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Abstract16

Background The increasing importance of wildlife movement data in ecology17

and conservation has fueled the development of Automated Radiotelemetry Sys-18

tems (ARTS) using very-high-frequency (VHF) transmitters. To make optimal19

use of this data, highly precise analysis methods are needed to detect even20

small-scale movement changes and thus provide high data quality. While various21

approaches have successfully minimized position errors in ARTS, they mostly22

rely on a single mean error estimate.23

Methods We present two novel contributions. First, an antenna geometry-24

based position finding method (antenna beams) that reduces position errors25
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(PE) and increases the number of position estimates. Second, a model for per-26

position error estimation, predicting error as a function of signal and position27

characteristics, applicable for data without ground-truth information and across28

various position finding methods. Using ground-truth data from VHF transmit-29

ters recorded simultaneously with the ARTS trackIT and GPS, we validated and30

compared yield, position errors and predictive performance of our approach with31

the common angulation and multilateration methods.32

Results Our antenna beam-based method provided a substantial alternative to33

angulation for directional set-ups, achieving comparable mean PEs (41 m vs. 4434

m) and especially higher yield (up to 99 % vs. 30 to 66 %). The per-position error35

estimation model demonstrated a strong predictive performance (mean absolute36

deviation from true error down to 21 m) utilizing parameters such as the number37

of participating stations and antennas, maximum signal strength, normalized38

summed up signal strengths and positioning within the study area.39

Conclusions Our results indicate that (i) our novel antenna beam-based40

position-finding method outperforms common methods in both accuracy and41

yield, (ii) the introduced per-position error estimation model reliably reflects42

measured PE from ground-truth data, and (iii) the resulting setup provides a43

robust foundation for high-resolution wildlife movement analyses.44

Keywords: Automated Radiotelemetry System, Position Finding, Position Error,45

VHF, Radiotracking, Wildlife Movement46

1 Background47

The recognition of movement patterns of wild animals is becoming an increasingly48

important component in better understanding population dynamics and as a basis49

for decision-making in nature conservation and landscape management [1]. This high50

demand for movement data in wildlife conservation led to the development of a variety51

of automated telemetry systems [2–5] and ecologists face an unprecedented wealth52

of data, also termed the ‘golden age of animal tracking’ [1]. Ensuring data quality53

and position accuracy across emerging systems is challenging due to differences in54

hardware, software, and data formats, which usually cannot be integrated directly55

into existing quality tests. Thus, parallel with telemetry systems, the methods for56

movement data analysis must also be optimized to enable the validation, precision,57

handling, and processing of large amounts of data.58
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The two most common technologies for recording wildlife movement data are (i)59

the Global Positioning System (GPS) and (ii) very high-frequency (VHF) telemetry.60

Widely used GPS systems use receivers that measure the time of arrival of incom-61

ing satellite signals (so called time-based GPS). Satellites make GPS immediately62

operational across large areas of the world, providing reliable positioning with highly63

synchronized clocks [5]. However, GPS receivers rely on heavy hardware components64

for data collection and storage (transmitter weights usually start at 6 g, recent devel-65

opments using low range communication start at 1.5 g [6]). They often interfere with66

the rule of transmitters not exceeding five percent of the animal’s body weight to67

avoid impact on natural behavior, prohibiting their use for about 60 % of vertebrates68

[7]. Therefore, Automated Radiotelemetry Systems (ARTS) using VHF technology69

with lightweight transmitters of less than 1 g has extended the scope of radioteleme-70

try systems to many small animals, like songbirds, bats, or insects [2–4, 8, 9]. ARTS71

rely on a network of passive ground stations with receivers distributed throughout72

the study area, allowing us to continuously track multiple animals at once and pro-73

viding a high flexibility for different-sized areas. Stations are either equipped with a74

single omnidirectional antenna, which uniformly receives signals from all directions75

within a 360-degree radius, or multiple directional antennas, each primarily receiving76

signals from their respective orientation. The most comprehensive ARTS, the Motus77

Wildlife Tracking System, operates a collaborative network of more than 300 receiv-78

ing stations on three continents [2] and documents large-scale movements such as bird79

and bat migration (Motus; https://motus.org). At the regional and landscape level,80

ARTS operate with fewer receiving stations, aiming to monitor small-scale movements81

of animals, which requires a more accurate positioning than the global Motus system82

[10], with design and structure (e.g. which and how many stations to use) tailored to83

the study question. Once users overcome the hurdles of individual configuration (e.g.,84
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factors impairing radio signal transmission such as dense vegetation cover and moist85

climate [4]), such ARTS can provide a large amount of movement data.86

Yet, ensuring the accuracy of the collected data has a priority in receiving high-87

resolution movement patterns. One major reason why ARTS are less accurate than88

time-based GPS is that positions are mainly calculated based on received signal89

strength (RSS) which is prone to imprecision. Such imprecision can arise from sev-90

eral sources, e.g., the underlying hardware and spatial distribution of the autonomous91

receiving stations, signal strength of used transmitters, topography and vertical land-92

scape elements of the study area, the behavior of the animal itself (ground-dwelling,93

flying, underground), and man-made signal noise from nearby electronic sources94

[1, 4, 11]. Common position finding methods involve (i) (tri)angulation using direc-95

tional stations (e.g. [3]) (ii) (multi)lateration using directional or omnidirectional96

stations (e.g. [12, 13]), or (iii) RSS fingerprinting using directional or omnidirectional97

stations [12, 14]. Depending on the setup and method used, the mean position error98

derived from ARTS studies therefore covers a wide spectrum, ranging from 5 m (lat-99

eration by [13]), 30 m (RSS fingerprinting by [14]), 43 m (lateration by [14]) or 50 m100

(angulation by [8]), over 300 m (RSS fingerprinting by [12]) or 500 m (angulation by101

[12]) up to 1 to 15 km for large-scale ARTS [2]. Some methods, especially angulation,102

additionally have high requirements for signal detection, leading to data loss when103

these requirements are not met [12]. Filters aiming at reducing mean position errors104

additionally exclude positions prone to high errors , e.g., with low signal strengths, fur-105

ther limiting usable data [15]. Additionally, methods testing positioning usually result106

in only one mean position error for the whole system, but the individual per-position107

error can vary greatly, especially increasing with increasing distance to a receiving108

station [12, 14]. Unlike GPS, ARTS are thus not a ’one-fits-all’ solution, but every set-109

up has to be customized to the study requirements needed regarding the quality and110

quantity of position estimates. Thus, conclusions about wildlife movements might be111
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biased if users do not sufficiently test their given set-up or simply assume that their112

data are error-free.113

The aim of our study is therefore to improve position estimation, reduce position114

errors, and offer per-position error estimations of ARTS data, thereby generating high-115

precision movement data with a temporal resolution of seconds and a spatial resolution116

on the scale of tens of meters. Using ground-truth data from VHF-transmitters that117

were simultaneously recorded with a GPS device and an ARTS, we optimize and com-118

pare estimated positions and their position errors between the two common position119

finding methods angulation and multilateration with an approach based on antenna120

geometry as described in [10] (hereafter referred to as antenna beams), which we test121

for directional and omnidirectional stations. In a final step, we model position error as122

a function of different signal and position characteristics such as number of participat-123

ing stations and antennas as well as maximum signal strength, normalized summed124

up signal strengths and positioning within the study site, to predict errors for posi-125

tion estimates without ground-truth data, i.e., data from the animal studied. These126

predicted per-position errors can then be used for further data analysis, such as home127

ranges or habitat use. We recorded and analyzed data using the trackIT ARTS by128

[11], but the accompanying code and formulae of our work ensure that the workflow129

can be adapted to telemetry data recorded with other ARTS.130

2 Material and methods131

2.1 Study area132

The study was part of a project that investigated the use of maize fields by songbirds133

and was carried out in two agricultural areas 70 km east of Berlin in the Märkisch134

Oderland district in Brandenburg, Germany (Fig. 1, left) in late summer and autumn135

2023. Both sites were dominated by agricultural land (maize, harvested grain, soy)136

and also contained woody structures such as tree lines, hedges and shrubs, as well as137
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ditches or lakes with accompanying reed vegetation. Site maisC was located in the138

Oderbruch with only minor elevation differences, while the site maisD was located in139

Lubusz land, a region with moderate elevation differences with up to 15 m difference140

in altitude (Fig. 1, Supplement 1.2).141

300 km 600 m

maisC

station type

direct

omni

elevation 
(m asl) 6 7 8 9 10

600 m

maisD

elevation 
(m asl) 50 55 60 65

Fig. 1 Study area (black point, left) with sites maisC (middle) and maisD (right) in Märkisch
Oderland (Brandenburg, Germany) including the station set-up. Elevation is given in isolines in 1m-
steps. Copyright map data: OpenStreetMap contributors

2.2 Automated radiotelemetry142

At both sites, we set up a network of automatic radiotelemetry stations (Fig. 1). For143

maisC we used a combined set-up of ten directional stations (each with four directional144

antennas) and ten omnidirectional stations (each with one omnidirectional antenna),145

with the area enclosed by the stations totaling 20 ha, and for maisD we used a set-146

up of eight directional stations, covering a core area of 16 ha. Fig. 2 left shows the147

hardware components used for the directional stations.148

The stations are operated with trackIT OS version 2023.05.3 (trackIT Systems,149

Cölbe, Germany), which is available under an open source license1. The stations were150

configured to detect VHF-signals in the range of 150.000 to 150.300 MHz from 8 to151

1trackIT OS version 2023.05.3, available online: https://github.com/trackIT-Systems/tsOS-vhf/releases/
tag/tRackIT-OS-2023.05.3
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Fig. 2 Left : Commodity off-the-shelf hardware components of a directional VHF station. Right : The
system architecture and components of the trackIT ARTS.

40 ms to match the specifications of the used VHF-transmitters. The detected signals152

were forwarded to a server system in real time and collected locally for later analyses.153

Fig. 2 right shows the components of the trackIT ARTS. Each station is connected154

to a server system running EcoHub, a metadata database that holds information on155

the locations of the stations, the orientation of their antennas, the used transmitters,156

tagged individuals, and ground-truth data, for example from test tracks. Whenever157

detection data are forwarded to the server, the respective transmitter and individual is158

identified using the signal information (timestamp, frequency, duration, signal strength159

per antenna) and written in an InfluxDB time series database. Detection data (raw160

and processed) can be viewed in real time using a set of dashboards available in the161

Grafana visualization tool. More information on hardware and software can be found162

in [3] and [11].163

2.3 Ground-truth data164

To validate the estimated positions and derive a position error (distance between the165

estimated and true positions), we used ground-truth data from test tracks. For these166

tracks, we walked with varying pace carrying active VHF-transmitters from Plecotus167

Solutions GmbH, Müllheim, Germany (60 bpm, 600 µW emitting power, 20 ms signal168
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duration, 150.014-150.298 MHz frequency) fixed on a rod at different heights (0.5, 1,169

1.5, 2 m above ground). The antennas of the transmitters pointed downward with170

approximately 45° to mimic a sitting bird. We simultaneously recorded the tracks with171

a GPS device, optimally recording one location per second (smartphone and app GPS172

Logger [16]), and then aggregated these locations in 2-second intervals to match the173

intervals used for position estimation.174

For each site, we selected four tracks for which we could ensure that all stations175

were running, resulting in approximately 13,500 GPS fixes per site (Fig. 3).176

600 m

maisC

track

C1, D1

C2, D2

C3, D3

Ctest, Dtest  

station type

direct

omni

600 m

maisD

Fig. 3 Test tracks used as ground-truth data to validate position accuracy for maisC and maisD.
For properties of test tracks see Supplement 1.2. Due to issues with continuous recording, there are
gaps in D1. Copyright map data: OpenStreetMap contributors

We also used data from one Great Tit Parus major and one European Robin177

Erithacus rubecula that were tagged in the course of the project to test whether the178

methods used can also be applied to real data. We collected the respective ground-179

truth data with handheld antennas and manual angulation in the field, estimating a180

position at least every ten minutes for one day. As there was rarely visual contact with181

the bird, these positions only served as a rough estimate of where the bird was. For182
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the trapping, handling and tagging of birds, authorizations were issued by the State183

Office for Labor Protection, Consumer Protection and Health, Brandenburg (LAVG,184

2347-80-2023-9-G) and the State Office for the Environment, Brandenburg (LfU). For185

animal tagging we used the same transmitters as for test tracks and ensured that186

transmitter weights (0.37 g, 0.6 g) did not exceed 3 % of the animal’s body weight.187

2.4 Raw data filtering188

To discard false positive detections, for example, due to noise from nearby power lines,189

we applied several filters to the recorded VHF-signals prior to position estimation.190

First, we used known transmitter specifications like a narrow frequency band of 4 kHz191

around the center frequency of each transmitter and a signal duration of 8 to 24 ms, to192

filter the majority of false positive detections exceeding these specifications. Second,193

we applied a filter based on transmitter-specific time intervals texpected between consec-194

utive signals (here: 1 s), called Lastmatch-Nextmatch. The Nextmatch filter identified195

(likely) false positives by (i) calculating the deviation (deltanext) between the expected196

interval texpected and the actual interval tmatched between a signal s2 at time t0 and197

its neighboring subsequent signal s3 and (ii) calculating the deviation (changenext)198

between deltanext from s2 and deltanext from s3 (based on its interval to the subse-199

quent signal s4) (Fig. 4). To be classified as a neighboring signal (s3), the signal must200

be within a given window ((t0+texpected)−0.5∗texpected, (t0+texpected)+0.5∗texpected),201

if several signals meet these requirements, the signal closest to t0+texpected was chosen.202

We implemented these steps analogously for the preceding (Lastmatch) signal. Finally203

changesig was calculated as the deviation of deltalast and deltanext, and minimum204

absolute values (IntervalDelta = min(abs(deltanext, deltalast), IntervalChange =205

min(abs(changelast, changenext, changesig)) were used for simple threshold-based fil-206

tering. In the context of this work, we used a threshold value of IntervalChange <207

0.1s. With that, all signals without at least one corresponding successor or predecessor208
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are filtered out and practically all false detections are discarded. This filter addition-209

ally offers the advantage of adapting to the given circumstances, e.g., slightly changing210

transmitter-specific time intervals due to temperature, humidity, and low batteries.211

Fig. 4 Example of Nextmatch-Lastmatch calculations for signals s1, s2 and s3. texpected = expected
transmitter specific time interval, tmatched = matched signal time interval. Lightgrey points are
signals (most likely false detections) that were not considered as neighboring signals because they
were either positioned outside the respective time window, or another signal was closer to texpected.

2.5 Position finding methods212

To estimate positions based on automatically recorded VHF-signals, we first aggre-213

gated detected signals in 2-second intervals to account for variation in signal strength214

that was due to different orientation of the transmitter’s antenna (see Introduction).215

For position finding, we used different approaches based on (i) antenna beams (direc-216

tional antenna beams, direct ab and omnidirectional antenna beams, omni ab), (ii)217

angulation using bearing and distance estimations (directional angulation, direct an),218

and (iii) lateration using distance estimations (omnidirectional multilateration, omni219

ml). By comparing the estimated position with the respective true position from our220
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ground-truth data, we calculated a position error (PE). This PE was then used for opti-221

mizing and comparing the different position finding methods (section 2.6.1). Moreover,222

by using ground-truth data we can predict PEs (pPE) based on different character-223

istics and transfer these predictions to estimated positions derived from transmitters224

without ground-truth data (e.g., a target species, section 2.6.2).225

2.5.1 Bearing estimation226

[3] described a method of bearing estimation based on perpendicularly oriented direc-227

tional antennas, which we adopted as follows: For a detected signal, we selected the228

antenna amain with strongest reception pmain and its neighboring second-strongest229

antenna signal psecond. The difference in gain (∆g) of the antenna pair is computed and230

normalized using the maximum gain difference (∆m) which depends on the antenna231

model and used transmitter:232

∆g =
pmain − psecond

∆m
(1)

The bearing offset (∆ω) to the main antenna is computed as follows:233

∆ω = (90− 90 ∗∆g) / 2 (2)

The absolute bearing ω is further calculated by adding ∆ω to the direction of the234

main antenna, i.e., subtracting ∆ω in the case that asecond is left instead of right of235

the main antenna:236

ω =















ωmain +∆ω, if amain < asecond,

ωmain −∆ω, if amain > asecond.

(3)
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2.5.2 Distance estimation237

For distance estimation, we fitted an exponentially decaying curve of the form dist =238

a ∗ bpower to the actual distances calculated from a GPS-recorded calibration track239

(see Supplement 1.4 for an example). In the case of directional stations, we used the240

maximum signal strength of all four antennas, whereas for omnidirectional stations241

(only one antenna), we directly used the received signal strength.242

2.5.3 (i) Antenna beams position finding243

[10] describe a geometric method for estimating coarse locations based on the expected244

antenna detection range of directional 9-element yagi antennas of the Motus system.245

Per receiving antenna, half the detection range r in the antenna’s direction was used246

as a location estimation. In the case of detection by multiple antennas within a 2-247

second interval, we averaged the resulting antenna locations using the weights of a248

normalized signal strength (Fig. 5, center). For omnidirectional stations, the detection249

range was omitted, and we estimated positions by averaging station locations weighted250

by normalized signal strengths. Note that, due to the method itself, estimated positions251

could only fall within a defined area, namely a polygon covering all receiving stations252

(omnidirectional) plus a buffer of 0.5 ∗ r (directional; see Supplement 1.8).253

2.5.4 (ii) Angulation position finding254

Based on distance and bearing estimations, angulations using data from multiple255

stations were computed. Per station, we created an intersection line in the bearing256

direction and long as twice the least estimated distance and intersected all dual combi-257

nations of the resulting lines (Fig. 5, left). In case of several intersections, we averaged258

the resulting multiple angulation locations using inverse distance weighting. Restrict-259

ing the length of the intersection line to twice the distance estimate prevented the260

estimation of unrealistic positions, i.e., intersection of lines far from the study area.261
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Fig. 5 Exemplified position finding methods used in this study. Note that antenna beams were also
used for omnidirectional stations. Sample calculations can be found in Supplements 1.3 to 1.7.

2.5.5 (iii) Multilateration position finding262

Multilateration is a common method for finding a position in space based on the263

distance to known points. It is used, for example, in the GPS method, where the dif-264

ferences in transit time between signals from different satellites are used to determine265

position instead of distances. In this work, the distance estimates ds described in 2.5.2266

were used to calculate positions for signals received with omnidirectional stations. For267

use with directional stations, one needs to use the strongest signal strength to esti-268

mate the distance (not included in this work). The position was estimated by first269

computing an initial estimate l0 using the inverse distance weighted station positions270

ls (Fig. 5, right).271

w =
∑

s∈S

1

ds
(4)

ws =
1

ds ∗ w
(5)

l0 =
∑

s∈S

ws ∗ ls (6)
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Second, we optimized the position by minimizing the summed error f(l) of the272

difference in position-station distance and distance estimation:273

dist(l,m) =
√

(lx −mx)2 + (ly −my)2 (7)

f(l) =
∑

s∈S

(dist(l − ls)− ds)
2 (8)

2.5.6 Station cover274

Since position finding is highly influenced by where the transmitter is located and how275

many antennas could simultaneously receive a signal, we used a proxy for how good276

each position in a given study area is covered by nearby stations. We used a simple277

approach to calculate station cover by summing up detection probability polygons278

around each station. This approach assumed a linear decrease in detection probability279

with increasing distance to the station (-0.15 per 100 m distance), resulting in a280

probability of 1 within a 100 m buffer, a probability of 0.85 within a 100 m to 200281

m buffer, and so forth (see Supplement 1.9). We summed up overlaying probability282

polygons of nearby stations, resulting in a density raster with a high station cover in283

the core area and a decreasing station cover towards the edges of the study site.284

2.6 Analysis285

To optimize PEs, compare methods, and predict PEs for new data, we ran generalized286

linear mixed models assuming a lognormal distribution (link = log) of the response287

variable PE, using the glmmTMB package v1.1.9 [17] in R v4.4.0 [18] and helper288

functions provided in [19].289

2.6.1 Optimization and comparison of methods290

For optimization and comparison, we ran two models:291
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m1 : PE ∼ r + (1|tagID) (9)

m2 : PE ∼ meth+ (1|tagID) (10)

The first model (m1) was used to find the detection range r (ordered categorical,292

only for directional antenna beams) resulting in the lowest PE, which was then used293

for the second model (m2) to compare methods (meth, categorical, four in maisC,294

two in maisD), and to determine the method that resulted in the smallest overall PE.295

Both models also included transmitter ID (tagID, categorical) as a random intercept296

to account for variation between different transmitters, e.g. due to different heights or297

actual orientations of the transmitter’s antenna. To guarantee a balanced comparison298

in the second model, we used a common subset of our data reduced to timestamp and299

tagID combinations, where all methods were able to estimate a position.300

2.6.2 Position error prediction301

To predict the PE (pPE) and apply it to new data (e.g., without ground-truth302

data), we used ground-truth data from test tracks C1-C3 and D1-D3 to fit a model303

with high predictive power. Predictors were the number of participating stations (Sc,304

numeric) and antennas (Ac, numeric, only for directional antenna beams), the max-305

imum received signal strenght (maxSig, numeric), the summed up weight (numeric,306

only for antenna beams), and station cover (numeric). Furthermore, we used trans-307

mitter ID (tagID, categorical) as random intercept to account for variation between308

different transmitters. Values were extracted per estimated position and numerical309

parameters were scaled (mean = 0, SD = 1) prior to modeling. Since not all parame-310

ters were accessible for all methods, we ran model m3.1 for directional antenna beams,311

m3.2 for directional angulation and omnidirectional multilateration, and m3.3 for312
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omnidirectional antenna beams:313

m3.1 : PE ∼ Sc ∗Ac ∗ cover +maxSig ∗ weight+ (1|tagID) (11)

m3.2 : PE ∼ Sc ∗ cover +maxSig + (1|tagID) (12)

m3.3 : PE ∼ Sc ∗ cover +maxSig ∗ weight+ (1|tagID) (13)

The models included highly correlated parameters (Sc, Ac, cover, maxSig, weight), as314

well as some interactions since we were not interested in their causation, but in an315

optimal prediction of PE. We validated the predictive performance of the models by316

predicting PEs for the two excluded tracks Ctest and Dtest and comparing it to the317

real PEs calculating the mean absolute error (MAE). In addition, we estimated posi-318

tions and pPE for two tagged birds, comparing it to positions derived from handheld319

telemetry. The pPEs were derived based on 4000 replications for each estimated posi-320

tion and extracting the mean as well as the 50 % and 95% confidence interval (CI).321

Note that Ac was only included for directional antenna beams since Ac can be directly322

calculated based on Sc for the other methods (Ac = Sc for omnidirectional antenna323

beams and multilateration, Ac = 2 ∗ Sc for directional angulation). For directional324

antenna beams, Ac can vary between Sc and 4 ∗ Sc.325

3 Results326

3.1 Method optimization327

For a site-specific optimization, we separately implemented the optimization process328

for maisC (four methods, directional and omnidirectional stations) and maisD (two329

methods, only directional stations).330
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Fig. 6 Left, center : Model predictions (4000 replications) of method optimization and comparison.
Panels show the distribution (polygons) of the mean pPE (triangle, with 50 % (thick bar) and 95
% (thin bar) CI) per detection range and method per site (color). Right : Raw data distribution
(polygons) of position estimates per station cover (top) and PE (bottom). Points display median
station cover and PE and widths of polygons are scaled to counts. Positions are separated based on
whether they could be estimated by all methods (all meth. = ”yes”) and were therefore used for
method comparison, or not (all meth. = ”no”). Share of estimated points to all recorded test track
points is given in %. Note log10-scaling of y-axis in the bottom right panel.

3.1.1 Detection range331

Concerning the detection range of directional antenna beams, the mean predicted332

position error (pPE) ranged between 63.8 and 77.2 m for maisC with the smallest pPE333

for a detection range of 800 m, while for maisD it ranged between 95.1 and 101.5 m334

with the smallest pPE for 900 m (Fig. 6 left). The difference in mean pPE between335

the detection ranges was greater and clearer in maisC than in maisD (Fig. 6 left). We336

continued with a detection range of 800 m (maisC) and 900 m (maisD) for method337

comparisons.338

3.1.2 Position finding methods339

When comparing methods, directional antenna beams had the lowest mean pPE (38340

m) in maisC, while for maisD angulation of directional antennas (55 m) performed341

better than directional antenna beams (Fig. 6 center). Again, the difference in mean342
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pPE between the methods was greater and clearer in maisC than in maisD. Note343

that we only included positions with estimates for all methods, which is why positions344

with a low station cover and therefore usually high PE were excluded more frequently,345

resulting in a comparable lower mean pPE for directional antenna beams when com-346

paring methods than when comparing detection ranges (Fig. 6). Positions that were347

estimated by all methods were usually positioned inside the station set-up namely the348

core area (see also Supplement 2.1 for further details per test track).349

Concerning the yield (i.e., the proportion of positions that could be estimated),350

positions estimated by directional angulation were usually also estimated by other351

methods, whereas other methods resulted in way more additional positions (Fig. 6,352

right, Supplement 2.1). In total, approximately 50 (maisC) and 30 % (maisD) of the353

recorded ground-truth positions could be estimated using directional angulation, while354

directional antenna beams resulted in more than 90 % of the recorded positions (Fig.355

6, bottom right). For omnidirectional stations, antenna beams resulted in position esti-356

mates for almost 90 % and for multilateration in almost 80 % of the recorded positions.357

Note that, due to the calculation itself, the estimated positions using omnidirectional358

antenna beams all fall within the core area (i.e. estimates of positions outside the core359

area nevertheless fall within the core area), resulting in high station covers only (Fig.360

6, top right, Supplement 2.1).361

3.2 Position error prediction362

3.2.1 Predictive performance363

Concerning the predictive performance of the models, i.e., the mean absolute error364

(MAE) between PE and pPE, the model for directional antenna beams made better365

or similar predictions (small MAEs: 21 m in maisC and 33 m in maisD) than for direc-366

tional angulation (22 and 44 m), followed by omnidirectional antenna beams (38 m)367

and mutlitaleration (53 m, Table 1 case ’all meth.’). On average, models for directional368
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Table 1 Results of predictive performance testing per method to predict PEs (4000 replications)
for all positions from Ctest and Dtest, including mean PE (in m, raw), mean pPE (in m, predicted),
mean absolute error MAE (in m), and proportion of ground-truth positions in % (pP) that could be
estimated by the respective method. There are three different cases: full = all estimated positions,
all meth. = only estimated positions present in all methods, filtered = only estimated positions after
applying method-specific filters for Ac-Sc (see section 3.2.2, for omni ab and omni ml we excluded
positions with Sc ¡ 3).

full all meth. filtered

site method PE pPE MAE pP PE pPE MAE pP PE pPE MAE pP

maisC direct ab 52 56 27 98 34 41 21 65 43 50 24 92

maisC direct an 47 44 22 66 47 44 22 65 47 44 22 66

maisC omni ab 145 131 48 95 110 101 38 65 122 104 40 74

maisC omni ml 103 109 69 88 82 94 53 65 88 92 55 74

maisD direct ab 65 72 41 99 50 63 33 39 63 69 40 97

maisD direct an 55 47 43 39 55 47 43 39 55 47 43 39

antenna beams and omnidirectional mutlilateration made more conservative predic-369

tions with pPEs being larger than real PEs, whereas pPEs from directional angulation370

and omnidirectional antenna beams were more optimistic and smaller than real PEs371

(see Table 1 case ’all meth.’). Note that pPE showed less variation compared to PE,372

with only a few predictions below 20 m or above 200 m (Fig. 7).373

site all meth.
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Fig. 7 Predictive performance testing per method to predict PEs (4000 replications) for all positions
from test tracks Ctest and Dtest, namely distribution of raw (left polygons, PE) and predicted PEs
(right polygons, pPE) including medians (PE = points, pPE = triangles). Transparency indicates
whether positions were estimated by all methods (all meth. = ”yes”) and can be used to directly
compare different methods, or not (all meth. = ”no”) and widths of polygons are scaled to counts.
Note log10-scaling of y-axis.
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3.2.2 Predicted PE dependencies374

PEs of directional antenna beams (other methods, see Supplement 2.3) varied with375

the covariates with deviating patterns between the two sites (Fig. 8). For simplicity,376

here we mainly refer to Ac and Sc but note that Ac, Sc, maxSig, cover, and weight377

were usually positively correlated, and therefore one has to look at the pattern in its378

entirety (see Supplement 2.2 for correlation plots).379
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Fig. 8 Predictive performance testing (4000 replications) using directional antenna beams based on
all estimated positions from test tracks Ctest and Dtest. Values are grouped by all present Ac-Sc
combinations including 95 % (thin bars) and 50 % CI (thick bars) and x-values are slightly shifted to
prevent overlay of CIs. Upper : Predicted PE (pPE). Lower : Differences between real PE and pPE.

In maisC, the highest mean pPEs (150 to 180 m) and uncertainty occurred for380

combinations where Ac = Sc (i.e., each station received the signal with only one381

antenna; left end of each line in Fig. 8, top left). For the same Ac, pPE improved (=382

decreased) with decreasing Sc (e.g., a position estimate is more accurate if two stations383

each receive with three antennas than if three stations each receive with two antennas),384

and for the same Sc, pPE improved with increasing Ac, often approaching a pPE of 25385
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m or less. Concerning the predictive precision (that is the difference between raw PE386

and pPE) with respect to covariates, average differences were close to zero, but pPE387

was underestimated when more than 22 antennas were used for position estimation388

(Fig. 8, bottom left). Additionally, single estimates became more precise (= smaller389

CIs)) with increasing Ac, while there were no obvious differences between different Sc .390

In maisD, the highest mean pPEs (150 to 270 m) and uncertainty occurred for391

positions recorded by few stations with few antennas (Ac-Sc combinations 1-1, 2-1,392

3-1, 2-2, 3-2, 3-3, Fig. 8, top right). For the same Ac, pPE did not or only marginally393

improve with decreasing Sc and for the same Sc, pPE first improved with increasing394

Ac but then remained constant at approximately 50 m. Concerning the predictive395

precision with respect to covariates, pPE was overestimated for small Ac (PE ¡ pPE)396

and underestimated for larger Ac (PE ¿ pPE), (Fig. 8, bottom right). In contrast to397

maisC, the variance between single estimates remained more or less constant across398

different Ac and Sc.399

Excluding position estimates with Ac-Sc combinations with high pPEs (see above)400

from the test tracks Ctest and Dtest resulted in a reduction of possible point estimates401

(6 and 2 % for directional antenna beams, 21 % for omnidirectional antenna beams,402

14 % for omnidirectional multilateration) but also in better PEs and pPEs as well as403

a slightly better predictive performance compared to the full dataset (Table 1, case404

’full’ vs. ’filtered’).405

3.2.3 Animal example406

Visual comparison of position estimation and error prediction with data from a tagged407

Great Tit and European Robin revealed a close match between positions derived from408

handheld telemetry and positions derived from our ARTS using directional antenna409

beams, but positions spread further when estimated with antenna beams (Fig. 9).410

Further, pPEs were larger for positions that were farther away from the respective411

handheld positions.412
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position
directional 
station
Great Tit (direct ab)
Great Tit (handheld)
European Robin 
(direct ab)
European Robin 
(handheld)

time
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04:00 pm

pPE

50
100
150

Fig. 9 Estimated positions using directional antenna beams (empty symbols, size is scaled to pPE)
and positions located with handheld antennas (filled symbols) recorded in one day for two individuals
in maisC (Great Tit, European Robin)

.

4 Discussion413

We found substantial differences between our approach using antenna beams and the414

common position finding methods angulation and multilateration in terms of position415

errors, number of estimated positions and predictive performance. Directional stations416

generally produced smaller errors than omnidirectional ones, and directional antenna417

beams yielded substantially more estimates than angulation. Table 2 summarizes each418

method’s advantages and disadvantages. Per-position errors varied widely - ranging419

from several meters to hundreds of meters - depending on factors such as station and420

antenna number, station cover, signal strength, and weights. Errors were especially421

high outside the station set-up, underscoring the importance of predicting per-position422

errors rather than relying on a single average.423
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Table 2 Overview of tested methods, including pros and cons for different aspects to help
selecting the best method and set-up. For a visualization of the covered area, see Supplement 1.8.

directional (flat, undulating) omnidirectional (flat)

antenna beams angulation antenna beams multilateration

position
error

good (PE ˜50 m
(flat), ˜60 m (undu-
lating))

good, (PE ˜50 m) bad (PE ¿100 m) ok, (PE ˜100 m)

predictive
perfor-
mance

good, better in flat
areas, conservative
estimation (pPE ¿
PE)

good, better in flat
areas, optimistic
estimation (pPE ¡
PE)

good, optimistic
estimation (pPE ¡
PE)

ok, conservative
estimation (pPE ¿
PE)

covered
area

good (core area
plus buffer of 0.5*r)

on paper great,
in praxis mainly
restricted to core
area

bad, restricted to
core area

good, (core area
plus buffer of
maximal distance
estimation)

yield great, without filter
all signals can be
used

bad, at least two
stations with
two neighbouring
antennas needed
(plus intersecting
bearing lines)

great, without filter
all signals can be
used

good, at least two
stations needed

costs more expensive cheaper

set-up elaborate set-up and maintainance simple set-up and less maintainance

4.1 Method optimization424

4.1.1 Detection range425

Concerning the best detection range to be used for directional antenna beam position426

estimates, the results for maisC were more pronounced, with 800 m clearly deviating427

from other ranges, while there was a large overlap between ranges for maisD with 900428

m resulting in the smallest pPE (Fig. 6, left).429

Part of the differences between the two sites might be due to the set-up and test430

tracks used, since they were not identical, but we expect that these results were mainly431

linked to the respective topography (Fig. 1). All position finding methods used in this432

study assumed the same detection probability and received signal strength regardless433

of whether the transmitter is positioned at the same distance from the receiving station434

in northern, eastern, southern, or western direction. Signal detection is highly depen-435

dent on signal transmission, which can vary due to the position of the transmitter436

antenna, whether the signal is weakened by surrounding vegetation, the level of humid-437

ity, or how fast the transmitter is moving [1, 4, 11], but this variation usually occurs438

23



randomly in any direction. Topography affects signal detection based on slope direc-439

tion, with downhill-facing antennas typically achieving greater detection ranges than440

uphill-facing ones. Elevation differences between stations further increase variability441

in signal detection. Therefore, position errors in undulating landscapes vary highly442

within one assumed detection range, while errors between ranges remain more con-443

sistent. Our position finding method antenna beams did not account for such ’static’444

differences in signal detection due to topography, resulting in less accurate position445

estimates at undulating sites. Thus, more research is needed, for example, by using446

different detection ranges per station (and/or antenna) or applying received signal447

strength (RSS) fingerprinting, a machine learning approach matching received signals448

from unknown positions to signal fingerprints from known ground-truth positions. The449

latter has at least been shown to work well for omnidirectional and directional set-ups:450

[14] achieved a median position error of 30 m for positions between 0 and 75 m from451

the nearest station in a fairly dense omnidirectional set-up (100 m spacing between452

stations) and [12] achieved a median position error of 230 m for positions between 0453

and approximately 1000 m from the nearest station in a more sparse directional set-up454

(500 m spacing).455

4.1.2 Position finding method456

The four tested methods differed in their position error and yield, i.e., the proportion457

of positions that could be estimated. In terms of both pPE and yield, antenna beams458

proved to be better than angulation for directional stations, while for omnidirectional459

stations, multilateration resulted in smaller pPEs and a comparable yield than antenna460

beams (Fig. 6, center, right). The reduced yield in the angulation method arose from461

various prerequisites that must be met: to calculate bearings, at least two stations462

need to detect the signal, each with two neighboring antennas, and the resulting lines463

need to intersect (see section 2.5.3). Consequently, a substantial number of positions464

could not be estimated, resulting in reduced temporal resolution. Position estimation465
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was particularly limited when transmitters were located outside the core area, leading466

to a total loss of 34 to 61 % of positions (Table 1, Supplement 2.1). Antenna beams,467

on the other hand, could even estimate positions from single detections - though with468

high error - (only 1 to 5% loss) while multilateration required at least two stations469

(12 % loss). Antenna beams and multilateration thereby covered a larger area than470

angulation, offering a more comprehensive view of movement patterns (Supplement471

2.1).472

Regarding the differences between station types, there was a clear trade-off between473

smaller PEs (directional stations) and a more affordable and simpler station set-up474

(omnidirectional stations). With a good signal basis (Sc ≥ 3 receiving with 2*Sc direc-475

tional or Sc omnidirectional antennas), the two directional methods could achieve476

mean pPEs between 15 and 50 m, while the omnidirectional system in maisC had477

mean errors between 50 and 150 m for multilateration and around 100 m for antenna478

beams (see Fig. 8 and Supplement 2.3). Compared to previous studies using direc-479

tional and/or omnidirectional set-ups, our results ranged in the midfield of measured480

errors (mean spacing between stations 155 to 175 m): In omnidirectional set-ups using481

multilateration [13] obtained mean PEs of 7 m (spacing 12 m), [14] median PEs of 43482

m (spacing 100 m), and [15] mean PEs of 180 m (62 to 141 m after applying several fil-483

ters, spacing 215 m). In directional set-ups using angulation, [3] obtained mean PEs of484

25 m (spacing 200 m), [8] measured median PEs of 72 m for moving butterflys (spacing485

250 m), and [12] got mean PEs of 550 m (spacing 500 m). However, direct comparison486

between different set-ups is always difficult since errors depend on various factors such487

as emitting power of transmitters, where in relation to the stations the ground-truth488

data was recorded, spacing between stations, which and how many positions could be489

estimated, height above ground of antennas and transmitters, surrounding vegetation,490

and topography [1, 4, 8, 11].491
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Omnidirectional antennas usually have a smaller detection range than directional492

antennas. If a signal is detected by fewer stations compared to directional stations,493

the resulting position estimations will thus be less precise. One way to compensate494

for these deficiencies and improve position estimations is by decreasing the minimum495

distance between stations, as shown by [15]. However, this would come along with496

either a decrease in covered area when using the same number of stations, or the497

need for more stations to cover the same area, and therefore an increase in costs. An498

alternative would be to increase either the antenna height or the transmitting power499

of the radio transmitter.500

4.2 Position error prediction501

4.2.1 Predictive performance502

Models used to predict position errors (pPE) performed well, with mean absolute503

errors (MAE) between real PE and pPE for test tracks Ctest and Dtest ranging504

between 21 (directional antenna beams) and 69 m (omnidirectional multilateration,505

Table 1). Since predictions were mean estimates for given combinations of covariates,506

they usually overestimated extremely low PEs and underestimated high PEs. However,507

these extreme values occurred only rarely, which is why predictions can, on the whole,508

provide a reliable result.509

4.2.2 Predicted PE dependencies510

Positions estimated with one method varied extremely in their position errors, and511

this was strongly linked to covariates related to how good a signal was detected (e.g.,512

number of receiving stations and antennas, signals strength, station cover, ...). Using513

this information to predict a position error for each position is therefore be a power-514

ful tool to improve results based on telemetry data. Furthermore, excluding positions515
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based on thresholds of these covariates effectively minimized PEs (i.e., excluding posi-516

tions with low Sc (and Ac), Table 1). For omnidirecitonal and directional antenna517

beams, we especially recommend excluding positions based on one antenna and station518

only, since these estimates were (i) extraordinarily high (especially in maisD), and (ii)519

showed a high uncertainty when comparing real PEs and pPEs (Fig. 8, Supplement520

2.3). However, such thresholds came along with a reduction in yield, thus one has to521

face a trade-off between many positions and small PEs and may still be of interest522

depending on the target research question.523

[15] demonstrated that increasing the number of stations used for position estima-524

tion can degrade accuracy, causing estimates to shift toward the center of the study525

area, with the effect being most pronounced at the periphery. Similarly, our position526

estimates based on antenna beams showed a centralizing bias, and position errors were527

underestimated when many antennas received a signal (Fig. 8). Thus, accuracy and528

spatial resolution may be improved by implementing additional filtering techniques,529

such as excluding stations with weak signal strength, as proposed by [15]. However, a530

key advantage of our approach is that, despite potential inaccuracies in position esti-531

mates, the predicted position error reliably reflects the associated uncertainty and can532

thus be used as a proxy of the trustworthiness of the estimate.533

5 Conclusion534

Our study showed that the methods tested for position finding in ARTS differed in535

their position error, number of yielded positions, and predictive performance. Antenna536

beams used for directional stations proved to be a strong alternative to the commonly537

used angulation, especially in terms of yield and temporal resolution. Furthermore,538

position errors and performance varied between the two tested study sites and were539

highly influenced by signal and position characteristics. When conducting radioteleme-540

try studies, it is therefore crucial to record ground-truth data in the field to capture541
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this individual PE pattern of your study site and check whether (i) the resulting mean542

PE meets the required position accuracy of your question of interest, (ii) the predicted543

PEs adequately reflect measured PEs (small MAE, difference close to 0), and (iii) the544

yielded number of estimated positions is sufficient. The resulting estimated positions545

and predicted per-position errors provide a sound basis for further high-resolution546

analyses of wildlife movements.547
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