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Abstract. Existing routing algorithms for disruption-tolerant network-
ing (DTN) have two main limitations: (a) a particular DTN routing algo-
rithm is typically designed to achieve very good performance in a specific
scenario, but has limited performance in other scenarios, and (b) DTN
routing algorithms do not take advantage of network programmability to
profit from its benefits. We present ProgDTN, a novel approach to sup-
port programmable disruption-tolerant networking by allowing network
operators to implement and adapt routing algorithms without knowledge
of a router’s interior workings using the popular JavaScript language.
To consider the specific properties of a particular application scenario,
network operators can incorporate context information of DTN bundles
and nodes in their routing algorithms. ProgDTN is based on DTN7, a
flexible and efficient open-source, platform-independent implementation
of the Bundle Protocol version 7. Our experimental evaluation demon-
strates that using ProgDTN to tailor a routing algorithm to a particular
scenario achieves excellent results of up to 99.9% delivery ratio while re-
ducing unnecessary transmissions by 92.9%. ProgDTN’s implementation,
our tailored scenario-specific routing algorithm, and code/data fragments
for our experiments are released under permissive open-source licenses.

1 Introduction

Originating from developments related to the exploration of outer space, dis-
ruption-tolerant networking (DTN) has found its way into numerous terrestrial
applications, e.g., in scenarios where communication networks are destroyed or
disrupted and cannot be repaired for days. Apart from natural disasters, it may
be hard for people to communicate via mobile devices in remote areas without
a deployed telecommunication infrastructure. When end-to-end connectivity is
not available, DTN can be utilized to keep communications going without the
need for traditional infrastructures. However, utilizing DTN for communication
requires custom network protocols, since protocols of the widely used TCP/IP
stack are not well suited for such challenging situations. Therefore, several rout-
ing algorithms were developed for DTNs. Some are targeted at general purpose
applications, i.e., they rely on the connectivity inside the network or are based
on conventional routing schemes, such as link-state routing. Other DTN rout-
ing algorithms are constructed for specific scenarios, such as the movement of
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people during a workday or emergency situations. We argue that each DTN
routing algorithm is designed for a specific scenario in which it achieves very
good performance, but has limited performance in other scenarios.

Conventional network protocols of the TCP/IP stack suffer from the same
limitations, which motivated the introduction of programmable networks in the
literature. For example, Software-defined Networking (SDN) offers programmable
means of configuring networks using customized algorithms for processing and
routing. Typically, this leads to optimized performance in terms of latency,
throughput, and/or resilience. We argue that DTN should also take advantage
of network programmability to profit from its benefits like time and cost savings,
reduction of human error, customization, and improved performance. However,
the SDN approach cannot directly be transferred to DTN, because SDN, in gen-
eral, requires a coordinating entity that deploys (programmable) rules to network
nodes. In most cases, a coordinating entity is not present in DTNs.

In this paper, we present ProgDTN, a novel approach to support programmable
disruption-tolerant networking by allowing network operators to program a node’s
routing behavior based on DTN bundle metadata, additional bundle context,
and node context. Node and bundle context can be used to reflect the specifics
of a particular scenario, e.g., the speed of a node in a mobile scenario, the
battery level of nodes in a scenario without fixed power supply, or geographic
information of the context of a bundle. ProgDTN consists of a programming
interface that allows a network operator to program the routing algorithm with-
out knowledge of the router’s interior workings. ProgDTN’s implementation is
based on DTN7 [16], a flexible and efficient open-source, platform-independent
implementation of the Bundle Protocol version 7 [6], and uses JavaScript as the
programming language, because it is widely used and easy to understand. In our
experimental evaluation, we compare ProgDTN to four existing routing algo-
rithms. We demonstrate that a programmable DTN routing algorithm tailored
to a specific scenario achieves excellent results in terms of up to 99.9% deliv-
ery ratio while reducing unnecessary transmissions by 92.9% compared to other
state-of-the-art DTN routing algorithms in an emergency response scenario. We
achieve a low delivery time of bundles (1 – 15 seconds) and a low overhead in
terms of CPU utilization and routing decisions. Our contributions are:

– We present ProgDTN, a novel approach for programmable DTN routing.
– We show that using ProgDTN, network operators can tailor routing algo-

rithms to their individual scenarios by incorporating context information.
– We present a comparative experimental evaluation of ProgDTN, achieving

excellent results in terms of delivery ratio, delivery times, and overhead.
– We make ProgDTN’s implementation, our scenario-specific routing algo-

rithm,1 and code/data fragments of our experimental evaluation23 available
under permissive open-source licenses.

1 https://github.com/umr-ds/dtn7-go/tree/progdtn
2 https://github.com/umr-ds/progdtn-evaluation
3 https://dshare.mathematik.uni-marburg.de/index.php/s/8k6XZgKJp9kTMPS

https://github.com/umr-ds/dtn7-go/tree/progdtn
https://github.com/umr-ds/progdtn-evaluation
https://dshare.mathematik.uni-marburg.de/index.php/s/8k6XZgKJp9kTMPS
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The paper is organized as follows. In Section 2, an overview of related work
in the field of delay-tolerant routing is given. Section 3 and 4 cover ProgDTN’s
design and implementation. Section 5 discusses the results of our experiments.
Finally, Section 6 concludes the work and outlines areas for future work.

2 Related Work

This section gives a brief overview of related work on context-aware routing in
general and context-aware routing in DTN.

Context-aware Routing. Apart from using information about the network
topology, context-aware routing algorithms use additional information to make
routing decisions. Here, we focus on context-aware routing protocols for wireless
mobile ad hoc networks (MANETs).

The History-based Routing Protocol for Opportunistic Networks (HiBOp)
uses social information, such as club memberships or home addresses to infer
the likelihood of encounters and improve routing decisions [5]. Dynamic So-
cial Grouping-based Routing (DSR) is a routing algorithm that harnesses social
grouping for efficient routing in ad hoc networks [7]. The Inheritance Inspired
Context-Aware Routing Protocol (IICAR) follows a biology-inspired approach
to routing based on Mendel’s laws of inheritance [3].

The protocol proposed by Biswas et al. [4] uses the properties of ad hoc
wireless networks. It maintains static context, such as node and interface types
and social information, and dynamic context, e.g., geolocation, channel quality,
and encounter frequency. The information is used to calculate utility scores,
combined using a routing metric to determine a delivery probability for each
message. Messages are forwarded to a) the closest short-range neighbor and b) a
long-range neighbor selected based on the delivery probability and the distance.

The algorithm proposed by Errouidi et al. [9] uses context information to
improve resilience in MANETs. It employs a fuzzy logic system for three context
metrics, a node’s remaining energy storage, distance between peers, and node
mobility, to judge its ”stability”. This allows it to improve routing decisions by
avoiding unstable nodes, which improves network stability and delivery metrics.

Context-aware Delay-tolerant Routing. The Context-Aware Adaptive Rout-
ing (CAR) protocol harnesses context information for routing decisions DTN
and combines synchronous and asynchronous transmission [14,15]. Messages are
transmitted synchronously using a distance vector routing approach if the recip-
ient is located in the same neighborhood. If no direct connection between sender
and recipient exists, asynchronous (DTN) transfer is used, where a node com-
putes delivery probabilities of the directly connected nodes based on its context
information. It is up to the network provider to define concrete attributes, utility
functions, and weights for the generic approach.

The Sensor Context-Aware Routing (SCAR) protocol for distributed sensor
networks [13] is based on the CAR protocol, omitting the distinction between
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synchronous and asynchronous transmissions. The approach only handles a sin-
gle specific use case and does not attempt to provide a general routing algorithm.

A further routing scheme that competes with CAR was proposed by Johari
et al. as Context-Aware Community Based Routing (CACBR) [11]. Message
forwarding is based on a combination of network and context parameters, such
as communities a peer belongs to, message delivery and forwarding history, and
available buffer space and battery level.

In general, schemes that attempt to harness social and community relations
are relatively common; another example is the Socially-Aware Adaptive Delay
Tolerant Network (DTN) routing protocol by Ullah and Qayyum [19]. It utilizes
a metric called degree centrality to estimate how well a node is embedded in a
community to drive forwarding decisions.

Beak et al. [2] propose a version of the PRoPHET routing algorithm, im-
proved by using context information. While the authors show that their pro-
posed protocol outperforms regular PRoPHET, it still relies significantly on the
underlying protocol, and the use of context information is limited.

Another approach was proposed by Rosas et al. [17]. It is not focused on
designing a routing algorithm that includes context information, but instead
measures the performance of different algorithms under different context values
and then uses future context information to choose the optimal one.

To the best of our knowledge, no attempt has been made in related work to
create a general-purpose, context-aware, programmable DTN routing system.

3 ProgDTN Design

In this section, we present the design of ProgDTN, including DTN fundamentals,
system requirements, context information, and ProgDTN’s architecture.

3.1 DTN Fundamentals

The data transmission unit of the bundle protocol is a bundle, which consists
of multiple blocks. Each bundle must contain a primary block containing basic
metadata, such as the bundle’s ID, sender and recipient IDs, and a payload block
that carries the bundle’s payload. A bundle can also include an arbitrary number
of extension blocks. While the DTN standard specifies several extension block
types, it allows implementations to specify additional types.

A node in DTN operates in a store-carry-forward manner, i.e., when a bundle
is received, it is stored in local, long-term storage, from where it will be regu-
larly forwarded. When forwarding, the network daemon invokes the configured
routing algorithm to select a subset of currently connected peers to which the
bundle should be forwarded. The actual peer-to-peer connection is abstracted
in a so-called convergence layer (CL) that may use any lower-layer communica-
tion protocol to achieve data transmission. ProgDTN is designed to be entirely
independent of any specific communication infrastructure and works with any
standard-compliant convergence layer.
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3.2 System Requirements

ProgDTN’s goal is to allow network operators to develop scenario-specific rout-
ing algorithms without modifying the DTN software itself. Furthermore, changes
to the routing algorithm should not require recompilation of the DTN software
to reduce the complexity of deploying new or adjusted routing algorithms. In-
stead, the forwarding rules are loaded at startup from a provided script file and
interpreted by the DTN software. In this way, algorithms may be swapped by
restarting the DTN software and giving it a different file to load. To specify these
forwarding rules, we use a general-purpose programming language and embed
an interpreter into the DTN software. This allows maximum flexibility without
having to learn a new domain-specific language.

3.3 Context Information

ProgDTN belongs to the class of context-aware routing algorithms, i.e., routing
decisions may be based on additional information of the environment in which
the network exists. Context refers to any information about the nodes, bundles
they are transmitting, or any other information that the network operator may
deem helpful. ProgDTN does not put any semantic restrictions on context in-
formation, except that each piece of information needs to be uniquely named.
Instead, we provide network operators with a generic, powerful interface for
generating and processing relevant context information.

Context Types. ProgDTN distinguishes between two classes of context informa-
tion, bundle context and node context. Bundle context is any additional informa-
tion attached to an otherwise normal bundle, e.g., the physical location of the
bundle’s recipient, information about the originator or the recipient, and really
anything that the network operator might think of. On the other hand, node
context is information about a specific node, such as the node’s location, the
node’s battery status, and its connectivity status. This information is not usu-
ally attached to other bundles, but if it must be communicated to other nodes,
the node broadcasts it using a special context bundle.

Context Generation. The naive approach for generating context information
would be to have the DTN software itself generate the necessary information.
This would, however, violate the ease of use goal, since it would require modifica-
tion of the DTN software’s code for each scenario. ProgDTN adopts an approach
where context generation is left up to external programs. For this purpose, the
DTN software exposes an interface through which context information can be
injected. This interface should be based on a widely used communication proto-
col/architecture to ensure ease of use.

Context Transmission. Since context information needs to be attached to a
bundle, and since it may be helpful for nodes to be able to exchange their
contexts, we defined a custom extension block to carry context information.
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Fig. 1: Architectural overview of a DTN deployment utilizing ProgDTN

This extension block may either be attached to an existing bundle or be used to
exchange context data with peers by sending a special context bundle. Extending
a regular bundle with a context block allows nodes to use this information when
making forwarding decisions.

3.4 ProgDTN Architecture

Fig. 1 shows the architecture of a DTN deployment utilizing ProgDTN. The
yellow circles depict mobile DTN nodes, whereas the violet circles show data
sources in a hypothetical scenario. Each node is identified by the prefix dtn:
followed by a name, such as n1, used as the address for bundle transmissions.
The lines between the circles show connections between the particular nodes.
Node dtn:n1 is used to visualize further concepts.

In general, when a bundle enters a DTN node, either by being created or
received from a peer, it is placed into the node’s local on-disk storage (store in
Fig. 1). The bundle is then passed to the configured routing algorithm to select
peers for forwarding. ProgDTN takes the position of the routing algorithm, which
is visualized by the box entitled ProgDTN. It takes the particular bundle, which
can itself have attached context information, and the context information for its
node (shown as 1 in Fig. 1), as well as the peer’s context ( 2 ). The context in
this example is the speed and battery level of the transmitting node and for node
dtn:n2. The interpreter ( 3 ) then executes the routing script provided by the
network operator, which must be aware of the available context data, and filters
the list of connected peers to select the subset for forwarding. Once the routing
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Fig. 2: dtn7-go with the ProgDTN implementation between CLA and Store

program has returned the list of selected peers, the DTN software transmits the
bundle to the selected peers ( 4 ).

4 ProgDTN Implementation

ProgDTN’s implementation is based on dtn7-go, a powerful DTN software suite
developed in the DTN7 project4. dtn7-go implements the most recent draft of
the bundle protocol (BP) version 7 [6] in the GO programming language [16].

Fig. 2 shows the components of dtn7-go. The two dotted boxes indicate two
DTN nodes, and the arrows between them show their interaction, data transmis-
sion (transmit), and peer discovery (discover). The arrows within the dtnd box
visualize the data flow of bundles within a node. The right-hand side shows mul-
tiple tools that use an application agent (AA) to insert data to or retrieve data
from dtn7-go. The AA then stores the received data in the node’s local store.
The bundle protocol abstracts peer-to-peer communication using convergence
layer adapters (CLAs), which can use a variety of protocols and technologies
such as TCP, UDP, or even e-mail sent over Bluetooth. Each CLA exposes a de-
fined API to the daemon, which can then transparently send & receive messages
without having to bother with data serialization or transmission. To support
connections in dynamic networks, dtn7-go uses a peer discovery mechanism
that continuously broadcasts information on all of the node’s CLAs and notifies
the daemon about newly discovered peers. For forwarding decisions, dtn7-go
includes an API that can be used to implement routing algorithms. Any Go
datatype that satisfies this interface can be used as the router, and dtn7-go
ships with various established routing algorithms. ProgDTN consists of an im-

4 https://dtn7.github.io/

https://dtn7.github.io/
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plementation of that interface and a set of extensions for receiving and storing
bundle and node context.

4.1 Using JavaScript for Programmable Routing

We decided to use JavaScript as our general-purpose programming language
for programmable DTN routing due to the following reasons: (a) JavaScript is
very popular; according to a 2021 survey conducted by Stack Overflow5, nearly
65% of developers work in JavaScript, giving it a roughly 17% lead over the
second-placed general-purpose language Python at approximately 48%; and (b)
JavaScript can be embedded into the GO programming language; there are sev-
eral JavaScript interpreters written in GO, e.g., goja6, which implements the
ECMAScript standard version 5.1 with some additional features.

Thus, a routing algorithm is specified in a JavaScript file that gets loaded
during startup of dtn7-go and compiled to bytecode representation for faster
execution. Whenever a routing decision is made, the compiled JavaScript routing
algorithm is invoked, which invokes a virtual machine (VM) able to interpret the
JavaScript bytecode.

4.2 Programmable Routing Decisions

Any custom routing algorithm has to comply with the following API. First, the
JavaScript code receives the bundle itself passed as a JavaScript object 7, as well
as the bundle ID, represented as a string. Second, the ID of the bundle’s source
(as a string) and a list of strings representing the IDs of all currently available
peers are passed to the routing algorithm. The final pieces of information are
the bundle context, the node’s context, and the context of all available peers.
Whenever the algorithm receives context data, this data is encoded as JSON, a
data serialization format that works well with JavaScript. The bundle’s context
can be updated using a callback function whenever this may be necessary. If
logging is required, it is possible to use the passed loggingFunc function to write
an arbitrary string to the dtn7-go’s logs. The algorithm may then use any or all
of this data to perform the actual forwarding decision. Any JavaScript code can
be executed here, including third-party libraries. ProgDTN does not place any
restrictions on the possible context data; it is up to the network operator to be
aware of runtime requirements. Finally, the routing algorithm must return a list
of node IDs to which the bundle should be forwarded. dtn7-go then takes care
of forwarding the bundles to the chosen nodes using the corresponding CLAs.

5 https://insights.stackoverflow.com/survey/2021
6 https://github.com/dop251/goja
7 The description of the bundle data structure is omitted for

brevity. We refer to https://github.com/dtn7/dtn7-go/blob/
d3b5e62a7f89994ececf98978bae499f32cc920f/pkg/bpv7/bundle.go for further
information.

https://insights.stackoverflow.com/survey/2021
https://github.com/dop251/goja
https://github.com/dtn7/dtn7-go/blob/d3b5e62a7f89994ececf98978bae499f32cc920f/pkg/bpv7/bundle.go
https://github.com/dtn7/dtn7-go/blob/d3b5e62a7f89994ececf98978bae499f32cc920f/pkg/bpv7/bundle.go
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4.3 Providing Context

To provide context information about the local node, we implemented a REST
interface that receives information formatted in a key-value manner, where the
value contains arbitrary data formatted as JSON. The context information is
then saved in a global dictionary so that newer data for a given peer overwrites
existing data. While the local node’s context information is vital for routing
decisions, so is its peers’ context. Therefore, whenever two peers connect, they
exchange their context information. Finally, for bundle context, the provided
REST interface for bundle submission is extended to add context information
to the bundle during its creation, again as arbitrary key-value pairs.

5 Experimental Evaluation

5.1 Emulation Environment

Network Emulation. To perform a large number of experiments, we used the
Common Open Research Emulator (CORE) [1], an open-source network emula-
tor8. CORE supports the execution of native binaries without re-implementing
protocols, i.e, real-world code can be executed. Furthermore, we used the MACI
experimental orchestration framework [10] to schedule a large number of exper-
iments. All experiments were executed on an AMD EPYC 7742 server with 128
physical cores and 1 TB RAM, which executed up to 3 experiments in parallel.

Network Topology. We use a network topology that simulates a disaster
scenario involving three parties, civilians, responders, and a coordinator. The
scenario consists of 31 nodes arranged in a 2-circle topology, with the singular
coordinator located in the center, five responders arranged in a circle around
the coordinator, and 25 civilians arranged in the outer circle. Each responder is
connected to 5 civilians, and the civilian clusters are connected on their edges.
Each civilian sends bundles addressed to the coordinator, simulating information
moving up the chain of command. The coordinator produces broadcast bundles
that are supposed to be received by all civilians, which simulates announcements
by the authorities to the population. The experiments simulate a network with
a bandwidth of 54 MBit/s, 20 ms of delay, and a range of about 40 meters.

Experimental Parameters. All experiments are uniquely defined by a set of
four parameters, summarized in Table 1 and discussed below. In total, 210 exper-
iments were executed for one hour each. Bundles per node determine how many
bundles each civilian and the coordinator send to the network. To avoid every
node sending its data simultaneously, bundles are sent at (uniformly distributed)
random times throughout the experiment. We used two different payload sizes,
1 kB and 1 MB, to mimic different use cases, with 1 kB serving as a stand-in
8 https://coreemu.github.io

https://coreemu.github.io
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Table 1: Evaluation Parameters
Parameter Values

Bundles per Node 10, 50, 100
Payload Size 1 kB, 1 MB
Routing Algorithm Epidemic Routing, Binary Spray & Wait, DTLSR,

PRoPHET, ProgDTN Epidemic, ProgDTN Binary Spray &
Wait, ProgDTN

for text messages and 1 MB being around the size of a small image. One of the
two payload sizes was used for all nodes during every experiment. To maintain
reproducibility and to reduce the chance of unfavorable initial conditions, each
experiment was re-run five times with pre-determined PRNG-seeds.

Seven routing algorithms are used for comparison: Epidemic Routing [20] is
the most widely used routing algorithm in DTN, sending bundles to all peers.

Binary Spray & Wait [18] is a modified version of Spray and Wait. A node
holds n copies of a bundle, half of which are transferred to the first peer. The
second peer then receives half of the remaining copies and so on. Each node that
receives multiple copies of a bundle proceeds in the same way. A node will only
forward the bundle to its intended recipient when only a single copy remains.
Spyropoulos et al. [18] suggest a value of 10 as a reasonable initial multiplicity,
which we adopted in our experiments.

PRoPHET [12] exploits the fact that in DTNs, nodes usually encounter each
other more than once. Whenever two peers connect, they compute a probability
of meeting again in the future. This probability declines over time if these par-
ticular nodes do not meet again. A node will forward a bundle to another node if
the receiving node’s probability of meeting the bundle’s recipient is higher than
the forwarding node’s probability. We used the same parameters as the authors
in their original paper for calculating delivery probabilities.

Delay-Tolerant Link-State Routing (DTLSR) [8] other than classical link-
state routing once a link is lost, it is not immediately removed from routing
considerations, but rather “tagged” with the time since the disconnection. When
the routing table is computed, this time is interpreted as a link cost of Dijkstra’s
algorithm to find the shortest path between the current node and the destination.

ProgDTN Epidemic / Binary Spray & Wait are re-implementations of the
respective algorithms in ProgDTN, which serve primarily to compare computa-
tional overheads. All parameters are the same as in the native implementations.

ProgDTN Emergency is a custom algorithm implemented using ProgDTN
and tailored to the given scenario of our evaluation, where data only flows in
two “directions”: from civilians to the coordinator, or vice versa. Whether a node
will forward a bundle to another node depends on three factors: (a) node type
(coordinator, responder, civilian), provided at startup, (b) peer type, received
by a node via a context bundle and (c) bundle type (unicast to coordinator, or
broadcast to all civilians), carried by a bundle in a context block attached at



ProgDTN 11

bundle generation time. Unicasts (i.e., bundles from the civilians to the coordina-
tor) are only forwarded along the inward direction, from civilians to responders
to the coordinator, while civilians do not send their bundles to each other. The
same applies to responders. Broadcasts flow outward, i.e., from the coordinator
to the responders to the civilians; civilians distribute messages among each other.
In both cases, responders do not forward bundles among other responders, but
only serve as relays between civilians and the coordinator.

5.2 Results

We consider six metrics divided into two categories: network utilization and an
overhead analysis. The network utilization metrics are the percentage of bundles
successfully delivered, the duration of delivery, and the load generated in the
network. Our overhead analysis considers the time to decide to whom a bundle
should be forwarded, the percentage of bundles that do not carry a payload
(metadata or context bundles), and how heavily a node’s CPU is utilized.
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Fig. 3: Ratio of successfully delivered bundles for different parameters

Delivery Ratios. Fig. 3 shows the delivery ratio, i.e., the percentage of sent
bundles that reach their destination. Each group on the x-axis represents a set of
bundles per node, the y-axis shows the reached percentage of delivered bundles,
the color denotes the routing algorithm, and each sub-figure shows the differ-
ent payload sizes. For unicasts, successful delivery means that the coordinator
receives the bundle, while for broadcasts, all potential recipients (i.e., the civil-
ians) need to receive the bundle. The performance of ProgDTN Emergency is
at least equal to all other routing algorithms. In many cases, it outperforms the
other routing algorithms, with a delivery ratio of 99.9% in all scenarios. Not
even Epidemic Routing (blue) achieves this level of success for high load scenar-
ios, because it produces the highest load and can easily overload the network.
Furthermore, PRoPHET (orange) is ill-suited for this scenario and achieves only
mediocre results (depending on the experiment, between 43% and 70%). This
does not mean that PRoPHET is a bad routing algorithm, but if a scenario does
not conform to its assumptions, it will fail to achieve its intended result.

Delivery Times. The next metric is delivery time, i.e., the time it takes for a
bundle to reach its intended recipient. For broadcasts, we consider the delivery
time to the first eligible recipient. The results are shown in Fig. 4; the x-axis
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Fig. 4: Time to deliver a bundle to its destination for different parameters

shows bundles per node, the y-axis the delivery time on a logarithmic scale,
the color denotes the routing algorithm, and each sub-figure shows the differ-
ent payload sizes. ProgDTN Emergency shows results at least on-par with the
other algorithms, with a median below 1 second, regardless of the scenario, and
rare cases where the delivery time exceeds 15 seconds for high load scenarios.
Epidemic Routing loses performance in higher-load scenarios due to excessive
network load. In extreme cases, a bundle can take up to 15 minutes to reach its
destination. However, the decrease in long-time outliers for the higher-payload
scenario is because we only see initial, fast deliveries for this scenario, while once
the system reaches congestion, bundles do not arrive at all and are thus absent
from this graph. This observation is also consistent with the observation made
for the delivery ratios. Under certain conditions, PRoPHET behaves quite er-
ratic (one hour delivery time), because delivery probabilities are only updated
for new connections, which leads to race conditions. This shows that PRoPHET
it is not well suited for this scenario. However, all these variations of epidemic
routing and PRoPHET are outliers, while the 75% quantile remains quite small,
e.g., about 17 seconds for epidemic routing and 1 second for PRoPHET.
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Fig. 5: Total number of bundle transmissions for different parameters

Network Load. Fig. 5 shows the number of bundle transmissions throughout
the experiment, where the x-axis shows the time and the y-axis the transmissions
on a logarithmic scale. The color denotes the bundles per node, the line style
and payload size, and each sub-plot shows a routing algorithm. From Fig. 5 it
becomes apparent that Epidemic Routing produces orders of magnitude more
transmissions than all other algorithms, i.e., up to 695,000 bundles over one hour
compared to about 50,000 bundles for ProgDTN Emergency and 25,000 bundles
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for DTLSR for 100 bundles per node and a payload size of 1 kB. The cause is
the inefficiency of Epidemic Routing; it replicates all bundles to all peers with-
out any concern for whether a transmission increases the delivery probability.
Binary Spray & Wait also produces a relatively high load level compared to
algorithms other than Epidemic Routing, while the remaining algorithms have
a somewhat similar load level. ProgDTN Emergency successfully avoids unnec-
essary transmissions and conserves network capacity. If this data is viewed in
conjunction with Figs. 3 and 4, it is apparent that ProgDTN Emergency achieves
high average delivery ratios of about 99.9% within 1 second, while other routing
algorithms suffer in different quality metrics for various reasons.
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Fig. 6: Time to make a routing decision for different parameters

Routing Decisions. Fig. 6 shows the time it takes to perform a routing de-
cision for each algorithm. The x-axis groups different bundles per node, and
the y-axis shows the time in ms it takes the routing algorithm to finish on a
logarithmic scale. Each color represents a routing algorithm, while the two sub-
plots show the results for different payload sizes. The focus of this metric is the
comparison between Epidemic Routing and ProgDTN Emergency and between
Binary Spray & Wait and ProgDTN Binary Spray & Wait, since it shows the
overhead introduced by the JavaScript VM. It is evident that the ProgDTN vari-
ants of the two algorithms take longer for their routing decisions compared to
the non-ProgDTN variants. This is not surprising, since every time a ProgDTN-
based algorithm has to make a routing decision, it needs to initialize and start
a JavaScript VM and then execute the actual routing code, which is interpreted
rather than run as native code. However, the mean and 75% quantile is still well
below 50 ms even in those cases. Furthermore, ProgDTN Emergency performs
reasonably well with a median of about 1.5 ms and a 75% quantile of about 3 ms,
regardless of the experiment. To summarize, the JavaScript VM introduces over-
head that is compensated by the fact that ProgDTN can be used to implement
a scenario-specific algorithm, reducing the average time to deliver a bundle.

Bundle Overhead. Since ProgDTN makes use of context bundles to let nodes
exchange context information (see Section 3.3), the amount of additional traffic
generated by these bundles needs to be quantified, since it may contradict the
qualitative metrics of preserving network bandwidth. Fig. 7 shows the overhead
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Fig. 7: Overhead in terms of percentage of bundles sent without a payload

of all algorithms that transmit metadata bundles in terms of the percentage of
sent bundles, where the x-axis denotes the experimental runtime, the y-axis the
percentage of context bundles (in case of DTLSR so-called meta bundles). The
color shows different bundles per node, and the line style represents the two pay-
load sizes. Finally, each sub-figure shows a different routing algorithm. Note that
only the three shown routing algorithms produce an overhead. Since each node
sends a context or meta-bundle upon startup for all algorithms, they all start
at 100% overhead; this percentage does, however, decrease rapidly as payload
bundles start being transmitted. For both PRoPHET and ProgDTN Emergency,
we see an exponential decrease with the overhead percentage converging to zero,
but remember that PRoPHET does not achieve a satisfactory delivery ratio in
this scenario. DTLSR, on the other hand, regularly broadcasts peer information
to the whole network, so we see a higher overhead throughout the experiment.
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CPU Usage. Fig. 8 shows the overhead in terms of CPU usage. The x-axis de-
notes the experimental time. The y-axis shows the average CPU usage in percent
of all nodes. The colors represent different routing algorithms. For this evalu-
ation, we only consider Epidemic Routing, ProgDTN Epidemic, and ProgDTN
Emergency to quantify the overhead of the CPU and the potential savings using
a custom routing algorithm. The blue curve, representing Epidemic Routing,
gives a baseline for system load that correlates with network load shown in
Fig. 5. Since the network saturation increases over the experimental run, the
system load increases in step. The red curve shows the re-implementation of
Epidemic Routing in ProgDTN. As expected, it introduces a higher CPU usage,
which is due to the increased computational load introduced by the constant
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re-initialization of the JavaScript VM. The custom routing algorithm, as rep-
resented by the turquoise line, by contrast, shows the smallest CPU load, even
though it also makes use of the same system as ProgDTN Epidemic. The reason
is that if there are fewer bundles to transmit, the JavaScript VM is invoked
less often, reducing the overall system load due to fewer transmissions. Thus,
by reducing the number of transmissions, we can conserve computing power and
therefore also electrical power in cases where a device might be battery-powered.

To summarize, ProgDTN Emergency achieves excellent results and outper-
forms all other routing algorithms in all metrics. The results of PRoPHET show
that a routing algorithm not designed for a particular scenario does not achieve
any satisfactory results. Epidemic Routing achieves good results for smaller pay-
load sizes and a small numbers of bundles per node, but its delivery ratios de-
crease below 50% for high network load, while ProgDTN Emergency still achieves
99.9%. DTLSR also achieves excellent delivery ratios and delivery times, but its
overhead in terms of meta-bundles is significant compared to ProgDTN Emer-
gency. Finally, Binary Spray & Wait performs considerably well, but requires
more transmissions to achieve comparable results to ProgDTN Emergency.

6 Conclusion

We presented ProgDTN, a novel approach to support Programmable Disruption-
tolerant Networking by allowing network operators to program a node’s rout-
ing behavior based on context information, without requiring knowledge of
the router’s interior workings. Our experimental evaluation showed that a pro-
grammable DTN routing algorithm tailored to a specific scenario achieves ex-
cellent results in terms of up to 99.9% delivery ratio while reducing unnecessary
transmissions by 92.9% compared to state-of-the-art DTN routing algorithms in
an emergency response scenario. We achieved a low delivery time of bundles (1 –
15 seconds), and low overhead in terms of CPU utilization and routing decisions.

There are several areas of future work. First, implementing a system that
allows updating or replacing routing algorithms at runtime would reduce un-
necessary downtimes and further reduce development and deployment hurdles.
Second, allowing a centralized entity to reconfigure an entire DTN deployment
would make the administration and monitoring of DTN nodes more flexible. Fi-
nally, although a network emulation gives valuable insights, evaluating ProgDTN
on real hardware in a real mobile scenario would further solidify and confirm the
applicability and feasibility of ProgDTN.
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