
Unobtrusive Mechanism Interception
Patrick Lampe, Markus Sommer, Artur Sterz, Jonas Höchst, Christian Uhl, Bernd Freisleben

Department of Mathematics & Computer Science, University of Marburg, Germany
{lampep, msommer, sterz, hoechst, uhlc, freisleb}@informatik.uni-marburg.de

Abstract—Networked systems and applications are often based
on proprietary hardware/software components that manufac-
turers might not be willing to adapt or update if new re-
quirements arise. We present mechanism interception, a novel
approach to unobtrusively add or modify functionality to/of an
existing networked system or application without touching any
proprietary components. Behavioral changes are achieved by
functionality-enhancing yet unobtrusive interceptors, i.e., com-
ponents introduced between systems and their environments
adding or updating mechanisms. We illustrate our approach by
unobtrusively adding a vertical handover mechanism between
Wi-Fi and LTE to a mobile end device without disconnecting
TCP sessions. Our results indicate that mechanism interception
is a compelling approach to achieve improved service quality and
provide previously unavailable functionality.

I. INTRODUCTION

Networked systems are often based on proprietary hard-
ware/software components (e.g., applications, access points)
and communication between them (e.g., network interfaces,
system calls) that manufacturers might not be willing to adapt
or update if new requirements arise. Possible reasons are:
insufficient monetization of deprecated components and/or
technical hurdles such as missing infrastructure. Furthermore,
long and costly standardization and deployment processes
may also hinder or slow down updates, which is not only
true for proprietary components. Generally, this leaves users
with no choice but to accept the non-optimal functionality of
networked systems.

To add or modify functionality to/of existing networked
systems or applications without touching proprietary compo-
nents, developers use abstractions and workarounds that un-
obtrusively intercept and modify the communication between
proprietary components and their environments. For example,
developers introduced Network Address Translation (NAT) as
a solution for insufficient IPv4 addresses, or Wine to run
Windows applications on Unix-like operating systems.

We argue that such solutions are not exceptions, but essen-
tial for networked systems to provide highly desired improve-
ments in a fast manner. However, there is no approach that
can be used by developers to systematically identify possible
starting points and implement such functionality.

Therefore, we present mechanism interception, a novel ap-
proach to implement functional additions to or modifications
of existing networked systems without touching any propri-
etary components. We distinguish between system, i.e., compo-
nents containing non-changeable parts, and environment, i.e.,
components containing modifiable parts under control. Be-
havioral changes are achieved by functionality-enhancing yet

unobtrusive interceptors, i.e., hardware/software components
that are introduced between environment and system to add or
update mechanisms representing some functionality. Examples
of interceptors are an updated software library, a newly de-
ployed edge device, or an enhanced cloud service. Interceptors
must be unobtrusive to avoid disrupting or even destroying
applications, but still provide added or modified mechanisms
to the networked systems. We illustrate our approach by a
case study, where we unobtrusively add a vertical handover
mechanism between Wi-Fi and LTE to a mobile device without
disconnecting existing TCP sessions. Our results indicate that
mechanism interception is a compelling approach to achieve
improved service quality and provide previously unavailable
functionality. in an unobtrusive manner.

II. RELATED WORK

The basic idea of making network protocols extensible has
been investigated in the context of active networks [1], [2].
ANTS [3] enables new protocols to be deployed on routers as
well as terminals through platform-independent code. Pathak
et al. [4] propose a system that provides applications with
additional TCP interfaces and makes TCP adaptable in a
fine-grained way. With software-defined networks [5] and the
network programming language P4 [6], network programma-
bility is provided. Tran et al. [7] present a method to add
functionality to the TCP kernel implementation using eBPF.
De Coninck et al. [8], [9] present a method to dynamically
tune QUIC for each connection via extensions.

Alpine [10] and MultiStack [11] are userspace implementa-
tions of network stacks that allow changes to be tested quickly.
An implementation of TCP in userspace is presented by Jeong
et al. [12]. With NUSE, the network stack of the Linux
kernel can be used as a userspace library [13] and existing
programs can use modified protocols without modifications to
the program itself. Heuschkel et al. [14] present VirtualStack,
which allows different userspace network stacks to be used in
one system. ClickNF [15] is an extension of a software-defined
router in which the lower four layers of the network stack can
be exchanged in a modular way.

Balinsky et al. [16] describe a method to prevent data
leaks with system call interception and DAVINCI [17] uses
system call hooking to build a fully transparent dynamic
analysis tool for Android apps. Somy et al. [18] propose a
sandbox architecture for serverless functions based on system
call monitoring and whitelisting.



Environment

System

Mechanism C

Mechanism A

Mechanism B

A/C Interceptor

Interface A

A/B Interceptor

Fig. 1. System, Environment, and Interceptor

III. UNOBTRUSIVE MECHANISM INTERCEPTION
We motivate the novel concept of unobtrusive mechanism

interception by the following examples:
1) Network Address Translation: The Internet Protocol ver-

sion 4 (IPv4) was designed in the late 1970s, allowing only
roughly 4.3 billion hosts in the Internet. Although there is
a newer version, IPv6, for quite some time, allowing 2128

hosts in the Internet, its roll-out has been very slow. To
tackle the looming threat of address scarcity, Network Address
Translation (NAT) has been introduced. Using NAT, it is not
necessary to update or somehow alter the hosts of the private
network, since NAT unobtrusively translates addresses without
private hosts even noticing it.

2) Wine: To allow Windows applications to be executed on
Linux or other POSIX-compatible operating systems, the Wine
project1 was initiated. It re-implements Windows system calls
and libraries, such that system calls of Windows applications
are translated to their corresponding POSIX equivalents.

A. Mechanism Interception
In both examples, there is a system (i.e., a private host or a

Windows application) that cannot be upgraded or modified. It
uses mechanisms (i.e., IP routing or system calls) to achieve
a specific task (i.e., communications between networks or
executing a Windows application). Developers can control the
environment (i.e., the NAT router or the operating system).
and use a new mechanism that intercepts information from
an old mechanism and translates it to the new mechanism
(i.e., translating between private and public IP addresses or
translating between Windows and POSIX system calls).

Our novel approach of unobtrusive mechanism interception
is shown in Fig. 1. It consists of the following components:

1) System and Environment: We consider a system (green
in Fig. 1) that is intended to achieve a particular task. The
system or parts of it cannot be changed because it contains
proprietary components or depends on other external factors,
such as high coordination costs for changes due to long
standardization or technical hurdles. In the NAT example, the
system is the host that wants to communicate with hosts in
other networks. The system is surrounded by an environment
(gray in Fig. 1) that provides functionality to be used by the
system. The system depends on the functionality provided by

1https://www.winehq.org

the environment to achieve the intended task. In the NAT ex-
ample, the host needs the routing functionality of the gateway
to enable communication with hosts in other networks.

2) Mechanism: A mechanism is the implementation of
a functional unit of the environment used by the system
via its corresponding interface to achieve its task [19]. The
mechansim/interface mapping is not unique. For example, for
the TCP mechanism, the interface could be the Sockets API
or the Wi-Fi connection between two devices. In Fig. 1, the
mechanisms are represented in black geometric figures and
their interfaces in corresponding white geometric figures. In
the NAT example, the mechanism provided by the environment
that the system uses is IP routing and the corresponding
network interface between host and NAT router.

3) Unobtrusive Interceptor: In the area of software engi-
neering, the “interceptor architectural pattern allows services to
be added transparently to a framework and triggered automat-
ically when certain events occur” [20]. In this programming
pattern, a framework provides interfaces so that programs
using the framework can transparently intercept the flow of
data at specific events. While the goal of our interceptor is
similar, i.e., to transparently intercept the data flow to enable
new functionality, the perspective is reversed. An interceptor
in our approach is part of the environment and provides
mechanisms to the system via interfaces, which are represented
as combinations of geometric figures in the yellow area in
Fig. 1. In contrast to the interceptor pattern, our interceptor
is used by the system but configured by the environment.
To allow a system to use the mechanisms, the interceptor is
inserted between the system and the mechanism and changes
the data flow. The used mechanism can also be introduced
into the environment as part of the interceptor and does not
have to exist before. In the NAT example, the newly added
mechanism is IP masquerading.

To not influence or even disturb the actual task of the
system, the existing mechanism must be unobtrusively re-
placed by the provided mechanism of the interceptor. The
system should not notice the change of the mechanism; the
used interfaces pretend that the original mechanism is still in
place. Furthermore, the behavior of an interceptor must be
unobtrusive so that the system can continue to provide the
functionality and not provide error cases for its termination.

B. Guide to Action
To implement unobtrusive mechanism interceptors, we pro-

pose a 3-step procedure for developers.
1) Identification of Problem and Solution: The first step

is to identify the problem that needs to be solved. Usually,
problem identification is the result of prolonged use of a
system where limitations occur or are noticed. Once the
problem is identified, a solution must be found. Typically, there
are several possibilities from which feasible solutions can be
distilled. In the NAT example, the problem is IPv4 address
scarcity, and the solution might be to translate addresses
between multiple networks or to adjust routing on hosts so
that unique IPv4 addresses are not necessary.



2) Identification of System and Environment: In the second
step, developers need to identify the system in terms the prob-
lem to be solved, i.e., the component that cannot be changed
or controlled, and the environment that can be controlled or
changed by an interceptor. Some solutions of the first step must
be discarded, since they would require a change of the system.
In the NAT example, the system is the host that communicates
with hosts in other networks, and the environment is the local
network or NAT router. The alternative suggestion of adapting
hosts so that IPv4 addresses do not have to be unique is omitted
because the host is not changeable.

3) Identification of Mechanisms and Interceptors: In the
third step, mechanisms must be found to solve the prob-
lem by considering the feasibility and unobtrusiveness of
an interceptor that translates between the old and the new
mechanism. This makes it essential that the mechanisms are
functionally equivalent, for example, that they are on the same
layer in the case of network protocols. In the NAT example,
the functionally equivalent mechanism is an adaptation of IP
routing. This interceptor implements an alternative IP routing
mechanism, i.e., functionally equivalent to the old mechanism.
Finally, the interceptor has to be implemented and deployed.

IV. TUNNELHANDOVERS
We present the use case of an unobtrusive mechanism

interceptor that uses common Linux mechanisms to enable
handovers without TCP session disconnects, and without the
need to roll out new, complicated, or niche protocols.

A. Problem and Solution
A vertical handover (henceforth simply called ”handover”) is

the process of switching a networked device from one network
access technology to another [21]. Probably the best-known
example is the switch from a mobile phone’s Wi-Fi connection
to a cellular connection, e.g., when leaving home on the way to
the office. The core problem with handovers are protocols such
as TCP, which were designed before wireless communication
became popular. Thus, disconnections on the transport layer
were not really considered during protocol design. If the con-
nection on the transport layer is interrupted, the connections
on the application layer must also be re-established, which can
lead to different implications for different applications, such
as interruptions of audio streams when listening to music or
making phone calls.

B. System and Environment
The system in this scenario is an TCP-based application that

we cannot change, e.g., by adding UDP functionality, since
it is a pre-compiled application from some app store. The
environment is the operating system, which we can change
by implementing and deploying an interceptor.

C. Mechanism and Interceptor
We use two building blocks: WireGuard and LD_PRELOAD.

WireGuard is a simple, fast, and secure VPN software that
transmits data encapsulated in UDP datagrams. The use of

Environment

Operating System TCP/Tunnel/IP

LD_PRELOAD

Application 

Sockets API

Wireguard 
Gateway

Application 
Backend

TCP/IP

Fig. 2. The system architecture for the TunnelHandover approach

UDP eliminates the problem of TCP connection losses during
handovers, since UDP is not connection-oriented. For a Wire-
Guard tunnel to work, a tunnel endpoint somewhere in the
network is required, where the WireGuard tunnel is terminated
and the encapsulated TCP connection is further relayed to the
original destination.

The use of WireGuard alone does not automatically enable
existing TCP-based applications to support handovers. Rather,
they have to be instructed to transfer their data over the
WireGuard connection. The LD_PRELOAD mechanism allows
intercepting functions of dynamically linked libraries, enabling
us to intercept the Socket API such that only connections of
the application started with our LD_PRELOAD modifications
use the WireGuard tunnel. Thus, the mechanism TCP/IP is
replaced by the mechanism TCP/Tunnel/IP. For this purpose,
an interceptor is used that implements the Socket API used by
the system, i.e., the application.

Fig. 2 presents the components of our TunnelHandover
approach. A WireGuard daemon is executed on the operating
system, indicated by the black square. When a program is
executed with our interceptor, the TCP packets of this par-
ticular application are intercepted and redirected to the local
WireGuard daemon using LD_PRELOAD. The UDP-based
WireGuard packets are then sent to the WireGuard endpoint
located in the network, which unpacks the encapsulated TCP
connection and acts as a relay to forward the application
data to the desired destination using conventional TCP/IP
mechanisms. The responses of the server with which the
application communicates are sent back to the host via the
same route, i.e., via the WireGuard tunnel.

D. Experimental Evaluation
We evaluated the proposed interceptor for seamless han-

dovers by emulation using the Common Open Research Emu-
lator (CORE) in a leaving home scenario. Here, the handover
is performed from Wi-Fi to LTE. The following nodes were
emulated: client (with the TCP-based application to be inter-
cepted), Wi-Fi access point (AP) and LTE access network
(AN) to handover between, backbone router where both AP
and AN are connected to for the network uplink, WireGuard
gateway to terminate the WireGuard connection, and appli-
cation server running the server of the client’s application.
To simulate a TCP-based application, we used iPerf32, where
the client initiates the connection to the server via Wi-Fi at

2https://iperf.fr



experiment start. We also conducted experiments without the
TCP/Tunnel/IP mechanism for comparison, using the regular
TCP/IP mechanisms of the Linux kernel.

0 10 20 30 40 50 60
Time (s)

0

20

40

60

80

100

B
an

dw
id

th
 (M

B
it/

s)

Scenario: Leaving

0 10 20 30 40 50 60
Time (s)

Scenario: Arriving

Without handover
With handover

Fig. 3. Network throughput with and without vertical handover

Fig. 3 shows the results for the conducted experiment. The
x-axis denotes the experimental time, while the y-axis denotes
the achieved bandwidth. The orange graph shows experiments
where the proposed handover mechanism is enabled, the blue
graph shows the results without employing the TCP/Tun-
nel/IP mechanism. Without theTCP/Tunnel/IP mechanism, the
throughput drops to 0 because the TCP connection is not re-
established after the connection is changed. Using the proposed
LD_PRELOAD interceptor, a short throughput degradation
is visible at around 25 seconds. This is due to the Wi-
Fi connection being lost immediately, resulting in a short
connection drop until the kernel recognizes the lost connection
and propagates the changes to the routing tables.

V. CONCLUSION
We presented mechanism interception, a novel approach

to implement unobtrusive functional additions to or modi-
fications of an existing networked system without touching
any proprietary components. Behavioral changes are achieved
by mechanism-enhancing yet unobtrusive interceptors. We
illustrated our approach by a case study.

There are several areas of future work. Currently, our ap-
proach requires manual work to identify system, environment,
mechanisms, and interceptors. Providing adequate tools to
reduce manual work would help to support the adoption of our
approach. Furthermore, apart from adding a single mechanism
as part of an interceptor to enhance a single proprietary
component, future work should consider supporting multiple
mechanisms per system and multiple systems per interceptor.
Finally, when an interceptor replaces or modifies an existing
mechanism or adds a new mechanism, the old mechanism is
still available, although not used. Transitioning between multi-
ple mechanisms could add the benefit of using the mechanism
that achieves the best results for a given situation.

ACKNOWLEDGMENTS
This work is funded by the Hessian State Ministry for

Higher Education, Research and the Arts (HMWK) (LOEWE
Natur 4.0, and LOEWE emergenCITY) and the German Re-
search Foundation (DFG, Project 210487104 - Collaborative
Research Center SFB 1053 MAKI).

REFERENCES
[1] D. L. Tennenhouse and D. J. Wetherall, “Towards an Active Network Ar-

chitecture,” ACM SIGCOMM Computer Communication Review, vol. 26,
no. 2, pp. 5–17, 1996.

[2] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall,
and G. J. Minden, “A Survey of Active Network Research,” IEEE
Communications Magazine, vol. 35, no. 1, pp. 80–86, 1997.

[3] D. J. Wetherall, J. Guttag, D. L. Tennenhouse, et al., “ANTS: A Toolkit
for Building and Dynamically Deploying Network Protocols,” in IEEE
Open Archichtecture and Network Programming, vol. 98, pp. 117–129,
San Francisco, CA, IEEE, 1998.

[4] S. Pathak and V. S. Pai, “ModNet: A Modular Approach to Network
Stack Extension,” in 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15), pp. 425–438, 2015.

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, pp. 69–74, 2008.

[6] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al., “P4: Pro-
gramming Protocol-independent Packet Processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[7] V.-H. Tran and O. Bonaventure, “Beyond Socket Options: Making
the Linux TCP Stack Truly Extensible,” in 2019 IFIP Networking
Conference (IFIP Networking), pp. 1–9, IFIP, 2019.

[8] Q. De Coninck, F. Michel, M. Piraux, F. Rochet, T. Given-Wilson,
A. Legay, O. Pereira, and O. Bonaventure, “Pluginizing QUIC,” in ACM
Interest Group on Data Communication, pp. 59–74, ACM, 2019.

[9] Q. De Coninck and O. Bonaventure, “Tuning Multipath TCP for Interac-
tive Applications on Smartphones,” in 2018 IFIP Networking Conference
(IFIP Networking) and Workshops, pp. 1–9, IEEE, 2018.

[10] D. Ely, S. Savage, and D. Wetherall, “Alpine: A User-Level Infrastructure
for Network Protocol Development,” in 3rd USENIX Symp. on Internet
Technologies and Systems, vol. 3, pp. 15–23, 2001.

[11] M. Honda, F. Huici, C. Raiciu, J. Araujo, and L. Rizzo, “Rekindling
Network Protocol Innovation with User-level Stacks,” ACM SIGCOMM
Comp. Comm. Review, vol. 44, no. 2, pp. 52–58, 2014.

[12] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han, and
K. Park, “mTCP: a Highly Scalable User-level TCP Stack for Multicore
Systems,” in 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14), pp. 489–502, 2014.

[13] H. Tazaki, R. Nakamura, and Y. Sekiya, “Library Operating System with
Mainline Linux Network Stack,” Proceedings of NetDev, 2015.

[14] J. Heuschkel, A. Frömmgen, J. Crowcroft, and M. Mühlhäuser, “Virtu-
alStack: Adaptive Multipath Support through Protocol Stack Virtualiza-
tion,” in 10th Int. Network Conference (INC), pp. 73–78, 2016.

[15] M. Gallo and R. Laufer, “ClickNF: A Modular Stack for Custom
Network Functions,” in 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pp. 745–757, 2018.

[16] H. Balinsky, D. S. Perez, and S. J. Simske, “System Call Interception
Framework for Data Leak Prevention,” in 2011 IEEE 15th Int. Enterprise
Distributed Object Computing Conference, pp. 139–148, 2011.

[17] A. Druffel and K. Heid, “Davinci: Android App Analysis Beyond
Frida via Dynamic System Call Instrumentation,” in Int. Conference
on Applied Cryptography and Network Security, pp. 473–489, Springer,
2020.

[18] N. Somy, A. Mondal, B. Ghosh, and S. Chakraborty, “System Call In-
terception for Serverless Isolation,” in Proceedings of the SIGCOMM’20
Poster and Demo Sessions, pp. 57–59, New York, NY, USA: Association
for Computing Machinery, 2020.

[19] B. Alt, M. Weckesser, C. Becker, M. Hollick, S. Kar, A. Klein, R. Klose,
R. Kluge, H. Koeppl, B. Koldehofe, et al., “Transitions: A Protocol-
independent View of the Future Internet,” Proceedings of the IEEE,
vol. 107, no. 4, pp. 835–846, 2019.

[20] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-oriented
Software Architecture, Patterns for Concurrent and Networked Objects.
John Wiley & Sons, 2013.

[21] J. Höchst, A. Sterz, A. Frömmgen, D. Stohr, R. Steinmetz, and
B. Freisleben, “Learning Wi-Fi Connection Loss Predictions for Seam-
less Vertical Handovers Using Multipath TCP,” in 2019 IEEE 44th
Conference on Local Computer Networks (LCN), pp. 18–25, IEEE, 2019.


