A. HQ ∅ TD

Stock 3 1.46 s 23 87 % 21.75 MB

MPTCP 0 0 s 20 89 % 41.32 MB

Seaml. 0 0 s 27 88 % 36.11 MB

(b) Scenario 2: Colleague

Mode # St. ∅ St. # A. HQ ∅ TD

Stock 0 0 s 10 92 % 0 MB

MPTCP 0 0 s 10 91 % 9.98 MB

Seaml. 0 0 s 17 92 % 9.59 MB

(c) Scenario 3: Staircase

Mode # St. ∅ St. # A. HQ ∅ TD

Stock 3 2.06 s 49 80 % 0 MB

MPTCP 0 0 s 32 87 % 33.92 MB

Seaml. 0 0 s 28 85 % 16.81 MB

(d) Scenario 4: Wi-Fi Roaming

Mode # St. ∅ St. # A. HQ ∅ TD

Stock 18 14.98 s 42 53 % 0.89 MB

MPTCP 0 0 s 38 86 % 71.99 MB

Seaml. 15 5.47 s 23 84 % 15.50 MB

Table 6.9: Overview of Experimental Results

QoE Experimental Results

In Table 6.9, the overall results of the performed tests are presented, namely the number

of stalling events (# St.) and the average duration of a stalling event (∅ St.), the number of

adaptations (# A.), the relative time in the highest playback quality (HQ), and the average

transmitted data (∅ TD).

Scenario 1 As shown in Table 6.9a, the Stock tests performed worst with 3 stalling events in

total and an average stalling duration of about 1.5 seconds, while neither MPTCP nor Seamless
tests did show any stalling events, which is a significant improvement compared to the stock

tests. The amount of transferred data over cellular is high in theMPTCP test and low in the

Stock test. Seamless results are between these two tests, thus saving cellular data compared to

MPTCP, while still avoiding stallings. The results of these tests show that our prediction can

avoid the handover gap completely.

When looking at the buffer levels, video stream quality and the used bandwidth, it can be

seen that based on the prediction of Seamless, the cellular subflow is established proactively,

resulting in a seamless handover and thus no video stalling.

St
oc

k
M

PT
C

P
Se

am
le

ss

St
oc

k
M

PT
C

P
Se

am
le

ss

St
oc

k
M

PT
C

P
Se

am
le

ss

St
oc

k
M

PT
C

P
Se

am
le

ss

1

2

3

4

5

M
O

S c
om

bi
ne

d

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Figure 6.16: MOScombined values grouped to connectivity modes and scenarios.

224

6.3 Learning Wi-Fi Connection Loss Predictions for Seamless Vertical Handovers

Apart from improvements of these technical values, our approach improves QoE for users,

as expressed in the MOScombined. Figure 6.16 shows the MOScombined on the y-axis and the

different connectivity modes on the x-axis, grouped by scenario. For the stock tests, the

MOScombined is between about 2.5 (poor) and 3.5 (fair), indicating that the playback is not

totally unsatisfactory, but far away from a great experience. Seamless, on the other hand,

achieves a MOScombined of almost 4, indicating a good QoE, as high as inMPTCP tests.

Scenario 2 As shown in Table 6.9b, all tests are comparable for all metrics, showing that our

approach does not introduce any negative effects in already good situations. The transferred

amount of data over cellular in Seamless is about as high as in theMPTCP tests. This is because

the classifier predicts a Wi-Fi connection loss due to the movement of the smartphone and

thus switches to the cellular network, even though this is not necessary.

Neither the technical metrics like buffer level or used bandwidth, nor the MOS values differ

in the these experiments, thus they are not further evaluated here, again indicating that our

approach does not worsen the situation by any means.

Scenario 3 As shown in Table 6.9c, the stock tests performed worst with 3 stallings and an

average stalling time of about 2 seconds. Additionally, with 49 adaptations and only 80% of the

time at the highest achieved quality, the stock tests perform badly.MPTCP and Seamless do
not stall at all. With 28 and 30 adaptations and 85% of the time at the highest achieved quality,

the results of our approach are as good as in the MPTCP tests, again showing significant

improvements over the stock implementation. The data usage over cellular shows the same

behavior as in Scenario 1.

120 180 240
Time (s)

0

5

10

15

Ba
nd

w
id
th

(M
bi
t/s

)

0

5

10

15

Bu
�e

rl
ev
el
(s)

Wi-Fi

a) Stock Android

120 180 240
Time (s)

0

5

10

15

Ba
nd

w
id
th

(M
bi
t/s

)

0

5

10

15

Bu
�e

rl
ev
el
(s)
Wi-Fi Cellular

b) Seamless

Figure 6.17: Stock and Seamless in Scenario 3

Figures 6.17a and 6.17b show bandwidth and buffer level for Scenario 3. In the stock tests, the

maximum distance is shown in the used bandwidth around seconds 150 and 210. Seamless
improves this situation and establishes a cellular connection in a timely manner resulting in

no stallings. MOScombined during the stock tests shows again a relatively bad QoE with about

2.5 to 3.5 compared to the high MOS values of about 4 during MPTCP and tests using our

approach.

225

6 Smart Transitional Wireless Networking

Scenario 4 The results of the stock tests in Table 6.9d indicate that Android does not handle

Scenario 4 well. The video stalls 18 times and for about 15 seconds on average. The video

quality adapts 42 times in total and stays only for 53% of the time at the highest achieved

quality. MPTCP, on the other hand, handles Scenario 4 very well with no stallings, few quality

adaptations, and 86% of the time at the highest achieved quality.

Although Seamless cannot completely cope with the situation, the results are much better than

in the stock tests. With 15 stallings and an average stalling duration of 5.5 seconds, just 23

quality adaptations and 84% percent of the playtime at the highest achievable quality, the

results indicate an improved QoE using our approach. The benefits of these improvements

come with the cost of using more data (14.61 MB) over the cellular network, but only 21.53% of

cellular data compared to the MPTCP tests.

It is evident that our approach predicts Wi-Fi connection loss correctly, since connection

establishment occurs in a timely manner. However, the cellular interface does not reach the

high bandwidth used by MPTCP in the same scenario, which might be due to the fact that the

cellular interface requires a longer starting phase in the concrete area of the building. Also, due

to the relatively short Wi-Fi-less gaps investigated in this scenario, the cellular connections are

dismantled shortly after they are established. A model optimized not only for predicting Wi-Fi

connection loss events but also Wi-Fi recovery could improve such scenarios by keeping the

cellular link longer alive.

MOScombined during the Seamless and stock tests is comparably bad with a value of about 2,

while MPTCP still reaches a MOS of about 4. Nevertheless, our approach reaches a slightly

higher QoE than stock Android, as shown in Figure 6.16.

Overhead Analysis

0 20 40 60 80 100 120
Time (s)

1800

2300

2800

3300

Po
w

er
 (m

W
) pstart ptr.

Seamless MPTCP Wi-Fi

Figure 6.18: Power Consumption

Executing a neural network on a mobile device introduces overhead in terms of CPU and

memory usage, which is mainly reflected in power consumption. To evaluate this overhead,

power measurements were performed on a Nexus 5 smartphone. To avoid interferences from

the battery, we removed the battery from the device, soldered wires to the charge controller

and put it back into the Nexus 5. Then, we powered and measured the device using a Monsoon

226

6.3 Learning Wi-Fi Connection Loss Predictions for Seamless Vertical Handovers

High Voltage Power Monitor
19
with a sample rate of 5 kHz and a resolution of 286 µA. The

voltage was set to 4.2 V, which corresponds to about 92% battery capacity.

Since the measured device was not mobile anymore due to the wired power setup, we performed

a series of independent tests that are illustrated in Figure 6.18. First, we performed a baseline

measurement using only Wi-Fi, where neither the on-device prediction nor the sensor logging

was enabled (denoted as Wi-Fi). The second experiment additionally incorporated cellular

connectivity (marked as MPTCP). During the last experiment, the Wi-Fi connection loss

prediction (Seamless) was measured. In all tests, the video was streamed on the device as in all

other tests (see Sec. 6.3.5. Furthermore, the MPTCP kernel was used in all experiments. The

x-axis of Figure 6.18 shows the time in seconds and the y-axis denotes the consumed power in

mW. All tests were executed for 120 seconds, whereas in the prediction test the first 60 seconds

were used for filling the observation window and the prediction started at pstart.

The average power consumption during the Wi-Fi tests is about 1856 mW with a standard

deviation of 145 mW. Enabling LTE on the device, the average power consumption increases by

18.9% to about 2289 mW and a standard deviation of 143 mW.

The power consumption using our prediction approach depends on the current state. During

the first 60 seconds, LTE was enabled. Here, the average consumption is about 2792 mW, which

is about 22% higher than during the MPTCP test. Shortly after pstart, no Wi-Fi connection loss

is predicted, thus the LTE is switched off, which causes the device to change routing tables, turn

the LTE device off, and MPTCP has to reschedule its subflows. Doing this increases the power

consumption to an average of 2843 mW. At ptr., the transition fromMPTCP over Wi-Fi and LTE

to Wi-Fi only has finished, so that the power usage decreases to about 2420 mW. Compared to

the consumption during the Wi-Fi tests, this is an overhead of 30.6%. Compared to the MPTCP

test, the prediction introduces an overhead of 5.7%. In total, to retain the same high QoE, our

approach introduces an overhead of 15.7% on average (2649 mW, 300 mW standard deviation),

including all three phases of the Seamless tests.

Considering the 9660 mWh battery of the Nexus 5, the video could be streamed for about 4.22

hours continuously using MPTCP. Incorporating our on-device prediction, the time decreases

to 3.65 hours, which are about 34 minutes less watching time. This is a reasonable overhead for

executing a neural network in an Android app, and it can be further improved. For example,

Graubner et al. [Gra+18b] showed that certain computations can be performed in an energy-

efficient manner by executing them on a mobile device’s sensor hub or Wi-Fi chip.

6.3.6 Summary

In this section, a novel data-driven approach to predict Wi-Fi connection loss to perform

seamless vertical Wi-Fi/cellular handovers, was presented. The approach is based on sensors

available in today’s smartphones and uses MPTCP to dynamically switch between different

wireless connectivity modes. We demonstrated that our trained neural networks reliably predict

Wi-Fi connection loss 15 seconds ahead of time when users move around, with a precision

of up to 0.97 and a recall of up to 0.98. Furthermore, we illustrated the benefits of our Wi-Fi

connection loss prediction approach with an MPTCP video streaming application. We showed

19
https://www.msoon.com/

227

6 Smart Transitional Wireless Networking

that our predictions improve the QoE mean opinion score from 2.7 to up to 3.8 for certain

scenarios, while reducing the required cellular data usage by up to 50% compared to traditional

MPTCP approaches, with a negligible power consumption overhead.

The approach presented here for seamless Wi-Fi/cellular handovers is a smart solution in the

sense of this thesis. In this section, achievable quality as shown in Figure 6.1 on page 184

refers in particularly to the QoE perceived by the user. The information analysis cost has two

characteristics. On the one hand, there is the computational cost, since the sensor values have

to be evaluated continuously and the WiFi loss prediction is carried out. On the other hand,

the redundant transmissions made via MPTCP contribute to this cost.

The Mean Opinion Score (MOS) can be used as a quality metric. In the case study, different

scenarios are defined for which different quality improvements were measured. In a scenario

without Wi-Fi connection loss, no quality improvement was measured (control group). In two

other scenarios where the Wi-Fi connection was lost and a MOS of 2.7 was previously achieved,

the deployed smart system allows an increase to 3.8. In order to quantify the information

analysis cost in this case study, the overhead analysis presented in Section 6.3.5 can be used,

since a full system power measurement provides a good estimate of the overall cost. Following

the energy measurements, an overhead of 30.6% compared to Stock Android is introduced by

the approach. Another conventional approach to seamless handovers is pure MPTCP, where

parallel connections are established over cellular networks and Wi-Fi.

Our seamless handover approach achieves similar quality to the MPTCP approach, but the

connection loss prediction generates an overhead of 15.7%. Following these two quality and

cost metrics, it must be noted that the approach is close to the ineffective category as in-

troduced in Figure 3.1. Another metric can be used for evaluation, namely the cellular data

consumption, which is limited for most users on a monthly basis. The data consumption is in

all scenarios was lower compared to the MPTCP approach, in some cases it was reduced by

78.46%. Furthermore, the implementation of Wi-Fi loss prediction in this work is not optimized

for energy consumption, although enormous savings can be expected here in particular.

228

7
Conclusion

This chapter concludes the thesis and outlines areas of future work with respect to the areas of

our contributions.

7.1 Summary

In this thesis, smart systems were presented in three different areas: environmental monitoring,

adaptive disruption-tolerant networking, and transitional wireless networking. An overarching

categorization was presented that can be used to evaluate smart systems based on achievable

quality and information analysis cost.

In the area of smart distributed sensing, in particular in the field of environmental monitoring,

themain research questionwas how the flexibility of single-board computers could be facilitated

for smart distributed sensing. In particular, the following contributions were presented:

• A novel approach for configuring single-board computer operating system images, called

PIMOD, was presented.

• A novel, open-source software for reliable VHF radio tracking of small animals in their

wildlife habitat, called tRackIT OS, was presented.

• A multi-sensor approach that combines ultrasonic audio recordings, automatic radio

telemetry, and video camera recordings in a single modular unit, called BatRack, was

presented.

• Bird@Edge, a novel Edge AI system for recognizing bird species in audio recordings to

support real-time biodiversity monitoring was presented.

In the area of adaptive disruption-tolerant networking and in particular in opportunistic

function execution, improvements in terms of improved QoS and/or reduced information

analysis cost, were presented:

• An in-depth experimental evaluation of the delay-tolerant aspects of Serval for various

network setups and usage patterns was presented.

• Opportunistic named functions as a novel approach to operate ICN-DTNs during emer-

gencies were presented.

229

7 Conclusion

• A novel framework for offloading computational workflows in opportunistic networks,

with two addressing modes, workers publishing their capabilities and available resources,

a worker assignment algorithm, appropriate error handling, and network cleanup to

reduce network load, was presented.

• A novel open source DTN implementation, called DTN7, of the recently released Bundle

Protocol BP7, written in the Go programming language, was presented.

• A novel approach to support Programmable Disruption-tolerant Networking by allowing

network operators to program a node’s routing behavior based on context information,

without requiring knowledge of the router’s interior workings, was presented.

• A novel, freely available and open sourcemodem firmware for LoRa-enabledMCUs, called

rf95modemwas presented, a device-to-device LoRa chat application for iOS, Android, and

laptop/desktop computers was created, and an integration of LoRa into the disruption-

tolerant networking software DTN7 was presented.

The insights from smart distributed sensing and smart adaptive disruption-tolerant networking

were applied to transitional wireless networks and improved achievable quality and/or reduced

information analysis cost. In particular, the following contributions were presented:

• A novel approach to unsupervised traffic flow classification using statistical properties

of flows and clustering based on a neural autoencoder independent of the particular

network protocols was proposed.

• Several novel approaches to realize dynamic announcement intervals for the announce-

ments of groups that kept communication overhead as low as possible were presented.

• A novel data-driven approach to predict Wi-Fi connection loss to perform seamless

vertical Wi-Fi/cellular handovers was presented.

7.2 Future Work

This section presents future work for smart distributed sensing in adaptive wireless networks.

Future work will be considered in the three areas of environmental monitoring, adaptive

disruption-tolerant networking, and transitional wireless networking.

7.2.1 Smart Environmental Monitoring

Environmental monitoring is a quite old field, considering that nature observations go back

hundreds of years. With the advent of modern technologies, not only the observation tools,

but also the observation itself and evaluation process are becoming digital. To further increase

the achievable quality, future work should be done in the following areas:

An interesting area of future work is to extend PIMOD to enable reproducible image builds,

which can also support reproducible research in itself. This is currently limited by non-

deterministic side effects, such as creating temporary and logging files, as well as time stamps

contained in the image file system.

230

7.2 Future Work

For reliable VHF radio tracking of small animals, calculating exact bearings can be challenging,

since signals are affected by multiple factors, such as vegetation, topology of the surrounding

area, humidity, and rainfall. While bearings can be directly calculated based on a simple

model, higher quality can be achieved by using data of multiple stations and further context

information, such as a topology model and/or a calibration for the specific area of operation.

Finally, the continuous preparation and further processing of the collected data is the next major

task in creating a user-friendly and widely applicable animal tracking system for generating

ecological knowledge.

For presented edge AI approach for bird species recognition, self-supervised learning could be

used to leverage the vast amount of unlabeled data and to improve the recognition quality on

the target domain. Furthermore, continual and federated learning of machine learning models

at the edge are interesting future research topics.

Probably the biggest and most challenging task in environmental monitoring will be the con-

solidation and integration of diverse data sources and very large amounts of data. Techniques

such as network processing or edge AI, which have already been partially applied in this thesis,

can help to cope with these data volumes.

7.2.2 Smart Adaptive Disruption-tolerant Networking

Adaptive, disruption-tolerant networking itself is a niche technology, judging by its prevalence.

However, there are very convincing use cases in which the technology can offer real added

value. For the efficient application of the technology in these use cases, some future work can

be done:

For some of the presented contributions, i.e., Serval and DTN7, mobility simulations should

be carried out, preferably with real world movement patterns gathered from past events. A

simulator for the effective evaluation of DTN software should be created that allows researchers

to evaluate different approaches quickly and comparably. Also, further applications for delay

tolerant networks, such as remote medical support in regions with sparse populations or during

a disaster, should be discussed.

Regarding function execution as presented in opportunistic named functions and OPPLOAD,

exploring incentive mechanisms for function execution to perform functions locally for a

global benefit, possibly by leveraging a game-theoretic approach, are of interest. Incorporating

further network or social knowledge could improve overall performance in both opportunistic

approaches and should be investigated further.

There are several areas for future work in the presented DTN7 implementation. For example,

the bundle protocol does not define any kind of security or privacy mechanisms, although

optional extension exist. This opens the field of DTN-related security and privacy research

based on DTN7. Furthermore, for sensor networks or deployments in rural areas, DTN7’s energy

consumption should be evaluated. Finally, new convergence layers based on emerging radio

technologies, such as LoRa or mmWave communication, could be developed.

Regarding the presented programmable DTN approach, implementing a system that allows

updating or replacing routing algorithms at runtime would reduce unnecessary downtimes

231

7 Conclusion

and further reduce development and deployment hurdles. Also, allowing a centralized entity

to reconfigure an entire DTN deployment would make the administration and monitoring of

DTN nodes more flexible.

In the presented LoRa device-to-device approach, to efficiently use LoRa and its limited band-

width in crisis scenarios, a frequency plan for users and first responders should be created.

Such a plan can be integrated into the emergency communication app, and the plan could be

presented to the user.

7.2.3 Smart Transitional Networking

Smart Transitional Networking is an exciting new field whose improvements can go far beyond

incremental improvements within individual protocols. The contributions presented in this

thesis can be followed by the following future work:

Regarding unsupervised network traffic flow classification, there are multiple areas of future

work, such as (a) using deep and especially stacked autoencoders [Vin+10] to improve the

mapping of classes to clusters, (b) replacing the SoftMax classificationmethod by other methods

to improve the classification, and (c) training the network with subflows of varying lengths to

use the approach for nearly real-time classification after observing only a few seconds of the

packet stream.

For the presented dynamic announcement intervals, so far the algorithms only have access to

information like the number of announcements received in the last observation interval or the

number of currently known peers. By giving the strategies more information, further optimiza-

tions might be possible. Furthermore, a dynamic observation interval could be implemented,

to allow even faster adaptation to new situations. In addition, the proposed announcement

strategies should be tested in real-world applications where more computations are needed

to generate the announcements, e.g., sending database state by using hashing functions, or

transmitting routing tables in a mesh network. Finally, the proposed announcement strategies

should be implemented in existing software platforms such as Serval or DTN7 where they could
make a difference in real world scenarios.

In the area of Wi-Fi loss predictions and seamless vertical handovers, there are several areas of

futurework.While the contextual sensors used in the approach support high-quality predictions,

other more domain-specific sensors might be useful to predict, e.g., Wi-Fi overloads. It would

also be interesting to learn predictions for user/access point combinations. To deploy predictors

efficiently on off-the-shelf smartphones, lightweight neural networks on dedicated processing

engines should be considered. Finally, in addition to Wi-Fi connection loss prediction, Wi-Fi

connection regain prediction is an interesting area for future research.

A particular challenge for the entire field will be the application of the results shown in existing

networks and products. There are various obstacles, such as restricted networks or inaccessible,

unchangeable, proprietary systems and devices, which cannot be used for the application of

these novel approaches, or even hinder their use. Future work in this area would therefore be to

investigate how systems can be designed from the ground up to achieve inherent upgradeability

in order to support future developments.

232

List of Figures

Chapter 1: Introduction 1

Chapter 2: Fundamentals 9
2.1 Three different models of ubiquitous computing: smart terminal, smart inter-

action, and smart infrastructure, as defined by Poslad [Pos11]. 10

2.2 Dimensions of smartness for systems, services, and devices, as defined by Alter

[Alt20] . 11

2.3 Quality of Result / Service / Experience . 13

Chapter 3: Categorizing Smart Systems 15
3.1 Categories of conventional and smart systems emerging from information

analysis cost and achievable quality . 16

3.2 Information analysis cost and achievable quality of smart environmental mon-

itoring systems presented in this thesis . 18

3.3 Information analysis cost and achievable quality of smart adaptive disruption-

tolerant networking approaches presented in this thesis 20

3.4 Information analysis cost and achievable quality of smart transitional wireless

networking approaches presented in this thesis 22

Chapter 4: Smart Environmental Monitoring 25
4.1 Information analysis cost and achievable quality of the contributions in the

field of environmental monitoring . 26

4.2 Stages of PIMOD: preparation, commands, and post-processing. 32

4.3 Example executions times of different commands using a Raspberry Pi com-

pared to PIMOD. 36

4.4 Raspberry Pi Image configurations used for the Nature 4.0 Project 39

4.5 The hardware components of a tRackIT station. 44

4.6 Overview of the main software components of a tRackIT OS distribution. . . . 45

4.7 Signal analysis stages implemented in pyradiotracking. 46

4.8 IQ samples of one second, as received by RTL-SDR. 47

4.9 Power spectral density (PSD) of samples computed via Short-time Fourier

Transform (STFT). 48

4.10 Power spectral densities (PSDs) of selected frequencies, minimal signal power

threshold, and signal power sampling points. 49

4.11 GPS trace of the experimental evaluation track and the corresponding tRackIT
stations. 51

4.12 Example of signal delay among different receivers observed in the 2020 field

season using paur. 52

4.13 Detected signals on tRackIT stations in the experimental scenario. 53

4.14 Signal power and distance to a receiving station. 53

4.15 Histogram of bearing errors. 54

4.16 Power measurements of tRackIT OS and paur in default settings. 55

233

List of Figures

4.17 Hardware components of BatRack: (a) Raspberry pi mini computer, (b) rtl-sdr

dongle, (c) real time clock or LTE stick (d) 12V to 5V converter with USB power

supply, (e) KY-019 relay, (f) ultrasonicmicrophone, (g) IR spotlight, (h) Raspberry

pi camera (NoIR or HQ-camera with removed IR filter), (i) omnidirectional

antenna, (j) 12 V battery, (k) solar panel. 57

4.18 Analysis units of BatRack: (a) audio analysis unit (AAU), (b) camera analysis

unit (CAU), (c) VHF analysis unit (VAU). 57

4.19 VHF signal patterns in relation to the different modes of behaviour. Swarming

(purple), passive (orange), emerging from roost (green). 58

4.20 Identification of a tagged individual. The VHF signal shows strong fluctuations

during swarming (up left and mid). The signal fluctuations decrease signifi-

cantly after the bat enters the tree (up right, down left). Shortly after a second

individual enters the tree (down mid), the tagged bat emerges from the tree

(down right). 60

4.21 VHF-signal-derived behavioural patterns of Bechstein’s bat pairs. Blue = in-

activity, green = swarming. Gradations in the respective colour scale indicate

the roost used for resting (Tree A = lighter blue, Tree B = darker blue) or for

swarming (Tree A = lighter green, Tree B = darker green). 62

4.22 Overview over the Bird@Edge system . 66

4.23 Bird@Edge hardware components . 67

4.24 Bird@Edge software components . 68

4.25 Overview of the Bird@Edge processing pipeline 71

4.26 Grafana panel (x-axis: clock time; y-axis: recognition confidence) showing

recognized bird species of a certain Bird@Edge Mic, based on Xeno-Canto file

XC706150, recorded by user brickegickel . 74

4.27 Power consumption of a Bird@Edge Station in a dynamic scenario. 75

Chapter 5: Smart Adaptive Disruption-tolerant Networking 79
5.1 Information analysis cost and achievable quality of smart adaptive disruption-

tolerant networking approaches . 80

5.2 The Serval technology stack . 83

5.3 MF Mixed : Cumulated Rhizome store size, network and CPU load. 90

5.4 MM CPU usage over time. Left: unlimited Chained, right: unlimited Hub. . . . 91

5.5 Hub limited PM: Rhizome store size, network & CPU 92

5.6 Chained limited Medium file set: File-size-grouped hop-to-hop delivery periods

of five runs. 93

5.7 Energy consumption of announcement intervals 94

5.8 Power consumption during different Rhizome file set insertions (f1-f4) similar

to the Mass Messages test. 95

5.9 Basic ONF concept . 98

5.10 Example of in-network processing of named content with ONFs 99

5.11 Functionality of ONFs . 99

5.12 Processing ONFs in a disaster scenario . 105

5.13 Regions of interest in photos for relevant topics 106

5.14 Energy consumed for a transmission with and without a previously applied

face detection . 108

234

List of Figures

5.15 Disaster scenario modeled in CORE. Rescuers approaching from the left, trap-

ped people on the right. 110

5.16 Illustrative example: executing a workflow on two workers. 113

5.17 Architecture of OPPLOAD client and worker showing a possible workflow with

Ahead of Time (AoT) or Just in Time (JiT) worker assignment. 117

5.18 Exemplary overall workflow time in different configurations. 120

5.19 Worker selection in the ring topology just in time assignment scenarios. . . . 123

5.20 CPU and memory utilization in AoT mode; every worker capable. 124

5.21 Final workflow states, by number of active clients in JiT mode. 125

5.22 Example sensor node scenario with multiple endpoints. 129

5.23 A bundle transmitting a lux value from dtn:b2 to dtn:sink/lux. 130

5.24 Architecture and data flow in DTN7 . 133

5.25 Bundle transmission time for the 1-hop topology and different payload sizes . 136

5.26 Bundle transmission time for the 64-hops topology and different payload sizes. 137

5.27 CPU and network usage for transmitting 25 MiB over 32 hops. 138

5.28 Architectural overview of a DTN deployment utilizing ProgDTN 144

5.29 dtn7-go with the ProgDTN implementation between CLA and Store 145

5.30 Ratio of successfully delivered bundles for different parameters 149

5.31 Time to deliver a bundle to its destination for different parameters 149

5.32 Total number of bundle transmissions for different parameters 150

5.33 Time to make a routing decision for different parameters 151

5.34 Overhead in terms of percentage of bundles sent without a payload 151

5.35 CPU usage of three routing algorithms . 152

5.36 ESP32-based modem board and its connection options for smartphones, single-

board computers, and laptops. 158

5.37 Overview of the rf95modem architecture. 161

5.38 Console-based rf95modem LoRa chat example. 162

5.39 Overview of the components of the app. 163

5.40 Screenshot of the chat screen for the announcements channel. 164

5.41 Simplified implementation model of the Bundle Broadcasting Connector. . . . 165

5.42 Protocol specification of a fragment. 166

5.43 Exemplary packet airtime in different LoRa profiles. 167

5.44 Mobile station: smartphone, power bank, and Heltec wireless stick. 168

5.45 Successful LoRa transmissions in the city area. 170

5.46 Geo-positions of successful LoRa transmissions in a rural area. 171

5.47 Received Signal Strength Indicator in relation to transmission distance in the

proposed device-to-device scenario. 171

5.48 Total transmission size and amount of fragments for different payloads. . . . 172

5.49 User Distribution. 176

5.50 Transmission Results. 177

5.51 Transmission Results (Absolute). 179

5.52 Transmission ranges for 500 users and 10 messages per user. 180

5.53 Message receiving performance for different spreading factors and variable

messages per user for a community of 100 users. 181

235

List of Figures

Chapter 6: Smart Transitional Wireless Networking 183
6.1 Information analysis cost and achievable quality of smart transitional wireless

networking approaches . 184

6.2 Traffic utilization and packet sizes of example flows. 185

6.3 Neural autoencoder clustering. 189

6.4 Classification quality vs. number of clusters 193

6.5 Time needed for reading flows, computing feature vector and classification . 194

6.6 Drive-by store-and-forward data exchange. 196

6.7 Drive-by window of opportunity example. 196

6.8 Announcements/second in a static network of 25 nodes. 205

6.9 Comparison: announcements produced by the proposed strategies in different

static network configurations. 206

6.10 Splitting network configuration with 10 nodes. 208

6.11 A growing network with 100 nodes. 209

6.12 Announcement Gaps in a static network of 10 nodes. 210

6.13 Mobile application and offline learning. 215

6.14 Different sensors leading to an early (p1) and an ideal (p2) prediction of Wi-Fi

connection loss, based on a trained model with randomly split data. 218

6.15 Map with Wi-Fi APs and scenarios routes. 222

6.16 MOScombined values grouped to connectivity modes and scenarios. 224

6.17 Stock and Seamless in Scenario 3 . 225

6.18 Power Consumption . 226

Chapter 7: Conclusion 229

236

List of Tables

Chapter 1: Introduction 1

Chapter 2: Fundamentals 9

Chapter 3: Categorizing Smart Systems 15

Chapter 4: Smart Environmental Monitoring 25
4.1 Example executions times of different commands using a Raspberry Pi com-

pared to PIMOD. 35

4.2 tRackIT station’s LoRa matched signal payload: fields, accuracy, and sizes. . . 49

4.3 Studied female Bechstein’s bat individuals and their pair assignments 59

4.4 Overview of the training and test data . 72

4.5 Results (mAP) . 73

4.6 Model inference runtimes . 73

Chapter 5: Smart Adaptive Disruption-tolerant Networking 79
5.1 Topologies . 86

5.2 Scenario Tests . 87

5.3 Test File Sets . 88

5.4 Scenario tests . 109

5.5 Average runtimes of workflow parts in the ring scenario in client-only tests and

using AoT addressing. 122

5.6 Average runtimes of workflow parts in the ring scenario using JiT addressing

and all four assignments. 122

5.7 Average runtimes of tasks in mobile JiT scenarios in seconds. 126

5.8 Evaluation Parameters . 147

5.9 Classification of the ProgDTN configuration with 50 bundles per node of 1 MB

size . 153

5.10 Maximum distances achieved in the different areas and tested LoRa profiles in

the conducted experiments . 169

5.11 Energy consumption in receiving, sending, and deep sleep modes of rf95modem
compatible boards . 173

5.12 Experimental configurations . 175

5.13 Experimental configurations for additional edge-case tests 181

Chapter 6: Smart Transitional Wireless Networking 183
6.1 Statistical flow properties . 187

6.2 Manually extracted classes . 190

6.3 Captured Data . 191

6.4 Classification quality . 193

6.5 Classification confusion matrix . 194

6.6 Announcements of the strategies compared. 207

237

List of Tables

6.7 Correlation of energy consumption and announcements in a physical testbed

of 9 nodes. 211

6.8 Reduced Feature Vector, randomly split data, different learners and configurations. 219

6.9 Overview of Experimental Results . 224

Chapter 7: Conclusion 229

238

Bibliography

[ABG14] Atiq Ahmed, Leila Merghem Boulahia, and Dominique Gaiti. “Enabling Vertical

Handover Decisions in Heterogeneous Wireless Networks: A State-of-the-Art and

A Classification.” in: IEEE Communications Surveys Tutorials 16.2 (2014), pp. 776–
811. issn: 1553-877X. doi: 10.1109/SURV.2013.082713.00141 (cit. on p. 213).

[ABK15] Syed Hassan Ahmed, Safdar Hussain Bouk, and Dongkyun Kim. “Adaptive Bea-

coning Schemes in VANETs: Hybrid Approach.” in: 2015 International Conference
on Information Networking (ICOIN). IEEE. 2015, pp. 340–345 (cit. on p. 198).

[Ahn+18] Sanghong Ahn, Joohyung Lee, Sangdon Park, SH Shah Newaz, and Jun Kyun Choi.

“Competitive Partial Computation Offloading for Maximizing Energy Efficiency

in Mobile Cloud Computing.” in: IEEE Access 6 (2018), pp. 899–912 (cit. on p. 114).

[Ahr+08] Jeff Ahrenholz, Claudiu Danilov, Thomas R Henderson, and Jae H Kim. “CORE:

A Real-time Network Emulator.” in:Military Communications Conference. IEEE.
2008, pp. 1–7 (cit. on pp. 109, 120, 135, 147).

[All18] LoRa Alliance. “LoRaWAN Regional Parameters v1.0.3.” in: LoRa Alliance: Fremont,
CA, USA (2018) (cit. on p. 166).

[All77] Jonathan Allen. “Short Term Spectral Analysis, Synthesis, and Modification by

Discrete Fourier Transform.” in: IEEE Transactions on Acoustics, Speech, and Signal
Processing 25.3 (1977), pp. 235–238 (cit. on p. 46).

[Alo+14] Gianluca Aloi, Marco Di Felice, Valeria Loscrì, Pasquale Pace, and Giuseppe

Ruggeri. “Spontaneous Smartphone Networks as User-Centric Solution for the

Future Internet.” in: IEEE Communications Magazine 52.12 (2014), pp. 26–33 (cit. on
p. 196).

[Alt+19] Bastian Alt, Markus Weckesser, Christian Becker, Matthias Hollick, Sounak Kar,

Anja Klein, Robin Klose, Roland Kluge, Heinz Koeppl, Boris Koldehofe, et al.

“Transitions: A Protocol-Independent View of the Future Internet.” in: Proceedings
of the IEEE 107.4 (2019), pp. 835–846 (cit. on pp. 2, 12).

[Alt20] Steven Alter. “Making Sense of Smartness in the Context of Smart Devices and

Smart Systems.” in: Information Systems Frontiers 22.2 (2020), pp. 381–393 (cit. on
pp. 10, 11).

[Ana+16] Carlos Anastasiades, Tobias Schmid, JürgWeber, and Torsten Braun. “Information-

centric Content Retrieval for Delay-tolerant Networks.” in: Computer Networks
107 (2016), pp. 194–207 (cit. on p. 96).

[Asc+19] Fernando Ascensão, Andreas Kindel, Fernanda Zimmermann Teixeira, Rafael

Barrientos, Marcello D’Amico, Luís Borda-de-Água, and Henrique M Pereira.

“Beware that the Lack of Wildlife Mortality Records can Mask a Serious Impact

of Linear Infrastructures.” in: Global Ecology and Conservation 19 (2019), e00661

(cit. on p. 40).

239

https://doi.org/10.1109/SURV.2013.082713.00141

Bibliography

[Ash+16] Muhammad Ashar, Hirohiko Suwa, Yutaka Arakawa, and Keiichi Yasumoto.

“Priority Medical Image Delivery Using DTN for Healthcare Workers in Volcanic

Emergency.” in: Scientific Phone Apps and Mobile Devices 2.1 (2016), p. 9 (cit. on
p. 97).

[Aug+16] Aloÿs Augustin, Jiazi Yi, Thomas Clausen, and William Townsley. “A Study of

LoRa: Long Range & Low Power Networks for the Internet of Things.” in: Sensors
16.9 (2016), p. 1466 (cit. on p. 156).

[Ban+19] Aman Bansal, Apoorv Gupta, Deepak Kr. Sharma, and Varshika" Gambhir. “IICAR

- Inheritance Inspired Context-aware Routing Protocol for Opportunistic Net-

works.” in: Journal of Ambient Intelligence and Humanized Computing 10.6 (June

2019), pp. 2235–2253. issn: 1868-5145. doi: 10.1007/s12652-018-0815-2 (cit. on
p. 141).

[Bau+15] Lars Baumgärtner, Jonas Höchst, Matthias Leinweber, and Bernd Freisleben.

“How to Misuse SMTP over TLS: A Study of the (In) Security of Email Server

Communication.” in: Trustcom/BigDataSE/ISPA, 2015 IEEE. vol. 1. IEEE. 2015,
pp. 287–294. doi: 10.1109/Trustcom.2015.386 (cit. on p. 7).

[Bau+16] Lars Baumgärtner, Paul Gardner-Stephen, Pablo Graubner, Jeremy Lakeman,

Jonas Höchst, Patrick Lampe, Nils Schmidt, Stefan Schulz, Artur Sterz, and Bernd

Freisleben. “An Experimental Evaluation of Delay-Tolerant Networking with

Serval.” in: 2016 IEEE Global Humanitarian Technology Conference (GHTC). Seattle,
USA, Oct. 2016. doi: 10.1109/GHTC.2016.7857262 (cit. on pp. ix, 7, 82, 96, 116,

118, 135, 160, 198).

[Bau+17] Lars Baumgärtner, Pablo Graubner, Jonas Höchst, Anja Klein, and Bernd Freisle-

ben. “Speak Less, Hear Enough: On Dynamic Announcement Intervals in Wireless

On-demand Networks.” in: 13th Conference on Wireless On-demand Network Sys-
tems and Services (WONS 2017). Jackson Hole, USA, Feb. 2017. doi: 10.1109
/WONS.2017.7888768 (cit. on pp. ix, 6, 120, 197).

[Bau+18] Lars Baumgärtner, Alvar Penning, Patrick Lampe, Björn Richerzhagen, Ralf Stein-

metz, and Bernd Freisleben. “Environmental Monitoring Using Low-Cost Hard-

ware and Infrastructureless Wireless Communication.” in: 2018 IEEE Global Hu-
manitarian Technology Conference (GHTC). IEEE. 2018, pp. 1–8 (cit. on pp. 26, 113,

156).

[Bau+19] Lars Baumgärtner, Patrick Lampe, Jonas Höchst, Ragnar Mogk, Artur Sterz,

Pascal Weisenburger, Mira Mezini, and Bernd Freisleben. “Smart Street Lights

and Mobile Citizen Apps for Resilient Communication in a Digital City.” in: 2019
IEEE Global Humanitarian Technology Conference (GHTC 2019). Seattle, USA, Oct.
2019. doi: 10.1109/GHTC46095.2019.9033134 (cit. on pp. 6, 26).

[Bau+20] Lars Baumgärtner, Alexandra Dmitrienko, Bernd Freisleben, Alexander Gruler,

Jonas Höchst, Joshua Kühlberg, Mira Mezini, Richard Mitev, Markus Miettinen,

Anel Muhamedagic, Thien Duc Nguyen, Alvar Penning, Dermot Pustelnik, Filipp

Roos, Ahmad-Reza Sadeghi, Michael Schwarz, and Christian Uhl. “Mind the GAP:

Security & Privacy Risks of Contact Tracing Apps.” in: 2020 IEEE 19th International
Conference on Trust, Security and Privacy in Computing and Communications

240

https://doi.org/10.1007/s12652-018-0815-2
https://doi.org/10.1109/Trustcom.2015.386
https://doi.org/10.1109/GHTC.2016.7857262
https://doi.org/10.1109/WONS.2017.7888768
https://doi.org/10.1109/WONS.2017.7888768
https://doi.org/10.1109/GHTC46095.2019.9033134

Bibliography

(TrustCom). vol. 1. IEEE. Dec. 2020, pp. 458–467. doi: 10.1109/TrustCom50675
.2020.00069 (cit. on p. 5).

[Bau16] Christian Baun. “Mobile Clusters of Single Board Computers: An Option for

Providing Resources to Student Projects and Researchers.” in: SpringerPlus 5.1
(2016), p. 360 (cit. on p. 29).

[BCW07] Matteo Berioli, Nicolas Courville, and Markus Werner. “Emergency Communica-

tions over Satellite: the WISECOM Approach.” in: 16Th IST Mobile and Wireless
Communications Summit. IEEE. 2007, pp. 1–5 (cit. on p. 82).

[Bel05] Fabrice Bellard. “QEMU, a Fast and Portable Dynamic Translator.” in: USENIX
Annual Technical Conference, FREENIX Track. vol. 41. 2005, p. 46 (cit. on p. 31).

[Ber+14] Carlos J Bernardos, Antonio De La Oliva, Pablo Serrano, Albert Banchs, Luis

M Contreras, Hao Jin, and Juan Carlos Zúñiga. “An Architecture for Software

Defined Wireless Networking.” in: IEEE Wireless Communications 21.3 (2014),

pp. 52–61 (cit. on p. 184).

[BFB22] Scott Burleigh, Kevin Fall, and Edward J. Birrane. Bundle Protocol Version 7. RFC
9171. RFC Editor, Oct. 2022. url: https://www.rfc-editor.org/rfc/rfc917
1.txt (cit. on pp. 127, 129, 140, 144).

[BGZ17] Moritz Beller, Georgios Gousios, and Andy Zaidman. “Oops, my Tests Broke the

Build: An Explorative Analysis of Travis CI with GitHub.” in: 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR). IEEE. 2017,
pp. 356–367 (cit. on p. 33).

[BHM19] Lars Baumgärtner, Jonas Höchst, and Tobias Meuser. “B-DTN7: Browser-based

Disruption-tolerant Networking via Bundle Protocol 7.” in: 2019 International Con-
ference on Information and Communication Technologies for Disaster Management
(ICT-DM’19). Paris, France, Dec. 2019. doi: 10.1109/ICT-DM47966.2019.90329
44 (cit. on p. 6).

[Bis+18] Pratik K Biswas, Sharon J Mackey, Derya H Cansever, Mitesh P Patel, and Frank B

Panettieri. “Context-Aware Smallworld Routing for Wireless Ad-Hoc Networks.”

in: IEEE Transactions on Communications 66.9 (Sept. 2018), pp. 3943–3958. doi:
10.1109/TCOMM.2018.2811486 (cit. on p. 141).

[Bol+07] Chiara Boldrini, Marco Conti, Iacopo Iacopini, and Andrea Passarella. “HiBOp:

a History Based Routing Protocol for Opportunistic Networks.” in: 2007 IEEE
International Symposium on a World of Wireless, Mobile and Multimedia Networks.
June 2007, pp. 1–12. doi: 10.1109/WOWMOM.2007.4351716 (cit. on p. 141).

[Bon16] Drew Bonasera. PiShrink: Make Your Pi Images Smaller! 2016. url: https://gith
ub.com/Drewsif/PiShrink (visited on 11/05/2019) (cit. on p. 28).

[BSC18] Kyung Min Baek, Dong Yeong Seo, and Yun Won Chung. “An Improved Oppor-

tunistic Routing Protocol Based on Context Information of Mobile Nodes.” in:

Applied Sciences 8.8 (2018). issn: 2076-3417. doi: 10.3390/app8081344 (cit. on

p. 142).

[BSS10] Agathe Battestini, Vidya Setlur, and Timothy Sohn. “A Large Scale Study of Text

Messaging Use.” in: 12th Int. Conf. on Human Computer Interaction with Mobile
Devices and Services. ACM. 2010, pp. 229–238 (cit. on p. 87).

241

https://doi.org/10.1109/TrustCom50675.2020.00069
https://doi.org/10.1109/TrustCom50675.2020.00069
https://www.rfc-editor.org/rfc/rfc9171.txt
https://www.rfc-editor.org/rfc/rfc9171.txt
https://doi.org/10.1109/ICT-DM47966.2019.9032944
https://doi.org/10.1109/ICT-DM47966.2019.9032944
https://doi.org/10.1109/TCOMM.2018.2811486
https://doi.org/10.1109/WOWMOM.2007.4351716
https://github.com/Drewsif/PiShrink
https://github.com/Drewsif/PiShrink
https://doi.org/10.3390/app8081344

Bibliography

[Bur07] Scott Burleigh. Interplanetary Overlay Network An Implementation of the DTN
Bundle Protocol. tech. rep. JPL, 2007 (cit. on p. 128).

[Bur19] Scott Burleigh. Minimal TCP Convergence-Layer Protocol. tech. rep. IETF, 2019
(cit. on p. 131).

[Bux+18] Rachel T Buxton, Patrick E Lendrum, Kevin R Crooks, and George Wittemyer.

“Pairing Camera Traps and Acoustic Recorders to Monitor the Ecological Impact

of Human Disturbance.” in: Global Ecology and Conservation 16 (2018), e00493

(cit. on p. 56).

[BVR16] Martin Bor, John Vidler, and Utz Roedig. “LoRa for the Internet of Things.” in:

Proceedings of the 2016 International Conference on Embedded Wireless Systems
and Networks. EWSN ’16. Graz, Austria: Junction Publishing, 2016, pp. 361–366.

isbn: 9780994988607 (cit. on p. 156).

[BZS17] Paolo Bellavista, Alessandro Zanni, and Michele Solimando. “A Migration-enhan-

ced Edge Computing Support for Mobile Devices in Hostile Environments.” in:

2017 13th InternationalWireless Communications andMobile Computing Conference
(IWCMC). IEEE. 2017, pp. 957–962 (cit. on p. 115).

[Cab+10] Roy Cabaniss, Sanjay Madria, George Rush, Abbey Trotta, and Srinivasa S Vulli.

“Dynamic Social Grouping based Routing in a Mobile Ad-Hoc Network.” in: 2010
International Conference on High Performance Computing. Dec. 2010, pp. 1–8. doi:
10.1109/HIPC.2010.5713165 (cit. on p. 141).

[Cac+13] Angela Sara Cacciapuoti, Francesco Calabrese, Marcello Caleffi, Giusy Di Lorenzo,

and Luigi Paura. “Human-mobility Enabled Wireless Networks for Emergency

Communications during Special Events.” in: Pervasive and Mobile Computing 9.4

(2013), pp. 472–483 (cit. on p. 82).

[Cag+10] Francesca Cagnacci, Luigi Boitani, Roger A Powell, and Mark S Boyce. “Animal

Ecology Meets GPS-based Radiotelemetry: A Perfect Storm of Opportunities

and Challenges.” in: Philosophical Transactions of the Royal Society B: Biological
Sciences 365.1550 (2010), pp. 2157–2162. doi: https://doi.org/10.1098/rstb
.2010.0107 (cit. on p. 41).

[Cal+19] Gilles Callebaut, Guus Leenders, Chesney Buyle, Stijn Crul, and Liesbet Van

der Perre. “LoRa Physical Layer Evaluation for Point-to-Point Links and Coverage

Measurements in Diverse Environments.” in: arXiv preprint arXiv:1909.08300 (2019)
(cit. on p. 156).

[Car+17] Anthony Caravaggi, Peter B Banks, A Cole Burton, Caroline MV Finlay, Peter M

Haswell, Matt W Hayward, Marcus J Rowcliffe, and Mike D Wood. “A Review of

Camera Trapping for Conservation Behaviour Research.” in: Remote Sensing in
Ecology and Conservation 3.3 (2017), pp. 109–122 (cit. on p. 56).

[CDD11] Thomas Clausen, Christopher Dearlove, and Justin Dean. RFC 6130: Mobile Ad
Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP). tech. rep. IETF,
2011 (cit. on p. 199).

[Cer+07] Vinton G. Cerf, Scott C. Burleigh, Robert C. Durst, Kevin Fall, Adrian J. Hooke,

Keith L. Scott, Leigh Torgerson, and Howard S. Weiss. Delay-Tolerant Networking
Architecture. tech. rep. RFC 4838. IETF, 2007 (cit. on p. 129).

242

https://doi.org/10.1109/HIPC.2010.5713165
https://doi.org/https://doi.org/10.1098/rstb.2010.0107
https://doi.org/https://doi.org/10.1098/rstb.2010.0107

Bibliography

[CH06] Louise Comfort and Thomas Haase. “Communication, Coherence, and Collective

Action: The Impact of Hurricane Katrina on Communications Infrastructure.” in:

Public Works Management & Policy 10.4 (2006), pp. 328–343 (cit. on p. 81).

[Cha+16] Dimitris Chatzopoulos, Mahdieh Ahmadi, Sokol Kosta, and Pan Hui. “Have You

Asked Your Neighbors? A Hidden Market Approach for Device-to-device Offload-

ing.” in: 17th IEEE Int. Symposium on A World of Wireless, Mobile and Multimedia
Networks (WoWMoM). IEEE. 2016, pp. 1–9 (cit. on p. 115).

[Che+13] Yung-Chih Chen, Yeon-sup Lim, Richard J. Gibbens, Erich M. Nahum, Ramin

Khalili, and Don Towsley. “A Measurement-based Study of MultiPath TCP Per-

formance over Wireless Networks.” in: Internet Measurement Conference. ACM,

2013. doi: 10.1145/2504730.2504751 (cit. on p. 214).

[Che+15] Jordan Cheney, Ben Klein, Anil K Jain, and Brendan F Klare. “Unconstrained Face

Detection: State of the Art Baseline and Challenges.” in: International Conference
on Biometrics (ICB ’15). IEEE. 2015, pp. 229–236 (cit. on p. 107).

[Che+16a] Jiachen Chen, Mayutan Arumaithurai, Xiaoming Fu, and K. K. Ramakrishnan.

“CNS: Content-oriented Notification Service for Managing Disasters.” in: Pro-
ceedings of the 3rd ACM Conference on Information-Centric Networking. ICN ’16.

2016, pp. 122–131 (cit. on pp. 96, 97).

[Che+16b] Xu Chen, Lei Jiao, Wenzhong Li, and Xiaoming Fu. “Efficient Multi-user Compu-

tation Offloading for Mobile-edge Cloud Computing.” in: IEEE/ACM Transactions
on Networking 5 (2016), pp. 2795–2808 (cit. on p. 115).

[Cho+18] Mahfuzulhoq Chowdhury, Eckehard Steinbach, Wolfgang Kellerer, and Martin

Maier. “Context-Aware Task Migration for HART-Centric Collaboration over

WiFi Based Tactile Internet Infrastructures.” in: IEEE Transactions on Parallel and
Distributed Systems 29.6 (2018), pp. 1231–1246 (cit. on p. 115).

[Coh99] Jeffrey P Cohn. “Tracking Wildlife: High-tech Devices help Biologists Trace the

Movements of Animals Through Sky and Sea.” in: BioScience 49.1 (1999), pp. 12–17
(cit. on p. 41).

[Con+10] Marco Conti, Silvia Giordano, Martin May, and Andrea Passarella. “From Op-

portunistic Networks to Opportunistic Computing.” in: IEEE Communications
Magazine 48.9 (2010), pp. 126–139 (cit. on p. 113).

[CS10] Tim Clutton-Brock and Ben C Sheldon. “Individuals and Populations: The Role

of Long-term, Individual-based Studies of Animals in Ecology and Evolutionary

Biology.” in: Trends in ecology & evolution 25.10 (2010), pp. 562–573. doi: https:
//doi.org/10.1016/j.gecco.2018.e00493 (cit. on p. 55).

[CS14] Harsha Chenji and Radu Stoleru. “Delay-tolerant Networks (DTNs) for Emergency

Communications.” in: Advances in Delay-tolerant Networks (DTNs): Architecture
and Enhanced Performance (2014), p. 105 (cit. on p. 82).

[Dai18] Kyle Daigle. GitHub Actions: Built by You, Run by Us. GitHub. Oct. 2018 (cit. on
p. 33).

243

https://doi.org/10.1145/2504730.2504751
https://doi.org/https://doi.org/10.1016/j.gecco.2018.e00493
https://doi.org/https://doi.org/10.1016/j.gecco.2018.e00493

Bibliography

[Dar+18] Kevin Darras, Péter Batáry, Brett Furnas, Antonio Celis-Murillo, Steven L. Van

Wilgenburg, Yeni A. Mulyani, and Teja Tscharntke. “Comparing the Sampling

Performance of Sound Recorders Versus Point Counts in Bird Surveys: A Meta-

Analysis.” in: Journal of Applied Ecology 55.6 (2018), pp. 2575–2586. doi: 10.1111
/1365-2664.13229 (cit. on p. 65).

[DB17] Quentin De Coninck and Olivier Bonaventure. Every Millisecond Counts: Tuning
Multipath TCP for Interactive Applications on Smartphones. tech. rep. Available at
http://hdl.handle.net/2078.1/185717, 2017 (cit. on p. 214).

[DCC11] György Dán, Niklas Carlsson, and Ilias Chatzidrossos. “Efficient and Highly

Available Peer Discovery: A Case for Independent Trackers and Gossipping.” in:

2011 IEEE International Conference on Peer-to-Peer Computing (P2P). IEEE. 2011,
pp. 290–299 (cit. on p. 198).

[De +16] Quentin De Coninck, Matthieu Baerts, Benjamin Hesmans, and Olivier Bonaven-

ture. “A First Analysis of Multipath TCP on Smartphones.” in: 17th Int. Passive
and Active Measurements Conference. vol. 17. Springer, 2016. doi: 10.1007/978-
3-319-30505-9_5 (cit. on p. 221).

[Dee+19] D. C. Deepak, Alexandros Ladas, Yusuf Abdulrahman Sambo, Haris Pervaiz, Chris-

tos Politis, and Muhammad Ali Imran. “An Overview of Post-disaster Emergency

Communication Systems in the Future Networks.” in: IEEE Wireless Communica-
tions 26.6 (2019), pp. 132–139. issn: 15580687. doi: 10.1109/MWC.2019.1800467
(cit. on p. 156).

[Dem+03] Michael Demmer, Eric Brewer, Kevin Fall, Sushant Jain, Melissa Ho, and Rabin

Patra. Implementing Delay Tolerant Networking. tech. rep. Intel Research Berkeley

and University of California, Berkeley, 2003 (cit. on p. 128).

[Den+15] Shuiguang Deng, Longtao Huang, Javid Taheri, and Albert Y Zomaya. “Compu-

tation Offloading for Service Workflow in Mobile Cloud Computing.” in: IEEE
Transactions on Parallel and Distributed Systems 26.12 (2015), pp. 3317–3329 (cit. on
p. 115).

[DF07] Michael Demmer and Kevin Fall. “DTLSR: Delay Tolerant Routing for Developing

Regions.” in: Proceedings of the 2007 Workshop on Networked Systems for Develop-
ing Regions. NSDR ’07. Kyoto, Japan: ACM, 2007, 5:1–5:6. isbn: 978-1-59593-787-2.

doi: 10.1145/1326571.1326579 (cit. on p. 148).

[Dis+21] Simone Disabato, Giuseppe Canonaco, Paul G Flikkema, Manuel Roveri, and

Cesare Alippi. “Birdsong Detection at the Edge with Deep Learning.” in: 2021
IEEE International Conference on Smart Computing (SMARTCOMP). IEEE. 2021,
pp. 9–16 (cit. on p. 65).

[Doe+08] Michael Doering, Sven Lahde, Johannes Morgenroth, and Lars Wolf. “IBR-DTN:

An Efficient Implementation for Embedded Systems.” in: Third ACM Workshop
on Challenged Networks. ACM. 2008, pp. 117–120 (cit. on pp. 127–129, 135).

244

https://doi.org/10.1111/1365-2664.13229
https://doi.org/10.1111/1365-2664.13229
https://doi.org/10.1007/978-3-319-30505-9_5
https://doi.org/10.1007/978-3-319-30505-9_5
https://doi.org/10.1109/MWC.2019.1800467
https://doi.org/10.1145/1326571.1326579

Bibliography

[Dos+21] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiao-

hua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. “An Image is Worth

16x16 Words: Transformers for Image Recognition at Scale.” in: 9th Int. Conference
on Learning Representations, ICLR 2021, Austria. 2021 (cit. on p. 65).

[DPC12] Alberto Dainotti, Antonio Pescape, and Kimberly C Claffy. “Issues and Future

Directions in Traffic Classification.” in: IEEE Network 26.1 (2012) (cit. on p. 184).

[Dul16] Alexandre Dulaunoy. Forban: A P2P Application for Link-local and Local Area
Networks. 2016. url: https://github.com/adulau/Forban (cit. on p. 128).

[Eli+18] Olakunle Elijah, Tharek Abdul Rahman, Igbafe Orikumhi, Chee Yen Leow, and

MHD Nour Hindia. “An Overview of Internet of Things (IoT) and Data Analytics

in Agriculture: Benefits and Challenges.” in: IEEE Internet of Things Journal 5.5
(2018), pp. 3758–3773 (cit. on p. 154).

[Ena+19] Hiroto Enari, Haruka S Enari, Kei Okuda, Tetsuya Maruyama, and Kana N Okuda.

“An Evaluation of the Efficiency of Passive Acoustic Monitoring in Detecting Deer

and Primates in Comparison with Camera Traps.” in: Ecological Indicators 98
(2019), pp. 753–762 (cit. on p. 56).

[Er-+17] Mohamed Er-rouidi, Houda Moudni, Hassan Faouzi, Hicham Mouncif, and Ab-

delkrim Merbouha. “A Fuzzy-Based Routing Strategy to Improve Route Stability

in MANET Based on AODV.” in: Networked Systems. Cham: Springer International

Publishing, 2017, pp. 40–48. isbn: 978-3-319-59647-1. doi: 10.1007/978-3-319-
59647-1_4 (cit. on p. 141).

[Erm+07] Jeffrey Erman, Anirban Mahanti, Martin Arlitt, Ira Cohen, and Carey Williamson.

“Semi-Supervised Network Traffic Classification.” in: ACM SIGMETRICS Per-
formance Evaluation Review. vol. 35. 1. ACM. 2007, pp. 369–370 (cit. on pp. 185,

186).

[ES18] Hanan H Elazhary and Sahar F Sabbeh. “The W 5 Framework for Computation

Offloading in the Internet of Things.” in: IEEE Access 6 (2018), pp. 23883–23895
(cit. on p. 115).

[Fai08] Florian Fainelli. “The OpenWRT Embedded Development Framework.” in: Pro-
ceedings of the Free and Open Source Software Developers European Meeting. 2008,
p. 106 (cit. on p. 28).

[Fan+18] Wenhao Fan, Yuan’an Liu, Bihua Tang, Fan Wu, and Zhongbao Wang. “Computa-

tion Offloading based on Cooperations of Mobile Edge Computing-enabled Base

Stations.” in: IEEE Access 6 (2018), pp. 22622–22633 (cit. on p. 115).

[Fen+18] Jie Feng, Liqiang Zhao, Jianbo Du, Xiaoli Chu, and F Richard Yu. “Computation

Offloading and Resource Allocation in D2D-Enabled Mobile Edge Computing.” in:

2018 IEEE Int. Conf. on Communications (ICC). IEEE. 2018, pp. 1–6 (cit. on p. 115).

[Fer16] David Ferguson. PiBakery: Easily Customise Raspbian. 2016. url: https://www.p
ibakery.org/index.html (visited on 11/05/2019) (cit. on p. 28).

[FHT10] Markus Fiedler, Tobias Hossfeld, and Phuoc Tran-Gia. “A Generic Quantitative

Relationship between Quality of Experience and Quality of Service.” in: IEEE
Network 24.2 (2010), pp. 36–41 (cit. on p. 13).

245

https://github.com/adulau/Forban
https://doi.org/10.1007/978-3-319-59647-1_4
https://doi.org/10.1007/978-3-319-59647-1_4
https://www.pibakery.org/index.html
https://www.pibakery.org/index.html

Bibliography

[FLR16] Niroshinie Fernando, SengW Loke, andWenny Rahayu. “Computing with Nearby

Mobile Devices: A Work Sharing Algorithm For Mobile Edge-clouds.” in: IEEE
Transactions on Cloud Computing 1 (2016), pp. 1–1 (cit. on p. 114).

[For+13] Alan Ford, Costin Raiciu, Mark Handley, and Olivier Bonaventure. TCP Extensions
for Multipath Operation with Multiple Addresses. RFC 6824. Internet Engineering

Task Force, 2013. doi: 10.17487/RFC6824 (cit. on p. 214).

[Fou14] National Science Foundation. “Partnerships for Innovation: Building Innovation

Capacity (PFI: BIC).” in: Program Solicitation (2014), NSF14–NSF610 (cit. on p. 10).

[Fri+19] Nicolas Friess, Jörg Bendix, Martin Brändle, Roland Brandl, Stephan Dahlke, Nina

Farwig, Bernd Freisleben, Hajo Holzmann, Hanna Meyer, Thomas Müller, Lars

Opgenoorth, Carina Peter, Petra Quillfeldt, Christoph Reudenbach, Bernhard

Seeger, Ralf Steinmetz, and Thomas Nauss. “Introducing Nature 4.0: A Sensor Net-

work for Environmental Monitoring in the Marburg Open Forest.” in: Biodiversity
Information Science and Standards 2 (2019) (cit. on pp. 12, 39).

[Frö+16] Alexander Frömmgen, Mohamed Hassan, Roland Kluge, Mahdi Mousavi, Max

Mühlhäuser, Sabrina Müller, Mathias Schnee, Michael Stein, and Markus Weck-

esser. “Mechanism Transitions: A New Paradigm for a Highly Adaptive Internet.”

in: (2016) (cit. on pp. 2, 12).

[Frö+18] Alexander Frömmgen, Denny Stohr, Boris Koldehofe, and Amr Rizk. “Don’t Repeat

Yourself: Seamless Execution and Analysis of Extensive Network Experiments.” in:

14th Int. Conf. on Emerging Networking Experiments and Technologies (CoNEXT’18).
2018 (cit. on pp. 135, 147).

[FS13] Huber Flores and Satish Srirama. “Adaptive Code Offloading for Mobile Cloud

Applications: Exploiting Fuzzy Sets and Evidence-based Learning.” in: 4th ACM
Workshop on Mobile Cloud Computing and Services. ACM. 2013, pp. 9–16 (cit. on

p. 115).

[FTH16] Colin Funai, Cristiano Tapparello, and Wendi Heinzelman. “Mobile to Mobile

Computational Offloading in Multi-hop Cooperative Networks.” in: IEEE Global
Communications Conference (GLOBECOM). IEEE. 2016, pp. 1–7 (cit. on p. 115).

[FW15] Marius Feldmann and Felix Walter. “µPCN - A Bundle Protocol Implementation

for Microcontrollers.” in: 2015 Int. Conf. on Wireless Communications & Signal
Processing (WCSP). IEEE. 2015 (cit. on pp. 127, 128).

[Gal+21] Sarah Gallacher, Duncan Wilson, Alison Fairbrass, Daniyar Turmukhambetov,

O Mac Aodha, Stefan Kreitmayer, M Firman, Gabriel Brostow, and Kate Jones.

“Shazam for Bats: Internet of Things for Continuous Real-Time Biodiversity

Monitoring.” in: IET Smart Cities (2021) (cit. on p. 65).

[Gar+12] Paul Gardner-Stephen, Jeremy Lakeman, Romana Challans, Corey Wallis, Ariel

Stulman, and Yoram Haddad. “MeshMS: Ad Hoc Data Transfer within Mesh Net-

work.” in: International Journal of Communications, Network and System Sciences
8.5 (2012), pp. 496–504 (cit. on pp. 81, 84, 104).

[Gar+13a] Paul Gardner-Stephen, Andrew Bettison, Romana Challans, and Jeremy Lakeman.

“The Rational Behind the Serval Network Layer for Resilient Communications.”

in: Journal of Computer Science 9.12 (2013), p. 1680 (cit. on pp. 81, 84, 104).

246

https://doi.org/10.17487/RFC6824

Bibliography

[Gar+13b] Paul Gardner-Stephen, Romana Challans, Jeremy Lakeman, Andrew Bettison,

Dione Gardner-Stephen, and Matthew Lloyd. “The Serval Mesh: A Platform for

Resilient Communications in Disaster & Crisis.” in: IEEE Global Humanitarian
Technology Conference (GHTC). IEEE. 2013, pp. 162–166 (cit. on pp. 81, 83, 104).

[Gar11] Paul Gardner-Stephen. “The Serval Project: Practical Wireless Ad-Hoc Mobile

Telecommunications.” in: Flinders University, Adelaide, South Australia, Tech. Rep
(2011) (cit. on pp. 81–83, 113, 118, 127, 128, 135, 154).

[GCG21] Yuan Gong, Yu-An Chung, and James R. Glass. “AST: Audio Spectrogram Trans-

former.” in: Interspeech 2021. 2021, pp. 571–575. doi: 10.21437/Interspeech.2
021-698 (cit. on p. 65).

[Gor+12] Mark S Gordon, Davoud Anoushe Jamshidi, Scott A Mahlke, Zhuoqing Morley

Mao, and Xu Chen. “COMET: Code Offload by Migrating Execution Transpar-

ently.” in: OSDI. vol. 12. 2012, pp. 93–106 (cit. on p. 114).

[Got+19] Jannis Gottwald, Ralf Zeidler, Nicolas Friess, Marvin Ludwig, Christoph Reuden-

bach, and Thomas Nauss. “Introduction of an Automatic and Open-Source Radio-

Tracking System for Small Animals.” in:Methods in Ecology and Evolution 10.12

(2019), pp. 2163–2172 (cit. on pp. 40, 41, 43, 50, 52, 56).

[Got+21] Jannis Gottwald, Patrick Lampe, Jonas Höchst, Nicolas Friess, Julia Maier, Lea

Leister, Betty Neumann, Tobias Richter, Bernd Freisleben, and Thomas Nauss.

“BatRack: An Open-sourceMulti-sensor Device forWildlife Research.” in:Methods
in Ecology and Evolution (July 2021). doi: 10.1111/2041-210X.13672 (cit. on

pp. viii, 5, 7, 55).

[Gra+18a] Pablo Graubner, Patrick Lampe, Jonas Höchst, Lars Baumgärtner, Mira Mezini,

and Bernd Freisleben. “Opportunistic Named Functions in Disruption-tolerant

Emergency Networks.” in: ACM International Conference on Computing Frontiers
2018 (ACM CF 2018). Ischia, Italy: ACM, May 2018. doi: 10.1145/3203217.3203
234 (cit. on pp. ix, 6, 97, 121, 160).

[Gra+18b] Pablo Graubner, Christoph Thelen, Michael Körber, Artur Sterz, Guido Salvane-

schi, Mira Mezini, Bernhard Seeger, and Bernd Freisleben. “Multimodal Complex

Event Processing on Mobile Devices.” in: 12th ACM Int. Conf. on Distributed and
Event-based Systems. ACM. 2018, pp. 112–123 (cit. on p. 227).

[Gra19] Pablo Graubner. “Energy-efficient Transitional Near-* Computing.” Doctoral

dissertation. University of Marburg, Germany, 2019 (cit. on p. 12).

[GY19] Stefan Greif and Yossi Yovel. “Using On-board Sound Recordings to Infer Be-

haviour of Free-movingWild Animals.” in: Journal of Experimental Biology 222.Sup-
pl_1 (2019), jeb184689 (cit. on p. 61).

[He+16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learn-

ing for Image Recognition.” in: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2016. doi: 10.1109/CVPR.2016.90. (cit. on p. 65).

[Hec20] Luke Hecht.Methods for Studying Wild Animals’ Causes of Death. Wild Animal

Initiative, https://www.wildanimalinitiative.org/blog/cause-of-deat
h-2. Accessed: 2020-11-02. Nov. 2020 (cit. on p. 43).

247

https://doi.org/10.21437/Interspeech.2021-698
https://doi.org/10.21437/Interspeech.2021-698
https://doi.org/10.1111/2041-210X.13672
https://doi.org/10.1145/3203217.3203234
https://doi.org/10.1145/3203217.3203234
https://doi.org/10.1109/CVPR.2016.90.
https://www.wildanimalinitiative.org/blog/cause-of-death-2
https://www.wildanimalinitiative.org/blog/cause-of-death-2

Bibliography

[Hei+13] Kurtis Heimerl, Kashif Ali, Joshua Blumenstock, Brian Gawalt, and Eric Brewer.

“Expanding Rural Cellular Networks with Virtual Coverage.” in: 10th USENIX
Symp. on Netw. Systems Design & Implementation. 2013, pp. 283–296 (cit. on p. 83).

[HHO14] Andrea Hess, Esa Hyytiä, and Jörg Ott. “Efficient Neighbor Discovery in Mobile

Opportunistic Networking using Mobility Awareness.” in: 2014 Sixth International
Conference on Communication Systems and Networks (COMSNETS). IEEE. 2014,
pp. 1–8 (cit. on p. 198).

[Hil+19] Andrew P. Hill, Peter Prince, Jake L. Snaddon, C. Patrick Doncaster, and Alex

Rogers. “AudioMoth: A Low-cost Acoustic Device for Monitoring Biodiversity

and the Environment.” in: HardwareX 6 (2019), e00073. issn: 2468-0672. doi: 10.1
016/j.ohx.2019.e00073 (cit. on p. 72).

[HJG07] Sana Horrich, Sana Ben Jamaa, and Philippe Godlewski. “Adaptive Vertical Mo-

bility Decision in Heterogeneous Networks.” in: 3rd Int. Conf. on Wireless and
Mobile Communications. Mar. 2007, pp. 44–44. doi: 10.1109/ICWMC.2007.16
(cit. on p. 213).

[HM17] Lorin Hochstein and Rene Moser. Ansible: Up and Running: Automating Config-
uration Management and Deployment the Easy Way. O’Reilly Media, Inc., 2017

(cit. on p. 29).

[Höc+17] Jonas Höchst, Lars Baumgärtner, Matthias Hollick, and Bernd Freisleben. “Unsu-

pervised Traffic Flow Classification Using a Neural Autoencoder.” in: 42nd Annual
IEEE Conference on Local Computer Networks (LCN 2017). Singapore, Oct. 2017.
doi: 10.1109/LCN.2017.57 (cit. on pp. ix, 6, 186).

[Höc+19] Jonas Höchst, Artur Sterz, Alexander Frömmgen, Denny Stohr, Ralf Steinmetz,

and Bernd Freisleben. “Learning Wi-Fi Connection Loss Predictions for Seamless

Vertical Handovers Using Multipath TCP.” in: 2019 IEEE 44th Conference on Local
Computer Networks (LCN 2019). Best Paper Award. Osnabrück, Germany, Oct.

2019. doi: 10.1109/LCN44214.2019.8990753. url: https://umr-ds.github
.io/seamcon (cit. on pp. ix, 6, 7, 213).

[Höc+20a] Jonas Höchst, Lars Baumgärtner, Franz Kuntke, Alvar Penning, Artur Sterz, and

Bernd Freisleben. “LoRa-based Device-to-Device Smartphone Communication

for Crisis Scenarios.” in: 17th International Conference on Information Systems for
Crisis Response and Management (ISCRAM 2020). Blacksburg, Virginia, USA, May

2020 (cit. on pp. ix, 5, 7, 49, 155).

[Höc+20b] Jonas Höchst, Alvar Penning, Patrick Lampe, and Bernd Freisleben. “PIMOD: A

Tool for Configuring Single-Board Computer Operating System Images.” in: 2020
IEEE Global Humanitarian Technology Conference (GHTC 2020). Seattle, USA, Oct.
2020, pp. 1–8. doi: 10.1109/GHTC46280.2020.9342928 (cit. on pp. viii, 5, 7, 27,

44, 56, 69).

[Höc+21] Jonas Höchst, Jannis Gottwald, Patrick Lampe, Julian Zobel, Thomas Nauss,

Ralf Steinmetz, and Bernd Freisleben. “tRackIT OS: Open-source Software for

Reliable VHFWildlife Tracking.” in: 51. Jahrestagung der Gesellschaft für Informatik
INFORMATIK 2021, Berlin, Germany. LNI. GI, Sept. 2021. doi: 10.18420/inform
atik2021-035 (cit. on pp. viii, 5, 7, 41).

248

https://doi.org/10.1016/j.ohx.2019.e00073
https://doi.org/10.1016/j.ohx.2019.e00073
https://doi.org/10.1109/ICWMC.2007.16
https://doi.org/10.1109/LCN.2017.57
https://doi.org/10.1109/LCN44214.2019.8990753
https://umr-ds.github.io/seamcon
https://umr-ds.github.io/seamcon
https://doi.org/10.1109/GHTC46280.2020.9342928
https://doi.org/10.18420/informatik2021-035
https://doi.org/10.18420/informatik2021-035

Bibliography

[Höc+22a] Jonas Höchst, Lars Baumgärtner, Franz Kuntke, Alvar Penning, Artur Sterz,

Markus Sommer, and Bernd Freisleben. “Mobile Device-to-Device Communica-

tion for Crisis Scenarios Using Low-cost LoRa Modems.” in: Disaster Management
and Information Technology: Professional Response and Recovery Management in
the Age of Disasters. ed. by Hans Jochen Scholl, Eric E. Holdeman, and F. Kees

Boersma. Springer Nature, 2022 (cit. on pp. ix, 4, 7, 155).

[Höc+22b] Jonas Höchst, Hicham Bellafkir, Patrick Lampe, Markus Vogelbacher, Markus

Mühling, Daniel Schneider, Kim Lindner, Sascha Rösner, Dana G. Schabo, Nina

Farwig, and Bernd Freisleben. “Bird@Edge: Bird Species Recognition at the Edge.”

in: International Conference on Networked Systems (NETYS). Springer. May 2022.

doi: 10.1007/978-3-031-17436-0_6 (cit. on pp. viii, 4, 5, 7, 64).

[Hor10] Craig A Hornbuckle. “Fractional-N Synthesized Chirp Generator.” in: United
States Patent US7791415B2, Semtech Corp (May 2007) (2010) (cit. on p. 154).

[Hos+16] Jan Hosang, Rodrigo Benenson, Piotr Dollár, and Bernt Schiele. “What Makes

for Effective Detection Proposals?” in: IEEE Transactions on Pattern Analysis and
Machine Intelligence 38.4 (2016), pp. 814–830 (cit. on p. 106).

[Hos12] Ben Hosmer. “Getting Started with Salt Stack - The Other Configuration Man-

agement System built with Python.” in: Linux journal 2012.223 (2012), p. 3 (cit. on
p. 29).

[Hot+15] Torsten Hothorn, Jörg Müller, Leonhard Held, Lisa Möst, and Atle Mysterud.

“Temporal Patterns of Deer–Vehicle Collisions Consistent with Deer Activity

Pattern and Density Increase but not General Accident Risk.” in: Accident Analysis
& Prevention 81 (2015), pp. 143–152 (cit. on p. 40).

[HPS21] Christof Henkel, Pascal Pfeiffer, and Philipp Singer. “Recognizing Bird Species in

Diverse Soundscapes under Weak Supervision.” in:Working Notes of CLEF 2021
- Conference and Labs of the Evaluation Forum, Bucharest, Romania, September
21-24, 2021. ed. by Guglielmo Faggioli, Nicola Ferro, Alexis Joly, Maria Maistro,

and Florina Piroi. vol. 2936. CEUR Workshop Proceedings. CEUR-WS.org, 2021,

pp. 1579–1586. url: http://ceur-ws.org/Vol-2936/paper-134.pdf (cit. on

p. 65).

[Hua+14] Peihao Huang, Yan Huang, Wei Wang, and Liang Wang. “Deep Embedding Net-

work for Clustering.” in: 22nd International Conference on Pattern Recognition
(ICPR). IEEE. 2014, pp. 1532–1537 (cit. on p. 188).

[iNa] iNaturalist. A community for naturalists. url: https://www.inaturalist.org/
(cit. on p. 72).

[Jac+01] Philippe Jacquet, Paul Muhlethaler, Thomas Clausen, Anis Laouiti, Amir Qayyum,

and Laurent Viennot. “Optimized Link State Routing Protocol for Ad Hoc Net-

works.” in: IEEE Int. Conf. on Technology for the 21st Century. 2001, pp. 62–68
(cit. on p. 84).

[Jac+09] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass, Nicholas H.

Briggs, and Rebecca L. Braynard. “Networking Named Content.” in: Proceed-
ings of the 5th International Conference on Emerging Networking Experiments and
Technologies. CoNEXT ’09. ACM, 2009, pp. 1–12 (cit. on p. 96).

249

https://doi.org/10.1007/978-3-031-17436-0_6
http://ceur-ws.org/Vol-2936/paper-134.pdf
https://www.inaturalist.org/

Bibliography

[JGA13] Rahul Johari, Neelima Gupta, and Sandhya Aneja. “CACBR: Context Aware Com-

munity Based Routing for Intermittently Connected Network.” in: Proceedings of
the 10th ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, &;
Ubiquitous Networks. PE-WASUN ’13. Barcelona, Spain: ACM, 2013, pp. 137–140.

isbn: 978-1-4503-2360-4. doi: 10.1145/2507248.2507272 (cit. on p. 141).

[JLP15] Lenord Melvix JSM, Vikas Lokesh, and George C Polyzos. “Energy Efficient Con-

text Based Forwarding Strategy in Named Data Networking of Things.” in: Pro-
ceedings of the 3rd ACM Conference on Information-Centric Networking. ICN ’16.

2015 (cit. on p. 97).

[JNA08] David Johnson, Ntsibane Ntlatlapa, and Corinna Aichele. “A Simple Pragmatic

Approach to Mesh Routing using BATMAN.” in: 2nd IFIP Int. Symp. on Wireless
Comm. and Information Technology in Developing Countries. 2008 (cit. on p. 84).

[Joh+18] Steven J Johnston, Philip J Basford, Colin S Perkins, Herry Herry, Fung Po Tso,

Dimitrios Pezaros, Robert DMullins, Eiko Yoneki, Simon J Cox, and Jeremy Singer.

“Commodity Single Board Computer Clusters and Their Applications.” in: Future
Generation Computer Systems 89 (2018), pp. 201–212 (cit. on p. 29).

[KA20] Todd E Katzner and Raphaël Arlettaz. “Evaluating Contributions of Recent Track-

ing-based Animal Movement Ecology to Conservation Management.” in: Frontiers
in Ecology and Evolution 7 (2020), p. 519 (cit. on p. 40).

[KAB10] Mustsfa Bani Khalaf, Ahmed YAl-Dubai, andWilliamBuchanan. “ANewAdaptive

Broadcasting Approach for Mobile Ad hoc Networks.” in: 6th Conference on
Wireless Advanced (WiAD). IEEE. 2010, pp. 1–6 (cit. on p. 198).

[Kah+20] Stefan Kahl, Mary Clapp, W. Alexander Hopping, Hervé Goëau, Hervé Glotin,

Robert Planqué, Willem-Pier Vellinga, and Alexis Joly. “Overview of BirdCLEF

2020: Bird Sound Recognition in Complex Acoustic Environments.” in:Working
Notes of CLEF 2020 - Conference and Labs of the Evaluation Forum, Thessaloniki,
Greece, September 22-25, 2020. ed. by Linda Cappellato, Carsten Eickhoff, Nicola

Ferro, and Aurélie Névéol. vol. 2696. CEURWorkshop Proceedings. CEUR-WS.org,

2020. url: http://ceur-ws.org/Vol-2696/paper%5C_262.pdf (cit. on p. 65).

[Kah+21a] Stefan Kahl, Tom Denton, Holger Klinck, Hervé Glotin, Hervé Goëau, Willem-

Pier Vellinga, Robert Planqué, and Alexis Joly. “Overview of BirdCLEF 2021: Bird

Call Identification in Soundscape Recordings.” in: Working Notes of CLEF 2021
- Conference and Labs of the Evaluation Forum, Bucharest, Romania, September
21-24, 2021. ed. by Guglielmo Faggioli, Nicola Ferro, Alexis Joly, Maria Maistro,

and Florina Piroi. vol. 2936. CEUR Workshop Proceedings. CEUR-WS.org, 2021,

pp. 1437–1450. url: http://ceur-ws.org/Vol-2936/paper-123.pdf (cit. on

p. 65).

[Kah+21b] Stefan Kahl, Connor M. Wood, Maximilian Eibl, and Holger Klinck. “BirdNET: A

Deep Learning Solution for Avian Diversity Monitoring.” in: Ecological Informatics
61 (2021), p. 101236. issn: 1574-9541. doi: 10.1016/j.ecoinf.2021.101236
(cit. on pp. 65, 72, 73).

[Kai12] Andrius Kairiukstis. BuildRaspbianImage: Build (and Cross-compile) Your Own
Image for Raspberry Pi. 2012. url: https://github.com/andrius/build-ras
pbian-image/ (visited on 11/05/2019) (cit. on p. 28).

250

https://doi.org/10.1145/2507248.2507272
http://ceur-ws.org/Vol-2696/paper%5C_262.pdf
http://ceur-ws.org/Vol-2936/paper-123.pdf
https://doi.org/10.1016/j.ecoinf.2021.101236
https://github.com/andrius/build-raspbian-image/
https://github.com/andrius/build-raspbian-image/

Bibliography

[Kau+18] Marc André Kaufhold, Nicola Rupp, Christian Reuter, Christoph Amelunxen, and

Massimo Cristaldi. “112.Social: Design and Evaluation of a Mobile Crisis App

for Bidirectional Communication between Emergency Services and Citizens.” in:

26th European Conference on Information Systems: Beyond Digitization - Facets of
Socio-Technical Change, ECIS 2018 (2018) (cit. on p. 156).

[Kay+11] Roland Kays, Sameer Tilak, Margaret Crofoot, Tony Fountain, Daniel Obando,

Alejandro Ortega, Franz Kuemmeth, Jamie Mandel, George Swenson, Thomas

Lambert, et al. “Tracking Animal Location and Activity with an Automated Radio

Telemetry System in a Tropical Rainforest.” in: The Computer Journal 54.12 (2011),
pp. 1931–1948 (cit. on pp. 41, 42, 56, 58).

[KB15] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimiza-

tion.” in: 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. ed. by Yoshua Ben-

gio and Yann LeCun. 2015. url: https://arxiv.org/abs/1412.6980 (cit. on

pp. 70, 189).

[Kel08] Marcella J Kelly. “Design, Evaluate, Refine: Camera Trap Studies for Elusive

Species.” in: Animal Conservation 11.3 (2008), pp. 182–184 (cit. on p. 55).

[Kha+17] Murad Khan, Awais Ahmad, Shehzad Khalid, Syed Hassan Ahmed, Sohail Jabbar,

and Jamil Ahmad. “Fuzzy based Multi-criteria Vertical Handover Decision Model-

ing in Heterogeneous Wireless Networks.” in: Multimedia Tools and Applications
76.23 (2017), pp. 24649–24674. issn: 1573-7721. doi: 10.1007/s11042-016-4330
-1 (cit. on p. 213).

[Kim+08] Hyunchul Kim, Kimberly C Claffy, Marina Fomenkov, Dhiman Barman, Michalis

Faloutsos, and KiYoung Lee. “Internet Traffic Classification Demystified: Myths,

Caveats, and the Best Practices.” in: Proceedings of the 2008 ACM CoNEXT Con-
ference. ACM. 2008, 11:1–11:12 (cit. on p. 186).

[Kim+15] Suhwuk Kim, Yuki Urata, Yuki Koizumi, and Toru Hasegawa. “Power-saving NDN-

based Message Delivery based on Collaborative Communication in Disasters.” in:

The 21st IEEE International Workshop on Local and Metropolitan Area Networks.
2015 (cit. on p. 97).

[KR16] R Kumar andMPallikonda Rajasekaran. “An IoT based PatientMonitoring System

using Raspberry Pi.” in: 2016 International Conference on Computing Technologies
and Intelligent Data Engineering (ICCTIDE’16). IEEE. 2016, pp. 1–4 (cit. on p. 26).

[Kum+13] Karthik Kumar, Jibang Liu, Yung-Hsiang Lu, and Bharat Bhargava. “A Survey of

Computation Offloading for Mobile Systems.” in:Mobile Networks and Applica-
tions 18.1 (2013), pp. 129–140 (cit. on p. 113).

[Kun82] Thomas H Kunz. “Roosting Ecology of Bats.” in: Ecology of bats. Springer, 1982,
pp. 1–55 (cit. on p. 55).

[KW16] David Kayisire and Jiuchang Wei. “ICT Adoption and Usage in Africa: Towards an

Efficiency Assessment.” in: Information Technology for Development 22.4 (2016),
pp. 630–653 (cit. on p. 154).

251

https://arxiv.org/abs/1412.6980
https://doi.org/10.1007/s11042-016-4330-1
https://doi.org/10.1007/s11042-016-4330-1

Bibliography

[Lam+17] Patrick Lampe, Lars Baumgärtner, Ralf Steinmetz, and Bernd Freisleben. “Smart-

Face: Efficient Face Detection on Smartphones for Wireless On-demand Emer-

gency Networks.” in: 24th Int. Conference on Telecommunications (ICT). IEEE. 2017,
pp. 1–7 (cit. on pp. 103, 108, 113, 120).

[Lam+22a] Patrick Lampe, Markus Sommer, Artur Sterz, Jonas Höchst, Christian Uhl, and

Bernd Freisleben. “ForestEdge: Unobtrusive Mechanism Interception in Environ-

mental Monitoring.” in: 2022 IEEE 47th Conference on Local Computer Networks
(LCN 2022). Edmonton, Canada, Sept. 2022. doi: 10.1109/LCN53696.2022.984
3426 (cit. on p. 4).

[Lam+22b] Patrick Lampe, Markus Sommer, Artur Sterz, Jonas Höchst, Christian Uhl, and

Bernd Freisleben. “Unobtrusive Mechanism Interception: Teaching an Old Dog

New Tricks.” in: 2022 IEEE 47th Conference on Local Computer Networks (LCN
2022). Edmonton, Canada, Sept. 2022. doi: 10.1109/LCN53696.2022.9843536
(cit. on p. 4).

[LDS04] Anders Lindgren, Avri Doria, and Olov Schelén. “Probabilistic Routing in Intermit-

tently Connected Networks.” in: Service Assurance with Partial and Intermittent
Resources. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 239–254. isbn:

978-3-540-27767-5. doi: 10.1145/961268.961272 (cit. on p. 148).

[Lee+19] Daniel Lees, Tom Schmidt, Craig DH Sherman, Grainne S Maguire, Peter Dann,

Glenn Ehmke, and Michael A Weston. “An Assessment of Radio Telemetry for

Monitoring Shorebird Chick Survival and Causes of Mortality.” in:Wildlife Re-
search 46.7 (2019), pp. 622–627 (cit. on p. 40).

[Li+13] Bingdong Li, Jeff Springer, George Bebis, and Mehmet Hadi Gunes. “A Survey of

Network Flow Applications.” in: Journal of Network and Computer Applications
36.2 (2013), pp. 567–581 (cit. on pp. 184, 185).

[Lie+17] Patrick Lieser, Flor Alvarez, Paul Gardner-Stephen, Matthias Hollick, and Doreen

Boehnstedt. “Architecture for Responsive EmergencyCommunicationsNetworks.”

in: 2017 IEEE Global Humanitarian Technology Conference (GHTC). IEEE. 2017,
pp. 1–9 (cit. on pp. 156, 160).

[Lig17] Roger A Light. “Mosquitto: Server and Client Implementation of the MQTT

Protocol.” in: Journal of Open Source Software 2.13 (2017), p. 265 (cit. on p. 44).

[Lin+11] Jó Ágila Bitsch Link, Christoph Wollgarten, Stefan Schupp, and Klaus Wehrle.

“Perfect Difference Sets for Neighbor Discovery: Energy Efficient and Fair.” in:

3rd Extreme Conference on Communication: The Amazon Expedition. ACM. 2011,

5:1–5:6 (cit. on p. 198).

[Lin+17] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. “Focal Loss

for Dense Object Detection.” in: 2017 IEEE International Conference on Computer
Vision (ICCV) (Oct. 2017) (cit. on p. 70).

[Liu+15] Yue Liu, David R Bild, David Adrian, Gulshan Singh, Robert P Dick, Dan SWallach,

and Z Morley Mao. “Performance and Energy Consumption Analysis of a Delay-

Tolerant Network for Censorship-Resistant Communication.” in: Proceedings of the
16th ACM International Symposium on Mobile Ad Hoc Networking and Computing.
ACM. 2015, pp. 257–266 (cit. on pp. 83, 154, 198).

252

https://doi.org/10.1109/LCN53696.2022.9843426
https://doi.org/10.1109/LCN53696.2022.9843426
https://doi.org/10.1109/LCN53696.2022.9843536
https://doi.org/10.1145/961268.961272

Bibliography

[Llo82] Stuart Lloyd. “Least Squares Quantization in PCM.” in: IEEE Transactions on
Information Theory 28.2 (1982), pp. 129–137 (cit. on p. 186).

[LN18] Ariel K Lenske and Joseph J Nocera. “Field Test of an Automated Radio-Telemetry

System: Tracking Local Space use of Aerial Insectivores.” in: Journal of Field
Ornithology 89.2 (2018), pp. 173–187 (cit. on p. 42).

[Loo11] James Loope. Managing Infrastructure with Puppet: Configuration Management at
Scale. O’Reilly Media, Inc., 2011 (cit. on p. 29).

[Lut+19] Manisha Luthra, Boris Koldehofe, Jonas Höchst, Patrick Lampe, Ali Haider Rizvi,

and Bernd Freisleben. “INetCEP: In-Network Complex Event Processing for

Information-Centric Networking.” in: 15th ACM/IEEE Symposium on Architectures
for Networking and Communications Systems (ANCS 2019). Cambridge, UK, Sept.

2019. doi: 10.1109/ANCS.2019.8901877 (cit. on p. 6).

[LW02] Andy Liaw and Matthew Wiener. “Classification and Regression by RandomFor-

est.” in: R News 2.3 (2002), pp. 18–22 (cit. on p. 218).

[LWL08] Tsungnan Lin, Chiapin Wang, and Po-Chiang Lin. “A Neural-Network-based

Context-aware Handoff Algorithm for Multimedia Computing.” in: ACM Trans.
Multimedia Comput. Commun. Appl. 4.3 (Sept. 2008), 17:1–17:23. issn: 1551-6857.
doi: 10.1145/1386109.1386110 (cit. on p. 213).

[LYD09] Sunho Lim, Chansu Yu, and Chita R Das. “RandomCast: An Energy-Efficient

Communication Scheme for Mobile Ad Hoc Networks.” in: IEEE Transactions on
Mobile Computing 8.8 (2009), pp. 1039–1051 (cit. on p. 198).

[Ma+04] Li Ma, Fei Yu, Victor CM Leung, and Tejinder Randhawa. “A New Method to

Support UMTS/WLAN Vertical Handover Using SCTP.” in: IEEE Wireless Commu-
nications 11.4 (2004), pp. 44–51 (cit. on p. 213).

[Man+14] Milos Manic, Dumidu Wijayasekara, Kasun Amarasinghe, Joel Hewlett, Kevin

Handy, Christopher Becker, Bruce Patterson, and Ronald Peterson. “Next Gener-

ation Emergency Communication Systems via Software Defined Networks.” in:

Third GENI Research and Educational Experiment Workshop. IEEE. 2014, pp. 1–8
(cit. on p. 82).

[Mar+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,

Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. url:
https://www.tensorflow.org/ (cit. on pp. 70, 192).

[May02] Viktor Mayer-Schönberger. “Emergency Communications: TheQuest for Inter-

operability in the United States and Europe.” in: Paper 2002-7, John F. Kennedy
School of Government, Harvard University (2002) (cit. on p. 82).

253

https://doi.org/10.1109/ANCS.2019.8901877
https://doi.org/10.1145/1386109.1386110
https://www.tensorflow.org/

Bibliography

[MB07] Balakrishan SManoj and Alexandra Hubenko Baker. “Communication Challenges

in Emergency Response.” in: Communications of the ACM 50.3 (2007), pp. 51–53

(cit. on p. 154).

[McF+15] Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric

Battenberg, and Oriol Nieto. “librosa: Audio andMusic Signal Analysis in Python.”

in: Proceedings of the 14th python in science conference. vol. 8. 2015 (cit. on p. 70).

[MCV17] Davide Magrin, Marco Centenaro, and Lorenzo Vangelista. “Performance Eval-

uation of LoRa Networks in a Smart City Scenario.” in: 2017 IEEE International
Conference on communications (ICC). ieee. 2017, pp. 1–7 (cit. on p. 174).

[Mdh+17] Afef Mdhaffar, Tarak Chaari, Kaouthar Larbi, Mohamed Jmaiel, and Bernd Freis-

leben. “IoT-based Health Monitoring via LoRaWAN.” in: IEEE EUROCON 2017
-17th International Conference on Smart Technologies, Ohrid, Macedonia, July 6-8,
2017. ed. by Ljupco Karadzinov, Goga Cvetkovski, and Pero Latkoski. IEEE, 2017,

pp. 519–524. doi: 10.1109/EUROCON.2017.8011165 (cit. on p. 49).

[Med15] Alexandra Medina-Borja. Editorial Column—Smart Things as Service Providers:
A Call for Convergence of Disciplines to Build a Research Agenda for the Service
Systems of the Future. 2015 (cit. on p. 10).

[MEO17] Asmae Ait Mansour, Nourddine Enneya, and Mohamed Ouadou. “A Seamless

Handover Based MIH-Assisted PMIPV6 in Heterogeneous Network (LTE-WiFi).”

in: 2nd Int. Conf. on Big Data, Cloud and Applications. Tetouan, Morocco: ACM,

2017, 67:1–67:5. isbn: 978-1-4503-4852-2. doi: 10.1145/3090354.3090423 (cit. on
p. 213).

[Mer14] Dirk Merkel. “Docker: Lightweight Linux Containers for Consistent Development

and Deployment.” in: Linux Journal 2014.239 (2014), p. 2 (cit. on p. 28).

[MHM05] Mirco Musolesi, Stephen Hailes, and Cecilia Mascolo. “Adaptive Routing for

Intermittently Connected Mobile Ad Hoc Networks.” in: Sixth IEEE International
Symposium on a World of Wireless Mobile and Multimedia Networks. June 2005,
pp. 183–189. doi: 10.1109/WOWMOM.2005.17 (cit. on p. 141).

[Mil+20] Markus Milchram, Marcela Suarez-Rubio, Annika Schröder, and Alexander Bruck-

ner. “Estimating Population Density of Insectivorous Bats based on Stationary

Acoustic Detectors: A Case Study.” in: Ecology and evolution 10.3 (2020), pp. 1135–
1144 (cit. on p. 56).

[MM06] Cecilia Mascolo and Mirco Musolesi. “SCAR: Context-aware Adaptive Routing in

Delay Tolerant Mobile Sensor Networks.” in: Proceedings of the 2006 International
Conference on Wireless Communications and Mobile Computing. IWCMC ’06.

Vancouver, British Columbia, Canada: ACM, 2006, pp. 533–538. isbn: 1-59593-306-

9. doi: 10.1145/1143549.1143656 (cit. on p. 141).

[MM09] Mirco Musolesi and Cecilia Mascolo. “CAR: Context-Aware Adaptive Routing for

Delay-Tolerant Mobile Networks.” in: IEEE Transactions on Mobile Computing 8.2

(Feb. 2009), pp. 246–260. issn: 1536-1233. doi: 10.1109/TMC.2008.107 (cit. on

p. 141).

254

https://doi.org/10.1109/EUROCON.2017.8011165
https://doi.org/10.1145/3090354.3090423
https://doi.org/10.1109/WOWMOM.2005.17
https://doi.org/10.1145/1143549.1143656
https://doi.org/10.1109/TMC.2008.107

Bibliography

[Mon+10] Robert A Montgomery, Gary J Roloff, Jay M Ver Hoef, and Joshua J Millspaugh.

“Can We Accurately Characterize Wildlife Resource Use when Telemetry Data

are Imprecise?” in: The Journal of Wildlife Management 74.8 (2010), pp. 1917–1925
(cit. on p. 41).

[Mon+14] Edo Monticelli, Benno M Schubert, Mayutan Arumaithurai, Xiaoming Fu, and KK

Ramakrishnan. “An Information Centric Approach for Communications in Disas-

ter Situations.” in: IEEE 20th Int. Workshop on Local Metropolitan Area Networks.
2014, pp. 1–6 (cit. on pp. 96, 97, 104).

[Mor] Darius Morawiec. “sklearn-porter.” Transpile Trained Scikit-learn Estimators to C,

Java, JavaScript and Others. url: https://github.com/nok/sklearn-porter
(cit. on p. 220).

[MP05] Andrew W Moore and Konstantina Papagiannaki. “Toward the Accurate Identifi-

cation of Network Applications.” in: International Workshop on Passive and Active
Network Measurement. Springer. 2005, pp. 41–54 (cit. on p. 186).

[MPI20] Massimo Merenda, Carlo Porcaro, and Demetrio Iero. “Edge Machine Learning

for AI-enabled IoT devices: A Review.” in: Sensors 20.9 (2020), p. 2533 (cit. on p. 65).

[Mti+13] Abderrahmen Mtibaa, Afnan Fahim, Khaled A Harras, and Mostafa H Ammar.

“Towards Resource Sharing in Mobile Device Clouds: Power Balancing Across

Mobile Devices.” in: ACM SIGCOMM Computer Communication Review. vol. 43. 4.
ACM. 2013, pp. 51–56 (cit. on p. 114).

[Müh+20] Markus Mühling, Jakob Franz, Nikolaus Korfhage, and Bernd Freisleben. “Bird

Species Recognition via Neural Architecture Search.” in:Working Notes of CLEF
2020 - Conference and Labs of the Evaluation Forum, Thessaloniki, Greece, September
22-25, 2020. ed. by Linda Cappellato, Carsten Eickhoff, Nicola Ferro, and Aurélie

Névéol. vol. 2696. CEUR Workshop Proceedings. CEUR-WS.org, 2020. url: http:
//ceur-ws.org/Vol-2696/paper%5C_188.pdf (cit. on p. 65).

[MV13] Vijay Mahadevan and Nuno Vasconcelos. “Biologically Inspired Object Tracking

Using Center-Surround Saliency Mechanisms.” in: IEEE Trans. on Pattern Analysis
and Machine Intelligence 35.3 (2013), pp. 541–554 (cit. on p. 106).

[MZ05] AndrewWMoore and Denis Zuev. “Internet Traffic Classification Using Bayesian

Analysis Techniques.” in:ACMSIGMETRICS Performance Evaluation Review. vol. 33.
1. ACM. 2005, pp. 50–60 (cit. on pp. 185, 186).

[NA08] Thuy TT Nguyen and Grenville Armitage. “A Survey of Techniques for Internet

Traffic Classification using Machine Learning.” in: IEEE Communications Surveys
& Tutorials 10.4 (2008), pp. 56–76 (cit. on pp. 184, 186, 187).

[NAS15] Neeraj Namdev, Shikha Agrawal, and Sanjay Silkari. “Recent Advancement in

Machine Learning based Internet Traffic Classification.” in: Procedia Computer
Science 60 (2015), pp. 784–791 (cit. on p. 186).

[Nat+07] Essam Natsheh, Adznan B Jantan, Sabira Khatun, and Subramaniam Shamala.

“Adaptive Optimizing of Hello Messages in Wireless Ad-Hoc Networks.” in: Int.
Arab J. Inf. Technol. 4.3 (2007), pp. 191–200 (cit. on p. 198).

255

https://github.com/nok/sklearn-porter
http://ceur-ws.org/Vol-2696/paper%5C_188.pdf
http://ceur-ws.org/Vol-2696/paper%5C_188.pdf

Bibliography

[NGA07] Nidal Nasser, Sghaier Guizani, and Eyhab Al-Masri. “Middleware Vertical Handoff

Manager: A Neural Network-Based Solution.” in: 2007 IEEE International Confer-
ence on Communications. June 2007, pp. 5671–5676. doi: 10.1109/ICC.2007.940
(cit. on p. 213).

[Ngu+17] The An Binh Nguyen, Pratyush Agnihotri, Christian Meurisch, Manisha Luthra,

Rahul Dwarakanath, Jeremias Blendin, Doreen Böhnstedt, Michael Zink, and

Ralf Steinmetz. “Efficient Crowd Sensing Task Distribution Through Context-

aware NDN-based Geocast.” in: 42nd IEEE Conference on Local Computer Networks
(LCN’17). Singapore: IEEE, 2017, pp. 52–60 (cit. on p. 97).

[Ngu+21] Johnny Nguyen, Karl Kesper, Gunter Kräling, Christian Birk, Peter Mross, Nico

Hofeditz, Jonas Höchst, Patrick Lampe, Alvar Penning, Bastian Leutenecker-

Twelsiek, Carsten Schindler, Helwig Buchenauer, David Geisel, Caroline Sommer,

Ronald Henning, Pascal Wallot, Thomas Wiesmann, Björn Beutel, Gunter Schnei-

der, Enrique Castro-Camus, and Martin Koch. “Repurposing CPAP Machines as

Stripped-down Ventilators.” in: Scientific Reports 11.1 (June 2021), pp. 1–9. doi:
10.1038/s41598-021-91673-7 (cit. on p. 5).

[NK13] Ladislav Naďo and Peter Kaňuch. “Dawn Swarming in Tree-Dwelling Bats — An

Unexplored Behaviour.” in: Acta chiropterologica 15.2 (2013), pp. 387–392 (cit. on
p. 55).

[NN08] Anthony J. Nicholson and Brian D. Noble. “BreadCrumbs: Forecasting Mobile

Connectivity.” in: 14th ACM Int. Conf. on Mobile Computing and Networking.
MobiCom ’08. ACM, 2008, pp. 46–57 (cit. on p. 213).

[NZP11] Hervé Ntareme, Marco Zennaro, and Björn Pehrson. “Delay Tolerant Network on

Smartphones: Applications for Communication-challenged Areas.” in: Proc. of
the 3rd Extreme Conf. on Communication. ACM. 2011, pp. 14–21 (cit. on p. 83).

[OB18] Martin K Obrist and Ruedi Boesch. “BatScope Manages Acoustic Recordings,

Analyses Calls, and Classifies Bat Species Automatically.” in: Canadian Journal of
Zoology 96.9 (2018), pp. 939–954 (cit. on p. 58).

[OLG10] Soon Y Oh, Davide Lau, andMario Gerla. “Content Centric Networking in Tactical

and Emergency MANETs.” in: 2010 IFIP Wireless Days. 2010, pp. 1–5 (cit. on p. 96).

[Olt+13] Alexandru-Corneliu Olteanu, George-Daniel Oprina, Nicolae Tapus, and Sven

Zeisberg. “Enabling Mobile Devices for Home Automation using ZigBee.” in: 2013
19th International Conference on Control Systems and Computer Science. May 2013,

pp. 189–195. doi: 10.1109/CSCS.2013.63 (cit. on p. 157).

[Ope19] Open Garden. Firechat. 2019. url: https://www.opengarden.com/firechat/
(cit. on pp. 127, 128).

[Paa+12] Christoph Paasch, Gregory Detal, Fabien Duchene, Costin Raiciu, and Olivier

Bonaventure. “Exploring Mobile/WiFi Handover with Multipath TCP.” in: ACM
SIGCOMM Workshop Cellnet. 2012. doi: 10.1145/2342468.2342476 (cit. on

p. 214).

256

https://doi.org/10.1109/ICC.2007.940
https://doi.org/10.1038/s41598-021-91673-7
https://doi.org/10.1109/CSCS.2013.63
https://www.opengarden.com/firechat/
https://doi.org/10.1145/2342468.2342476

Bibliography

[Pau+16] Partha Sarathi Paul, Bishakh Chandra Ghosh, Kingshuk De, Sujoy Saha, Subrata

Nandi, Subhanjan Saha, Indrajit Bhattacharya, and Sandip Chakraborty. “On

Design and Implementation of a Scalable and Reliable Sync System for Delay

Tolerant Challenged Networks.” in: 2016 8th International Conference on Com-
munication Systems and Networks (COMSNETS). Jan. 2016, pp. 1–8. doi: 10.1109
/COMSNETS.2016.7439949 (cit. on p. 198).

[Pec+15] Tommaso Pecorella, Luca Simone Ronga, Francesco Chiti, Sara Jayousi, and

Laurent Franck. “Emergency Satellite Communications: Research and Standard-

ization Activities.” in: IEEE Communications Magazine 53.5 (2015), pp. 170–177
(cit. on p. 82).

[Ped+11] Fabian Pedregosa, Gaël Varoquaux, AlexandreGramfort, VincentMichel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent

Dubourg, et al. “Scikit-Learn: Machine Learning in Python.” in: Journal of Machine
Learning Research 12.Oct (2011), pp. 2825–2830. url: http://scikit-learn.or
g/ (cit. on p. 218).

[PEK11] Christopher Pluntke, Lars Eggert, and Niko Kiukkonen. “Saving Mobile Device

Energy with MultiPath TCP.” in: 6th International Workshop on MobiArch. ACM,

2011, pp. 1–6. doi: 10.1145/1999916.1999918 (cit. on p. 214).

[Pen+19] Alvar Penning, Lars Baumgärtner, Jonas Höchst, Artur Sterz, Mira Mezini, and

Bernd Freisleben. “DTN7: An Open-Source Disruption-tolerant Networking Im-

plementation of Bundle Protocol 7.” in: 18th International Conference on Ad Hoc
Networks and Wireless (ADHOC-NOW 2019). Esch-sur-Alzette, Luxemburg, Oct.

2019. doi: 10.1007/978-3-030-31831-4_14 (cit. on pp. ix, 6, 7, 39, 128, 140,

144, 164).

[Pen15] Fei Peng. “A Novel Adaptive Mobility-Aware MAC Protocol in Wireless Sensor

Networks.” in: Wireless Personal Communications 81.2 (2015), pp. 489–501 (cit. on
p. 198).

[Per10] Charles Ed Perkins. IP Mobility Support for IPv4, Revised. RFC 5944. Internet

Engineering Task Force, 2010. doi: 10.17487/RFC5944 (cit. on p. 213).

[Pet+17] Juha Petäjäjärvi, Konstantin Mikhaylov, Marko Pettissalo, Janne Janhunen, and

Jari Iinatti. “Performance of a Low-power Wide-area Network based on LoRa

Technology: Doppler Robustness, Scalability, and Coverage.” in: International
Journal of Distributed Sensor Networks 13.3 (2017), p. 1550147717699412 (cit. on
p. 49).

[PK+15] P Devi Pradeep, B Anil Kumar, et al. “A Survey of Emergency Communication

Network Architectures.” in: International Journal of u-and e-Service, Science and
Technology 8.4 (2015), pp. 61–68 (cit. on p. 82).

[Pos11] Stefan Poslad.Ubiquitous Computing: Smart Devices, Environments and Interactions.
John Wiley & Sons, 2011 (cit. on pp. 9, 10).

[Pöt+11] Wolf-Bastian Pöttner, Johannes Morgenroth, Sebastian Schildt, and Lars Wolf.

“Performance Comparison of DTN Bundle Protocol Implementations.” in: 6th
ACM Workshop on Challenged Networks. ACM. 2011, pp. 61–64 (cit. on p. 129).

257

https://doi.org/10.1109/COMSNETS.2016.7439949
https://doi.org/10.1109/COMSNETS.2016.7439949
http://scikit-learn.org/
http://scikit-learn.org/
https://doi.org/10.1145/1999916.1999918
https://doi.org/10.1007/978-3-030-31831-4_14
https://doi.org/10.17487/RFC5944

Bibliography

[Psa+14] Ioannis Psaras, Lorenzo Saino, Mayutan Arumaithurai, KK Ramakrishnan, and

George Pavlou. “Name-based Replication Priorities in Disaster Cases.” in: IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS). 2014,
pp. 434–439 (cit. on p. 97).

[Pug21] Jean-Francois Puget. “STFT Transformers for Bird Song Recognition.” in: Working
Notes of CLEF 2021 - Conference and Labs of the Evaluation Forum, Bucharest,
Romania, September 21-24, 2021. vol. 2936. CEUR Workshop Proceedings. CEUR-

WS.org, 2021. url: http://ceur-ws.org/Vol-2936/paper-137.pdf (cit. on

p. 65).

[QA18] Cyril PaoloQuitevis and Charleston Dale Ambatali. “Feasibility of an Amateur Ra-

dio Transmitter Implementation using Raspberry Pi for a Low Cost and Portable

Emergency Communications Device.” in: 2018 IEEE Global Humanitarian Technol-
ogy Conference (GHTC). IEEE. 2018, pp. 1–6 (cit. on p. 26).

[Qin+15] Tao Qin, Lei Wang, Zhaoli Liu, and Xiaohong Guan. “Robust Application Identifi-

cation Methods for P2P and VoIP Traffic Classification in Backbone Networks.”

in: Knowledge-Based Systems 82 (2015), pp. 152–162 (cit. on p. 185).

[R F20] R Foundation for Statistical Computing. R: A Language and Environment for
Computing (Version 3.6.3). 2020 (cit. on p. 60).

[Rai+12] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio Honda,

Fabien Duchene, Olivier Bonaventure, Mark Handley, et al. “How Hard Can It

Be? Designing and Implementing a Deployable Multipath TCP.” in: NSDI. 2012.
url: https://dl.acm.org/citation.cfm?id=2228338 (cit. on p. 214).

[Ram94] Chet Ramey. “What’s GNU: Bash - The GNU Shell.” in: Linux Journal 1994.4es
(1994), p. 13 (cit. on p. 32).

[Ras14] Raspberry Pi Foundation. Raspbian: A Free Operating System based on Debian
Optimized for the Raspberry Pi Hardware. 2014. url: https://www.raspberryp
i.org/downloads/raspbian/ (visited on 11/05/2019) (cit. on p. 28).

[Ras16] Raspberry Pi Foundation. pi-gen: Tool Used to Create the raspberrypi.org Raspbian
Images. 2016. url: https://github.com/RPi-Distro/pi-gen (visited on

11/05/2019) (cit. on p. 28).

[RGH20] Erika Rosas, Felipe Garay, and Nicolas Hidalgo. “Context-aware Self-adaptive

Routing for Delay-tolerant Networks in Disaster Scenarios.” in: Ad Hoc Networks
102 (2020), p. 102095. issn: 1570-8705. doi: 10.1016/j.adhoc.2020.102095
(cit. on p. 142).

[RH10] George F Riley and Thomas R Henderson. “The NS-3 Network Simulator.” in:

Modeling and Tools for Network Simulation. Springer, 2010, pp. 15–34 (cit. on

pp. 135, 174).

[Rig18] RightMesh. Terra: Lightweight and Extensible DTN Library. 2018. url: https://g
ithub.com/RightMesh/Terra (cit. on p. 128).

258

http://ceur-ws.org/Vol-2936/paper-137.pdf
https://dl.acm.org/citation.cfm?id=2228338
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://github.com/RPi-Distro/pi-gen
https://doi.org/10.1016/j.adhoc.2020.102095
https://github.com/RightMesh/Terra
https://github.com/RightMesh/Terra

Bibliography

[Rip+20] Simon P Ripperger, Gerald G Carter, Rachel A Page, Niklas Duda, Alexander

Koelpin, Robert Weigel, Markus Hartmann, Thorsten Nowak, Jörn Thielecke,

Michael Schadhauser, et al. “Thinking Small: Next-Generation Sensor Networks

Close the Size Gap in Vertebrate Biologging.” in: PLoS Biology 18.4 (2020), e3000655
(cit. on pp. 42, 61).

[RK18] Christoph Randler and Nadine Kalb. “Distance and Size Matters: A Comparison

of Six Wildlife Camera Traps and Their Usefulness for Wild Birds.” in: Ecology
and Evolution 8.14 (2018), pp. 7151–7163 (cit. on p. 56).

[Rom+20] Marcelo Romero, Wided Guédria, Hervé Panetto, and Béatrix Barafort. “Towards

a Characterisation of Smart Systems: A Systematic Literature Review.” in: Com-
puters in industry 120 (2020), p. 103224 (cit. on pp. 9, 10).

[Row+08] J Marcus Rowcliffe, Juliet Field, Samuel T Turvey, and Chris Carbone. “Estimating

Animal Density Using Camera Traps Without the Need for Individual Recogni-

tion.” in: Journal of Applied Ecology 45.4 (2008), pp. 1228–1236 (cit. on p. 56).

[Roy+16] Aritra Roy, Supriyo Mahanta, Mallika Tripathy, Sagarika Ghosh, and Sauvik Bal.

“Health Condition Identification of Affected People in Post Disaster Area Using

DTN.” in: IEEE 7th Ann. Ubiquitous Computing, Electronics Mobile Communication
Conf. (UEMCON). 2016, pp. 1–3 (cit. on p. 97).

[RP18] Anuradha Ravi and Sateesh K Peddoju. “Mobile Computation Bursting: An Ap-

plication Partitioning and Offloading Decision Engine.” in: 19th Int. Conference
on Distributed Computing and Networking. 46. ACM. 2018 (cit. on p. 114).

[Rus+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.

“ImageNet Large Scale Visual Recognition Challenge.” in: International Journal of
Computer Vision 115.3 (2015), pp. 211–252 (cit. on p. 70).

[Saw+09] Hall Sawyer, Matthew J Kauffman, Ryan M Nielson, and Jon S Horne. “Identifying

and Prioritizing Ungulate Migration Routes for Landscape-level Conservation.”

in: Ecological Applications 19.8 (2009), pp. 2016–2025 (cit. on p. 40).

[SB07] Keith L. Scott and Scott Burleigh. Bundle Protocol Specification. tech. rep. RFC
5050. IETF, 2007 (cit. on p. 128).

[Sch+11a] Sebastian Schildt, Johannes Morgenroth, Wolf-Bastian Pöttner, and Lars Wolf.

“IBR-DTN: A Lightweight, Modular and Highly Portable Bundle Protocol Im-

plementation.” in: Electronic Communications of the EASST 37 (2011) (cit. on

p. 135).

[Sch+11b] Dennis Schwerdel, David Hock, Daniel Günther, Bernd Reuther, Paul Müller, and

Phuoc Tran-Gia. “ToMaTo - A Network Experimentation Tool.” in: International
Conference on Testbeds and Research Infrastructures. Springer. 2011, pp. 1–10 (cit.
on p. 135).

[Sch+19] Ulrike E Schlägel, Johannes Signer, Antje Herde, Sophie Eden, Florian Jeltsch, Jana

A Eccard, and Melanie Dammhahn. “Estimating Interactions Between Individuals

from Concurrent Animal Movements.” in: Methods in Ecology and Evolution 10.8

(2019), pp. 1234–1245 (cit. on p. 61).

259

Bibliography

[Sci+18] Luca Sciullo, Frederico Fossemo, Angelo Trotta, and Marco Di Felice. “LOCATE:

A LoRa-based mObile emergenCy mAnagement sysTEm.” in: 2018 IEEE Global
Communications Conference (GLOBECOM). Dec. 2018, pp. 1–7. doi: 10.1109
/GLOCOM.2018.8647177 (cit. on p. 157).

[Shi+12] Cong Shi, Vasileios Lakafosis, Mostafa H Ammar, and Ellen W Zegura. “Serendip-

ity: Enabling Remote Computing among Intermittently Connected Mobile De-

vices.” in: 13th ACM Int. Symposium on Mobile Ad Hoc Networking and Computing.
ACM. 2012, pp. 145–154 (cit. on p. 114).

[Sif+14] Manolis Sifalakis, Basil Kohler, Christopher Scherb, and Christian Tschudin. “An

Information Centric Network for Computing the Distribution of Computations.”

in: Proceedings of the 1st ACM Conference on Information-Centric Networking. ICN
’14. 2014, pp. 137–146 (cit. on p. 98).

[Sip+19] Brian Sipos, Michael Demmer, Joerg Ott, and Simon Perreault. Delay-Tolerant
Networking TCP Convergence Layer Protocol Version 4. tech. rep. IETF, 2019 (cit. on
p. 131).

[Som+22] Markus Sommer, Jonas Höchst, Artur Sterz, Alvar Penning, and Bernd Freisle-

ben. “ProgDTN: Programmable Disruption-tolerant Networking.” in: International
Conference on Networked Systems (NETYS). Springer. May 2022. doi: 10.1007/97
8-3-031-17436-0_13 (cit. on pp. ix, 5, 7, 140).

[Son+13] Chunfeng Song, Feng Liu, Yongzhen Huang, Liang Wang, and Tieniu Tan. “Auto-

encoder Based Data Clustering.” in: Iberoamerican Congress on Pattern Recognition.
Springer. 2013, pp. 117–124 (cit. on p. 188).

[Soy+12] Tolga Soyata, Rajani Muraleedharan, Colin Funai, Minseok Kwon, and Wendi

Heinzelman. “Cloud-vision: Real-time Face Recognition Using a Mobile-Cloudlet-

Cloud Acceleration Architecture.” in: IEEE Symposium on Computers and Commu-
nications (ISCC 2012). IEEE. 2012, pp. 59–66 (cit. on p. 97).

[SPR05] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S. Raghavendra.

“Spray and Wait: An Efficient Routing Scheme for Intermittently Connected

Mobile Networks.” in: Proceedings of the 2005 ACM SIGCOMM Workshop on
Delay-tolerant Networking. WDTN ’05. Philadelphia, Pennsylvania, USA: ACM,

2005, pp. 252–259. isbn: 1-59593-026-4. doi: 10.1145/1080139.1080143 (cit. on

p. 148).

[Sri+13] Mukundhan Srinivasan, Antony Venus AJ, Arun Neol Victor, Madhuri Narayanan,

Sree Rakshaa SP, Vineeth Vijayaraghavan, et al. “GreenEduComp: Low Cost

Green Computing System for Education in Rural India: A Scheme for Sustainable

Development Through Education.” in: 2013 IEEE Global Humanitarian Technology
Conference (GHTC). IEEE. 2013, pp. 102–107 (cit. on p. 26).

[STD20] Luca Sciullo, Angelo Trotta, and Marco Di Felice. “Design and Performance Eval-

uation of a LoRa-based Mobile Emergency Management System (LOCATE).” in:

Ad Hoc Networks 96 (2020), p. 101993. issn: 1570-8705. doi: https://doi.org/1
0.1016/j.adhoc.2019.101993. url: http://www.sciencedirect.com/sci
ence/article/pii/S1570870518309004 (cit. on p. 157).

260

https://doi.org/10.1109/GLOCOM.2018.8647177
https://doi.org/10.1109/GLOCOM.2018.8647177
https://doi.org/10.1007/978-3-031-17436-0_13
https://doi.org/10.1007/978-3-031-17436-0_13
https://doi.org/10.1145/1080139.1080143
https://doi.org/https://doi.org/10.1016/j.adhoc.2019.101993
https://doi.org/https://doi.org/10.1016/j.adhoc.2019.101993
http://www.sciencedirect.com/science/article/pii/S1570870518309004
http://www.sciencedirect.com/science/article/pii/S1570870518309004

Bibliography

[Ste+17] Artur Sterz, Lars Baumgärtner, Ragnar Mogk, Mira Mezini, and Bernd Freisleben.

“DTN-RPC: Remote Procedure Calls for Disruption-tolerant Networking.” in: IFIP
Networking Conference. IEEE. 2017, pp. 1–9 (cit. on p. 115).

[Ste+19] Artur Sterz, Lars Baumgärtner, JonasHöchst, Patrick Lampe, and Bernd Freisleben.

“OPPLOAD: Offloading Computational Workflows in Opportunistic Networks.”

in: 2019 IEEE 44th Conference on Local Computer Networks (LCN 2019). Osnabrück,
Germany, Oct. 2019. doi: 10.1109/LCN44214.2019.8990775 (cit. on pp. ix, 6,

114).

[Sto+16] Denny Stohr, Alexander Frömmgen, Jan Fornoff, Michael Zink, Alejandro Buch-

mann, and Wolfgang Effelsberg. “QoE Analysis of DASH Cross-Layer Dependen-

cies by Extensive Network Emulation.” in: 2016 Workshop on QoE-based Analysis
and Management of Data Communication Networks. ACM. 2016, pp. 25–30. doi:

2940136.2940141 (cit. on p. 223).

[Sto+19] Dan Stowell, Tereza Petrusková, Martin Šálek, and Pavel Linhart. “Automatic

Acoustic Identification of Individuals in Multiple Species: Improving Identification

across Recording Conditions.” in: Journal of the Royal Society Interface 16.153
(2019), p. 20180940 (cit. on p. 56).

[Tah+16] Rafaa Tahar, Amine Dhraief, Abdelfettah Belghith, Hassan Mathkour, and Rafik

Braham. “Autonomous and Adaptive Beaconing Strategy for Multi-interfaced

Wireless Mobile Nodes.” in:Wireless Communications and Mobile Computing 16.12
(2016), pp. 1625–1641 (cit. on p. 198).

[Tan+17] Marion Lara Tan, Raj Prasanna, Kristin Stock, Emma Hudson-Doyle, Graham

Leonard, and David Johnston. “Mobile Applications in Crisis Informatics Liter-

ature: A Systematic Review.” in: International Journal of Disaster Risk Reduction
24.November 2016 (2017), pp. 297–311. issn: 22124209. doi: 10.1016/j.ijdrr
.2017.06.009. url: http://dx.doi.org/10.1016/j.ijdrr.2017.06.009
(cit. on p. 156).

[Tay+17] Philip Taylor, Tara Crewe, Stuart Mackenzie, Denis Lepage, Yves Aubry, Zoe

Crysler, George Finney, Charles Francis, Christopher Guglielmo, Diana Hamilton,

et al. “The Motus Wildlife Tracking System: A Collaborative Research Network to

Enhance the Understanding of Wildlife Movement.” in: Avian Conservation and
Ecology 12.1 (2017) (cit. on pp. 42, 56).

[TL19] Mingxing Tan andQuoc V. Le. “EfficientNet: Rethinking Model Scaling for Convo-

lutional Neural Networks.” in: Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA. ed. by
Kamalika Chaudhuri and Ruslan Salakhutdinov. vol. 97. Proceedings of Machine

Learning Research. PMLR, 2019, pp. 6105–6114. doi: 1905.11946 (cit. on p. 70).

[TMR19] Daniella Teixeira, Martine Maron, and Berndt J van Rensburg. “Bioacoustic Mon-

itoring of Animal Vocal Behavior for Conservation.” in: Conservation Science and
Practice 1.8 (2019), e72 (cit. on p. 63).

[Tol+20] Sivan Toledo, David Shohami, Ingo Schiffner, Emmanuel Lourie, Yotam Orchan,

Yoav Bartan, and Ran Nathan. “Cognitive Map-based Navigation in Wild Bats

Revealed by a NewHigh-throughput Tracking System.” in: Science 369.6500 (2020),
pp. 188–193 (cit. on p. 61).

261

https://doi.org/10.1109/LCN44214.2019.8990775
https://doi.org/2940136.2940141
https://doi.org/10.1016/j.ijdrr.2017.06.009
https://doi.org/10.1016/j.ijdrr.2017.06.009
http://dx.doi.org/10.1016/j.ijdrr.2017.06.009
https://doi.org/1905.11946

Bibliography

[Tör+06] B Uğur Töreyin, Yiğithan Dedeoğlu, Uğur Güdükbay, and A Enis Cetin. “Com-

puter Vision Based Method for Real-time Fire and Flame Detection.” in: Pattern
Recognition Letters 27.1 (2006), pp. 49–58 (cit. on p. 101).

[Tri+11] Sacha Trifunovic, Bernhard Distl, Dominik Schatzmann, and Franck Legendre.

“WiFi-Opp: Ad-Hoc-less Opportunistic Networking.” in: 6th ACM Workshop on
Challenged Networks. ACM. 2011, pp. 37–42 (cit. on p. 199).

[TRM12] Josh Thomas, Jeff Robble, and Nick Modly. “Off Grid Communications with

Android Meshing the Mobile World.” in: 2012 IEEE Conference on Technologies for
Homeland Security. 2012, pp. 401–405 (cit. on p. 82).

[Tro+15] Edgar Marko Trono, Yutaka Arakawa, Morihiko Tamai, and Keiichi Yasumoto.

“DTN MapEx: Disaster Area Mapping through Distributed Computing over a

Delay-tolerant Network.” in: 2015 Eighth International Conference on Mobile Com-
puting and Ubiquitous Networking (ICMU). IEEE. 2015, pp. 179–184 (cit. on p. 135).

[Tru+19] Seth Truitt, Tmothy D Gage, Benjamin E Vincent, and Seunghyun Chun. “Low-

cost Remote Monitoring System for Small-Scale UPS Installations in Developing

Countries.” in: 2019 IEEE Global Humanitarian Technology Conference (GHTC).
2019, pp. 1–6 (cit. on p. 26).

[TS13] Christian Tschudin and Manolis Sifalakis. “Named Functions for Media Delivery

Orchestration.” in: 20th International Packet Video Workshop 2013. 2013 (cit. on
p. 98).

[TS14] Christian Tschudin and Manolis Sifalakis. “Named Functions and Cached Com-

putations.” in: IEEE 11th Consumer Communications and Networking Conference
(CCNC). 2014, pp. 851–857 (cit. on pp. 96–98).

[UQ22] Saif Ullah and Amir Qayyum. “Socially-aware Adaptive Delay-tolerant Network

(DTN) Routing Protocol.” in: PLOS One 17.1 (Jan. 2022), pp. 1–15. doi: 10.1371/j
ournal.pone.0262565 (cit. on p. 142).

[Vas+15] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir

Filkov. “Quality and Productivity Outcomes Relating to Continuous Integration in

GitHub.” in: Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. 2015, pp. 805–816 (cit. on p. 31).

[VB00] Amin Vahdat and David Becker. Epidemic Routing for Partially Connected Ad Hoc
Networks. tech. rep. CS-2000-06. Duke University, 2000 (cit. on p. 148).

[VC74] Vladimir N Vapnik and Alexey J Chervonenkis. Theory of Pattern Recognition.
Nauka, 1974 (cit. on p. 186).

[VCD16] Alina Vlăduţu, Dragoş Comăneci, and Ciprian Dobre. “Internet Traffic Classifica-

tion based on Flows’ Statistical Properties with Machine Learning.” in: Interna-
tional Journal of Network Management (2016) (cit. on pp. 186, 189–192).

[Vin+10] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-

Antoine Manzagol. “Stacked Denoising Autoencoders: Learning Useful Repre-

sentations in a Deep Network with a Local Denoising Criterion.” in: Journal of
Machine Learning Research 11.Dec (2010), pp. 3371–3408 (cit. on p. 232).

262

https://doi.org/10.1371/journal.pone.0262565
https://doi.org/10.1371/journal.pone.0262565

Bibliography

[VJ04] Paul Viola and Michael J Jones. “Robust Real-time Face Detection.” in: Interna-
tional Journal of Computer Vision 57.2 (2004), pp. 137–154 (cit. on p. 107).

[VT02] Maarten Van Steen and A Tanenbaum. “Distributed Systems Principles and

Paradigms.” in: Network 2 (2002), p. 28 (cit. on p. 11).

[Wal+18] Zea Walton, Gustaf Samelius, Morten Odden, and Tomas Willebrand. “Long-

distance Dispersal in Red Roxes Vulpes vulpes Revealed by GPS Tracking.” in:

European Journal of Wildlife Research 64.6 (2018), pp. 1–6 (cit. on p. 41).

[Wan+07] Wei Wang, Weidong Gao, Xinyu Bai, Tao Peng, Gang Chuai, and Wenbo Wang.

“A Framework of Wireless Emergency Communications based on Relaying and

Cognitive Radio.” in: IEEE 18th International Symposium on Personal, Indoor and
Mobile Radio Communications. IEEE. 2007, pp. 1–5 (cit. on p. 82).

[Wan+11] Weetit Wanalertlak, Ben Lee, Chansu Yu, Myungchul Kim, Seung-Min Park, and

Won-Tae Kim. “Behavior-based Mobility Prediction for Seamless Handoffs in

Mobile Wireless Networks.” in:Wireless Networks 17.3 (2011), pp. 645–658. issn:
1022-0038. doi: 10.1007/s11276-010-0303-x (cit. on p. 213).

[Wei+16] Adi Weller Weiser, Yotam Orchan, Ran Nathan, Motti Charter, Anthony J Weiss,

and Sivan Toledo. “Characterizing the Accuracy of a Self-synchronized Reverse-

GPS Wildlife Localization System.” in: 2016 15th ACM/IEEE International Confer-
ence on Information Processing in Sensor Networks (IPSN). IEEE. 2016, pp. 1–12
(cit. on pp. 41, 42).

[Wei91] Mark Weiser. “The Computer for the 21st Century.” in: Scientific American 265.3

(1991), pp. 94–105 (cit. on p. 9).

[Wix+16] Andrew J Wixted, Peter Kinnaird, Hadi Larijani, Alan Tait, Ali Ahmadinia, and

Niall Strachan. “Evaluation of LoRa and LoRaWAN forWireless Sensor Networks.”

in: 2016 IEEE SENSORS. IEEE. 2016, pp. 1–3 (cit. on p. 156).

[WLJ14] Chuanmeizhi Wang, Yong Li, and Depeng Jin. “Mobility-assisted Opportunistic

Computation Offloading.” in: IEEE Communications Letters 18.10 (2014), pp. 1779–
1782 (cit. on p. 114).

[WO07] Darrell M. West and Marion Orr. “Race, Gender, and Communications in Natural

Disasters.” in: Policy Studies Journal 35.4 (2007), pp. 569–586 (cit. on p. 81).

[WSM07] Wei Wang, Vikram Srinivasan, and Mehul Motani. “Adaptive Contact Probing

Mechanisms for Delay Tolerant Applications.” in: 13th Annual ACM International
Conference on Mobile Computing and Networking. ACM. 2007, pp. 230–241 (cit. on

p. 199).

[Wyc+18] Teal BWyckoff, Hall Sawyer, Shannon E Albeke, Steven L Garman, and Matthew J

Kauffman. “Evaluating the Influence of Energy and Residential Development on

the Migratory Behavior of Mule Deer.” in: Ecosphere 9.2 (2018), e02113 (cit. on
p. 41).

[Xen] Xeno-Canto. Sharing Bird Sounds from Around the World. url: https://www.xen
o-canto.org/ (cit. on p. 72).

[Xia+14] Wenfeng Xia, Yonggang Wen, Chuan Heng Foh, Dusit Niyato, and Haiyong Xie.

“A Survey on Software-defined Networking.” in: IEEE Communications Surveys &
Tutorials 17.1 (2014), pp. 27–51 (cit. on p. 12).

263

https://doi.org/10.1007/s11276-010-0303-x
https://www.xeno-canto.org/
https://www.xeno-canto.org/

Bibliography

[Yan+13] Lei Yang, Jiannong Cao, Yin Yuan, Tao Li, Andy Han, and Alvin Chan. “A Frame-

work for Partitioning and Execution of Data Stream Applications in Mobile Cloud

Computing.” in: ACM SIGMETRICS Performance Evaluation Review 40.4 (2013),

pp. 23–32 (cit. on p. 115).

[Yan+18] Lei Yang, Jiannong Cao, ZhenyuWang, andWeigangWu. “Network aware Mobile

Edge Computation Partitioning inMulti-user Environments.” in: IEEE Transactions
on Services Computing (2018) (cit. on p. 115).

[YY17] Narasimha Saii Yamanoor and Srihari Yamanoor. “HighQuality, Low Cost eEu-

cation with the Raspberry Pi.” in: 2017 IEEE Global Humanitarian Technology
Conference (GHTC). IEEE. 2017, pp. 1–5 (cit. on p. 26).

[Zan+17] Alessandro Zanni, Se-Young Yu, Paolo Bellavista, Rami Langar, and Stefano Secci.

“Automated Selection of Offloadable Tasks for Mobile Computation Offloading

in Edge Computing.” in: 2017 13th international conference on network and service
management (CNSM). IEEE. 2017, pp. 1–5 (cit. on p. 115).

[Zha+13] Jun Zhang, Yang Xiang, Wanlei Zhou, and Yu Wang. “Unsupervised Traffic Clas-

sification using Flow Statistical Properties and IP Packet Payload.” in: Journal of
Comp. and Syst. Sciences 79.5 (2013), pp. 573–585 (cit. on pp. 185–187, 189, 191,

192).

[Zha+15a] Bentao Zhang, Yong Li, Depeng Jin, Pan Hui, and Zhu Han. “Social-Aware Peer

Discovery for D2D Communications Underlaying Cellular Networks.” in: IEEE
Transactions on Wireless Communications 14.5 (May 2015), pp. 2426–2439. issn:

1536-1276. doi: 10.1109/TWC.2014.2386865 (cit. on p. 199).

[Zha+15b] Jun Zhang, Xiao Chen, Yang Xiang, Wanlei Zhou, and Jie Wu. “Robust Network

Traffic Classification.” in: IEEE/ACM Transactions on Networking (TON) 23.4 (2015),
pp. 1257–1270 (cit. on p. 185).

[Zha+18] Daniel Zhang, Yue Ma, Yang Zhang, Suwen Lin, X Sharon Hu, and Dong Wang.

“A Real-time and Non-cooperative Task Allocation Framework for Social Sensing

Applications in Edge Computing Systems.” in: 2018 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE. 2018, pp. 316–326 (cit. on
p. 115).

[ZHS03] Rong Zheng, Jennifer C Hou, and Lui Sha. “Asynchronous Wakeup for Ad Hoc

Networks.” in: Proceedings of the 4th ACM International Symposium on Mobile Ad
Hoc Networking & Computing. ACM. 2003, pp. 35–45 (cit. on p. 198).

[ZL17] Barret Zoph and Quoc V. Le. “Neural Architecture Search with Reinforcement

Learning.” in: 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. 2017 (cit. on p. 65).

[ZNW15] Yang Zhang, Dusit Niyato, and Ping Wang. “Offloading in Mobile Cloudlet Sys-

tems with Intermittent Connectivity.” in: IEEE Transactions on Mobile Computing
14.12 (2015), pp. 2516–2529 (cit. on p. 114).

264

https://doi.org/10.1109/TWC.2014.2386865

Bibliography

[Zob+21] Julian Zobel, Paul Frommelt, Patrick Lieser, Jonas Höchst, Patrick Lampe, Bernd

Freisleben, and Ralf Steinmetz. “Energy-efficient Mobile Sensor Data Offloading

via WiFi using LoRa-based Connectivity Estimations.” in: 51. Jahrestagung der
Gesellschaft für Informatik, INFORMATIK 2021, Berlin, Germany. LNI. GI, Sept.
2021. doi: 10.18420/informatik2021-037 (cit. on p. 5).

[Zua+21] Imran Zualkernan, Jacky Judas, TaslimMahbub, Azadan Bhagwagar, and Priyanka

Chand. “An AIoT System for Bat Species Classification.” in: 2020 IEEE International
Conference on Internet of Things and Intelligence System (IoTaIS). 2021, pp. 155–160.
doi: 10.1109/IoTaIS50849.2021.9359704 (cit. on p. 66).

265

https://doi.org/10.18420/informatik2021-037
https://doi.org/10.1109/IoTaIS50849.2021.9359704

Curriculum Vitae

Angaben zur Person

Name Jonas Höchst

Geburtsdatum, -ort 01.05.1992, Gießen

Ausbildung

2017 – 2022 Philipps-Universität Marburg

Promotionsstudium Informatik

Promotion zum Dr. rer. nat.

Abschlussnote: 1,0 (Sehr gut)

2014 – 2017 Philipps-Universität Marburg

Studiengang Informatik

Abschluss mit akademischem Grad M.Sc.

Abschlussnote: 13,2 Punkte

2011 – 2014 Philipps-Universität Marburg

Studiengang Informatik

Abschluss mit akademischem Grad B.Sc.

Abschlussmote: 12,6 Punkte

2008 – 2011 Landgraf-Ludwigs-Gymnasium, Gießen

Abschluss mit dem Zeugnis der Allgemeinen Hochschulreife

Berufserfahrung

2017 – 2022 Philipps-Universität Marburg

Wissenschaftlicher Mitarbeiter in der AG Verteilte Systeme

2016 Philipps-Universität Marburg

Studentische Hilfskraft für Forschung der AG Verteilte Systeme

2014 – 2016 Philipps-Universität Marburg

Studentische Hilfskraft für Lehre

2013 – 2014 Philipps-Universität Marburg

Studentische Hilfskraft für Forschung der AG Softwaretechnik

2012 – 2013 Justus-Liebig-Universität Gießen

Studentische Hilfskraft für Forschung am Zentrum für Philosophie

und Grundlagen der Wissenschaft

267

	Abstract
	Deutsche Kurzfassung
	Acknowledgments
	My Contributions
	Table of Contents
	Introduction
	Motivation
	Problem Statement
	Contributions of this Thesis
	Publications
	Open Source Software Contributions
	Organization of this Thesis

	Fundamentals
	Smart Systems
	Smart Distributed Sensing
	Adaptive Wireless Networks
	Quality of Service / Experience / Result

	Categorizing Smart Systems
	Determining Quality and Information Analysis Cost
	Environmental Monitoring
	Adaptive Disruption-tolerant Networking
	Transitional Wireless Networking

	Smart Environmental Monitoring
	PIMOD: A Tool for Configuring Single-board Computer Operating System Images
	Introduction
	Related Work
	PIMOD Design
	Implementation
	Experimental Evaluation
	Summary

	tRackIT OS: Open-source Software for Reliable VHF Wildlife Tracking
	Introduction
	Related Work
	tRackIT OS
	Experimental Evaluation
	Summary

	BatRack: An Open-source Multi-sensor Device for Wildlife Research
	Introduction
	Related Work
	Materials and Methods
	Experimental Evaluation
	Summary

	Bird@Edge: Bird Species Recognition at the Edge
	Introduction
	Related Work
	Bird@Edge
	Recognizing Bird Species in Soundscapes
	Experimental Evaluation
	Summary

	Smart Adaptive Disruption-tolerant Networking
	An Experimental Evaluation of Delay-Tolerant Networking with Serval
	Introduction
	Related Work
	Serval
	Experimental Evaluation
	Summary

	Opportunistic Named Functions in Disruption-tolerant Emergency Networks
	Introduction
	Related Work
	Opportunistic Named Functions
	Opportunistic Named Functions in Disaster Scenarios
	Implementation
	Experimental Evaluation
	Summary

	Offloading Computational Workflows in Opportunistic Networks
	Introduction
	Related Work
	OPPLOAD's Design
	Implementation
	Experimental Evaluation
	Summary

	DTN7: An Open-Source Disruption-tolerant Networking Implementation of Bundle Protocol 7
	Introduction
	Related Work
	Bundle Protocol Version 7
	DTN7
	Experimental Evaluation
	Summary

	ProgDTN: Programmable Disruption-tolerant Networking
	Introduction
	Related Work
	ProgDTN Design
	ProgDTN Implementation
	Experimental Evaluation
	Summary

	LoRa-based Device-to-Device Smartphone Communication
	Introduction
	Related Work
	Design
	Implementation
	Experimental Evaluation
	Summary

	Smart Transitional Wireless Networking
	Unsupervised Traffic Flow Classification Using a Neural Autoencoder
	Introduction
	Related Work
	A Neural Autoencoder for Traffic Flow Classification
	Implementation
	Experimental Evaluation
	Summary

	On Dynamic Announcement Intervals in Wireless On-demand Networks
	Introduction
	Related Work
	Dynamic Announcement Intervals
	Implementation
	Experimental Evaluation
	Summary

	Learning Wi-Fi Connection Loss Predictions for Seamless Vertical Handovers Using Multipath TCP
	Introduction
	Related Work
	Conceptual Overview
	Learning Wi-Fi Loss Predictions
	Experimental Evaluation
	Summary

	Conclusion
	Summary
	Future Work
	Smart Environmental Monitoring
	Smart Adaptive Disruption-tolerant Networking
	Smart Transitional Networking

	List of Figures
	List of Tables
	Bibliography
	Curriculum Vitae

