
WoFS: A Write-only File System for
Privacy-aware Wireless Sensor Networks

Philipp Jahn∗, Markus Sommer∗, Artur Sterz∗, Jonas Höchst†, Bernd Freisleben∗

∗Dept. of Mathematics & Computer Science, University of Marburg, Germany
E-Mail: {jahnph, msommer, sterz, freisleb}@informatik.uni-marburg.de

†tRackIT Systems GmbH, Cölbe, Germany
E-Mail: hoechst@trackit.systems

Abstract—Wireless sensor networks (WSNs) can automate
data sensing tasks. To ensure redundancy and manage network
connectivity issues, a sensing node stores a copy of the gathered
data. Since this data may contain sensitive personal or business
information, protecting privacy and preventing unauthorized ac-
cess is crucial. We introduce the Write-only File System (WoFS), a
novel encryption system for WSNs that secures data without user
interaction, even if a sensor node is stolen. WoFS utilizes either
symmetric encryption with volatile keys via a ratchet mechanism
or asymmetric encryption. Asymmetric encryption, while slower,
allows operation post-reboot, unlike the ratchet-based method.
Our experiments show that WoFS achieves write speeds of 200
MB/s or higher, making it suitable for WSN applications. All
developed software and artifacts are available under a permissive
open-source license.

Index Terms—Data Protection

I. INTRODUCTION

Recent miniaturization and proliferation of affordable mi-
crochip systems have revolutionized environmental data col-
lection. Wireless sensor networks (WSN) enable autonomous
sensing, reducing manual data collection. However, in some
scenarios, wireless connections may lack throughput, are
costly, or are unavailable due to poor connectivity [1]. Conse-
quently, data is often stored on the sensing node itself. While
most sensor data does not contain human-related information,
some sensors might inadvertently collect privacy-sensitive
data. This can occur during wildlife recordings or intentionally
in urban analyses like traffic flow studies [1]. Such situations
may make it difficult to gain public approval for data collection
in sensitive areas, such as city parks and recreational spaces.

Some environmental monitoring devices, like BatRack [2]
for autonomous bat call detection, record audio and video in
public forests, potentially violating visitors’ personal rights.
Additionally, the collected data belongs to WSN operators.
Even sensor nodes that do not record personal data may
contain protected information relevant for planning, such as
in wind power expansion [3]. Competing groups, including
researchers or activists, could steal this data for their own use.
Therefore, measures should be taken to: (i) protect individuals’
personal rights, (ii) prevent unlawful data use by third parties,
and (iii) address concerns of citizens exposed to WSN data
sensing.

In this paper, we present a novel encryption system for
WSNs, called Write-only File System (WoFS), which pro-
tects data without requiring user interaction and even if a
sensor node is stolen. WoFS is a hybrid encryption system
using volatile keys either utilizing asymmetric encryption
or a ratchet mechanism with state-of-the-art cryptographic
algorithms. During provisioning, public and initialization keys
are stored on sensor nodes, while private keys remain on
the provisioning system. This approach ensures that private
keys are never stored on sensor nodes, making the WSN
autonomous and secure. The results of our evaluation show
that WoFS is generally capable of achieving write speeds of
200 MB/s or more, which is plenty for WSN applications.
We release the source code 1 together with all scripts 2 and
experimental artifacts 3 under permissive open-source licenses.

II. RELATED WORK

Privacy and data protection are crucial in the digital age,
typically addressed through effective encryption methods. Ma-
jor smartphone platforms like Google Android and Apple iOS
use sophisticated hardware/software combinations to encrypt
different data areas with separate keys by default [4]. Op-
erating systems employ BitLocker (Windows) [5], FileVault
(macOS) [6], and LUKS (Linux) [7] for system-wide user
data encryption. While these offer suitable privacy levels,
they require user interaction (e.g., passphrase entry), making
them unsuitable for our purpose. Several approaches have
been proposed for disk and file encryption. Encrypted overlay
filesystems map a virtual cleartext folder to an encrypted
one. goCryptFS uses symmetric encryption for data and
metadata via the FUSE API [8]. eCryptfs, a kernel module
implementation, offers better performance and supports easier
file sharing [9]. TransCrypt facilitates multi-user usage with
separate keys per file, stored using an asymmetric key system
for user-grained access [10]. DEFY offers encryption and
plausible deniability of encrypted data’s existence, leveraging
NAND flash drive operations, but risks data loss at higher
deniability levels [11]. Martin [12] proposed a system based on

1https://github.com/umr-ds/wofs
2https://github.com/umr-ds/wofs-eval
3https://zenodo.org/records/12819658



combining asymmetric and symmetric encryption motivated
by its use in the military sector [12]. Differential privacy
adds randomly generated noise to true measurements, enabling
accurate database information while ensuring high privacy lev-
els [13]. However, this approach still leaves devices vulnerable
to information gathering if stolen. Offloading techniques for
reducing encryption overheads reach security and low latency
requirements of industrial Internet of Things (IoT) applications
with well-established standard ciphers [14]. However, the
main objective is to reduce overheads, not to provide privacy
in case of device loss or theft. Various approaches have
been developed to enhance privacy in specific domains like
healthcare IoT [15], smart grid applications [16], and FPGA
encryption [17]. These methods leverage domain-specific char-
acteristics to achieve high confidentiality levels. However, such
solutions often lack generalizability.

III. DESIGN

A. Threat Model

We assume that WSN nodes operate in remote locations, re-
quiring autonomous operation without user input. Thus, WoFS
must set up all cryptographic primitives independently. This,
coupled with the risk of private key compromise, necessitates
that no private cryptographic keys are deployed on nodes. We
consider two attack vectors: remote connection and physical
access. For remote attacks with limited privileges, we must
prevent access to data being written to storage. Root-level
remote access, allowing memory dumps containing encryption
keys, cannot be handled. Physical access while powered on
could potentially access system memory, but our threat model
focuses on petty theft where devices are removed and powered
off. It is crucial to prevent data extraction from stolen nodes
or storage while ensuring system operability after power loss-
induced reboots. Purely symmetric encryption methods are
unsuitable, since keys would be inaccessible or deleted.

B. WoFS Properties

The writing process can write data to disk, but cannot read
it back. The original data can only be restored with the master
key km. Therefore, WoFS is designed as an overlay append-
only file system. This way, it can easily be used with existing
programs, which only have to write to the WoFS file system.

WoFS has a write-mode and a read-mode. The write-mode
works without the master key km and is the mode during data
collection and storage. The read-mode requires the master key
km and is used to retrieve data. The master key km is not
stored on the node, and the derived decryption key k must only
be recoverable if the master key km is available. This ensures
that no information for decryption can be gathered after an
attacker steals a node. Metadata such as the file name, owner,
and file size could hint at the file content, possibly leaking
sensitive information. Therefore, metadata is obfuscated. Due
to its append-only nature and metadata obfuscation, WoFS
only provides a subset of file system functionality.

In write-mode, the content of the root directory cannot be
read, making checking for a file’s existence impossible. Thus,

duplicate plain text file names need to be handled. This is
solved by appending the number of the inode to the filename.
Furthermore, extended attributes are not supported, since this
metadata is stripped during encryption. Symbolic and hard
links are also not supported, since the existence of their target
cannot be verified.

C. Cryptographic Methods

As discussed in Section III-A, a WSN node should be
operational after a reboot, but must protect data when stolen.
We employ asymmetric encryption, WoFS-AE, which, due to
multiple encryption processes, is slower in write speeds than
symmetric encryption. Therefore, we also present WoFS-RE,
using ratchet-based symmetric encryption. However, WoFS-
RE cannot continue operation after a reboot, since all keys
are in volatile memory. This flexibility allows WoFS to support
the most appropriate encryption approach based on the specific
threat model and requirements.

1) WoFS-AE (using asymmetric encryption): Using WoFS-
AE, a public/private keypair kmpub and kmpriv is required. The
private key kmpriv must never be stored on a node of a WSN.
In write-mode, WoFS-AE only needs access to the public
key kmpub. Subsequently, for each write of data di, a new
symmetric key ki is created to encrypt di. Symmetric key ki
is then encrypted using the public key kmpub and stored with
the data di. This means that an unprivileged process cannot
access any data written by another process, protecting against
basic remote-access-attacks. Read-mode requires the private
key kmpriv . Keys k1,...i,...n are decrypted and used to decrypt
the data d1,...,i,...n.

2) WoFS-RE (using a ratchet mechanism): WoFS-RE has
two keys: the master key km and a chain key kc1. The master
key km is is used to derive all other keys and must not be
stored on the node. When a new encryption key ki is needed,
the chain key kc is used to derive two new keys: a new
chain key kci+1 and the encryption key ki. The encryption
key ki can now be used to encrypt di and must be discarded
immediately afterwards. The chain keys can only be generated
in the direction from the master key km to the most recent
chain key kcj , but not the other way around. Thus, if an attacker
observes one chain key kcj , all future keys are compromised,
but previous keys remain safe.

3) Authentication: WoFS is only designed to protect data
at rest. It cannot be used to ensure that a trusted source
has written the data. Authenticating data is out-of-scope of
this work. WoFS does support authenticated encryption which
prevents cyphertext from being changed after the fact.

IV. IMPLEMENTATION

WoFS uses FUSE and is written in the C language.

A. FUSE

FUSE is a file system kernel module for Linux that allows
writing file systems as user space programs instead of kernel
modules. WoFS is implemented using FUSE for simplicity and
to enable the use of high-level cryptographic APIs.



WoFS
file system
deamon

Mountpoint
Directory in
regular file

system

FileWoFS file

displays at

Data blocks with
encrypted data

Encrypted WoFS stat

Regular Filestat

Base64 of encrypted
filename

filename appended with
number

Filestat

Data

reads from

Regular file
metadata

Regular file
data

Fig. 1. Architecture of WoFS

Encrypted keyObfuscated
block size

Random bytes
for size

obfuscation
Encrypted
payload

Authentication
tag

2 bytes 2 bytes32 bytes 16 bytesvariable

Fig. 2. Blocks

B. File System

The write() and read() syscalls are not directly passed
from the kernel to WoFS, but are forwarded from the FUSE
kernel module. Furthermore, WoFS does not interface directly
with a block device, but stores data in files on the file system
it is mounted on, as shown in Figure 1. For each file that
is created in WoFS, one file is created in the underlying file
system. The encrypted file contains encrypted metadata, the
state needed for decryption, and the encrypted data.

C. Writing Blocks

Data is written in variable-size blocks. The buffer from
each write() call is split into blocks for encryption. Each
block starts with two bytes of block size, followed by the
encrypted data and encryption overhead, as shown in Figure
2. The layout differs for WoFS-AE and WoFS-RE. For write
calls smaller than the maximum payload size, one block of
matching size is generated. For larger write calls, the payload
is split into several blocks. The size field ensures the correct
amount of data is supplied to the decryption function. Due
to authentication, arbitrary sub-streams of the file cannot be
decrypted directly.

D. Reading Blocks

Files can only be read sequentially from beginning to end.
The requested data boundaries from the read() syscall
may not align with WoFS block boundaries. Thus, all blocks
containing the requested data must be decrypted, even if only
a portion of a block is needed.

E. Metadata Obfuscation

WoFS encrypts the file size, permissions, and user and group
ID. Other metadata, such as access times, are taken from the
encrypted file. The original metadata is at the beginning of the

encrypted file, and the file size is updated when data is written.
File ownership and permissions are set at creation and cannot
be updated later, as WoFS is append-only. To decrypt files,
each block’s size is written into the encrypted file. However, to
prevent attackers from calculating the original file size, WoFS
obfuscates the block size by encrypting two random bytes in
each block and XOR’ing the block size with these bytes from
the last block.

F. Cryptographic Primitives and APIs

To reduce attack vectors, we use the well-known cryp-
tography library libsodium4. Libsodium employs Curve25519
elliptic curve cryptography for public key encryption and
XSalsa20-Poly1305 for authenticated encryption. The elliptic
curve method reduces overhead compared to non-elliptic algo-
rithms like RSA. The XSalsa20 stream cipher avoids padding,
while Poly1305 provides authentication.

WoFS-RE uses HKDF-SHA256 as the key derivation func-
tion for the ratchet mechanism. HKDF-SHA256 is a HMAC-
based function that derives keys using a key and a context.
For each write call, the HKDF-SHA256 derived key is used.
Instead of an encrypted key, data is appended to a randomly
generated nonce. The data is encrypted using XChaCha20-
Poly1305 for authenticated encryption.

V. EVALUATION

Encryption introduces overhead regarding runtime, data
rate, occupied space on disk, CPU, and memory. Therefore,
we evaluated WoFS to quantify the additional effort and assess
WoFS’s practicability.

A. Experimental Setup

1) Data Source and Destination: To evaluate WoFS, we
use the dd command5. dd allows writing of data to and
from arbitrary locations. To avoid the limitations of slow disk
reads and writes, we get data from /dev/urandom6, which
constantly returns pseudo-random numbers. Furthermore, we
use nullfs7 as the destination. nullfs behaves in the same
way as writing data to /dev/null, i.e., it will not write any
data anywhere but simply return from the write call, making
the CPU the limiting factor and not an HDD or SSD.

2) Experimental Parameters:
a) Encryption Software: The first parameter of our ex-

periments is the used encryption software. Besides WoFS-AE
and WoFS-RE, we also evaluated two alternatives: eCryptfs8,
a Linux kernel module, and EncFS9, which is also a FUSE-
based encrypted file system. For eCryptfs, the experimental
data was written to disk instead of nullfs, because Linux
does not allow to mount two file systems to the same location.
The possible alternative, using a RAM disk, was also not

4https://doc.libsodium.org
5https://man7.org/linux/man-pages/man1/dd.1.html
6https://man7.org/linux/man-pages/man4/random.4.html
7https://github.com/abbbi/nullfsvfs
8https://www.ecryptfs.org
9https://github.com/vgough/encfs



Linux
eCryptfs

EncFS
Passthrough

WoFS-RE

WoFS-AE

2

5

10
2

5

100
2

5

1000

Linux
eCryptfs

EncFS
Passthrough

WoFS-RE

WoFS-AE

Linux
eCryptfs

EncFS
Passthrough

WoFS-RE

WoFS-AE

Payload
1kB

1MB

100MB

Encryption Encryption Encryption

R
un

tim
e 

(s
)

ARM Intel AMD

Fig. 3. Time to perform the experiments (on a logarithmic y-axis)

TABLE I
FILE SPACE OCCUPIED ON DISK

Version 1 kB 1 MB 100 MB

Linux 1,000,000,000 B (1 GB)
eCryptfs 1,000,009,728 B
EncFS 1,000,000,008 B
WoFS-RE 1,019,000,084 B 1,000,304,084 B 1,000,308,074 B
WoFS-AE 1,050,000,068 B 1,000,800,068 B 1,000,810,568 B

feasible due to the harsh memory restrictions of the device
used for the ARM-based experiments (see the targets below).
Furthermore, we implemented a minimal file system that does
not encrypt anything but passes data through FUSE. This
allows us to estimate the overhead introduced by FUSE itself
without any encryption. Finally, we also performed direct-
write experiments without FUSE, which serve as a benchmark.

b) Payload Size: To assess the impact of context switches
between kernel and user space, we use three different payload
sizes: 1 kB, 1 MB, and 100 MB. The larger the payload size,
the more data will be written per chunk, reducing context
switches. In each experiment, a total of 1 GB of data is
copied from /dev/urandom to nullfs. With 1 kB blocks,
1 million blocks are written; with 1 MB blocks, 1000 blocks
are written; and with 100 MB blocks, 10 blocks are written.

c) Targets: To quantify the impact of different CPUs,
three different targets were used: ARM Cortex A72 1.5 GHz
aarch64 denoted as ARM, a x86_64 Intel Core-2-Duo 2.4
GHz CPU (denoted as Intel) and a relatively modern AMD
EPYC 7742 64-Core 2.25 GHz x86_64 CPU, denoted as
AMD. This selection of CPUs is used as stand-ins for low-
power (ARM), mid-range (Intel), and high-end (AMD) CPUs.

d) Repetitions: We performed each experiment 10 times,
resulting in 540 experiments in total.

3) Metrics:
a) Runtime: dd itself reports the time needed in seconds,

which we use to evaluate the time it takes to copy 1 GB of
data from /dev/urandom to nullfs.

b) Data Rate: We measured the data rate by the number
of bytes written per second. dd reports the number of MB/s
as the result of the total number of bytes written divided by
the time it took to copy the data.

c) Space on Disk: The space requirements on disk were
gathered using ls -l after the experiment was done and the
folders were unmounted from their encryption software.

d) CPU: CPU statistics were collected from the
/proc/pid/stat file, where the number of scheduling
cycles is reported on request.

e) Memory: Finally, we collected memory-related statis-
tics from the /proc/pid/smaps file, where the kernel
reports how many pages in the virtual memory are occupied
by the given process.

B. Runtime

When writing data, it is important that the operation is
executed reasonably fast, avoiding blocking process execution
due to I/O waiting. Figure 3 shows the runtime results for
the experiments. On the x-axes, the used software is shown,
while the y-axes show the time it took to complete the dd copy
process on a logarithmic scale. Each subplot shows the results
for the different targets, and the color indicates the payload
size. The lower the box, the better.

There are five main observations. First, the modern AMD
CPU is the fastest, Intel is second, and the ARM CPU is the
slowest. The most noticeable difference is in the 1 kB WoFS-
AE experiments: the AMD CPU completes in a median of
about 240 seconds, Intel in about 500 seconds, and ARM
in about 903 seconds. This pattern is consistent across all
software and payload sizes, even in plain Linux experiments.

Second, the Linux-only experiments are the fastest across
all targets and payload sizes. This is expected, since the dd
process writes data to nullfs without FUSE or encryp-
tion overhead. Comparing Linux to passthrough experiments,
FUSE adds about 15% to 20% overhead for 1 MB and 100
MB experiments, while WoFS adds an additional 20% to 25%,
depending on the CPU.

Third, the 1 kB experiments are the slowest. While this
is also visible in the Linux-only experiments, it is especially
apparent in the other experiments. This, together with the
observation that FUSE only introduces an overhead of 15%
to 20% for 1 MB and 100 MB experiments, shows that
writing many small files should be avoided. This is also
expected, since writing small blocks requires many context
changes between kernel and user space. Additionally, WoFS-
AE generates a key for every write() syscall and encrypts
the data separately; many calls for write() with small
buffers introduce additional context switches.

Fourth, experiments using WoFS-AE require the longest
time. This is also expected, since every write() call causes



Linux
eCryptfs

EncFS
Passthrough

WoFS-RE

WoFS-AE

1
2

5

10
2

5

100
2

5

Linux
eCryptfs

EncFS
Passthrough

WoFS-RE

WoFS-AE

Linux
eCryptfs

EncFS
Passthrough

WoFS-RE

WoFS-AE

Payload
1kB

1MB

100MB

Encryption Encryption Encryption

D
at

a 
ra

te
 (

M
B

/s
)

ARM Intel AMD

Fig. 4. Data rate of write operations

Linux
eCryptfs

EncFS
Passthrough

WoFS-RE

WoFS-AE

0

50

100

Linux
eCryptfs

EncFS
Passthrough

WoFS-RE

WoFS-AE

Linux
eCryptfs

EncFS
Passthrough

WoFS-RE

WoFS-AE

0

50

100

0

50

100 Command
dd

Crypt

Encryption Encryption Encryption

C
P

U
 u

sa
ge

 (
%

)
C

P
U

 u
sa

ge
 (

%
)

C
P

U
 u

sa
ge

 (
%

)

ARM Intel AMD

100M
B

1M
B

1kB

Fig. 5. CPU usage for different experiments

two encryptions: (i) the data is encrypted using the symmetric
key, and (ii) the symmetric key is encrypted using the public
asymmetric key.

Among FUSE-based encryption software, EncFS is the
slowest for 1 MB and 100 MB experiments. eCryptfs outper-
forms all FUSE-based software except passthrough, despite
being the only one writing to disk instead of nullfs.

C. Data Rate

The pure runtime shows how long it takes to write a certain
amount of data, but not what it means in terms of write
speeds of disks. Therefore, we also evaluated the data rate
as the number of bytes written per second and relate this to
the write speeds of different disk types. Figure 4 shows the
achieved data rate in MB/s for each experiment. The y-axes
show the achieved data rate in MB/s, the rest of the figure
is the same as in Figure 3 First, all observations made in
the runtime evaluation can be translated to the data rate. For
example, the AMD CPU achieves the highest write speeds, up
to 370 MB/s, Intel up to 256 MB/s, and ARM about 151 MB/s
as medians. Linux-only experiments are the fastest, with 1
MB and 100 MB passthrough experiments about 15% to 20%
slower. The 1 kB experiments show the lowest data rates due to
frequent context switches, with WoFS-AE being particularly
slow. A key takeaway is to use the largest possible buffer

for the write() syscall to minimize context switches and
maintain reasonable write speeds.

WoFS-RE on the ARM CPU achieves a median of 58
MB/s to 62 MB/s, while WoFS-AE is around 45 MB/s,
comparable to USB-2 speeds and adequate for most WSN
applications. Even in high-demand scenarios, WoFS maintains
sufficient write speeds. We anticipate that WSNs in demanding
applications will use more capable CPUs, improving write
speeds. For instance, the AMD CPU exceeds 100 MB/s for
1 MB payloads with symmetric encryption and can reach up
to 228 MB/s for 100 MB payloads using WoFS-RE.

D. Space on Disk

Each block written by WoFS-AE requires 52 bytes of
additional data and 21 bytes for WoFS-RE due to the metadata
required. Besides the overhead per block, WoFS-AE requires
additional 118 bytes and WoFS-RE requires 79 bytes. Table I
shows the required space on disk in bytes for the different ex-
periments. With 5% more space on disk for 1 kB experiments,
WoFS-AE has the highest overhead of all experiments. For 1
MB and 100 MB experiments, the overhead is only 0.8%.
With about 1.9% overhead for 1 kB and 0.3% overhead for
1 MB and 100 MB experiments, WoFS-RE requires even less
additional space on disk.



Linux
eCryptfs

EncFS
Passthrough

WoFS-RE

WoFS-AE

0

100

200

300

Linux
eCryptfs

EncFS
Passthrough

WoFS-RE

WoFS-AE

Linux
eCryptfs

EncFS
Passthrough

WoFS-RE

WoFS-AE

0

100

200

300

0

100

200

300 Command
dd

Crypt

Encryption Encryption Encryption

M
em

or
y 

(M
B

)
M

em
or

y 
(M

B
)

M
em

or
y 

(M
B

)

ARM Intel AMD

100M
B

1M
B

1kB

Fig. 6. Memory usage for different experiments

E. CPU

Since we use /dev/urandom as the data source and
/dev/null (except for eCryptfs) as the data destination,
we expect a CPU utilization of nearly 100%, since there is
no waiting time for I/O. Therefore, we evaluated the CPU
utilization to (i) test this hypothesis and (ii) to quantify where
the CPU is used in the dd process or WoFS. Figure 5
shows the CPU utilization for each experiment. On the x-
axes, the used software is shown, while the y-axes show the
CPU utilization in %. Each column shows the results for
the different targets, while the rows show the payload sizes.
The color denotes either dd or WoFS. For the Linux-only
experiments, the median CPU utilization is between 95% and
100% for the dd process, as expected. While the behavior of
the different targets only varies in details, the different payload
sizes significantly differ in their results. For 1 kB experiments
with no encryption or WoFS-RE, dd requires about 40% CPU,
WoFS the remaining 60%. However, WoFS-AE requires a
median between 90% and 95%, indicating that I/O speed is not
the bottleneck, but encryption. For 1 MB experiments with no
encryption, dd requires most of the CPU and FUSE only takes
a small portion of the CPU. For the Intel and the AMD CPUs,
the median is even below 1%. The same applies to 100 MB
experiments. One key finding in the 100 MB Intel and AMD
experiments is that the share of the CPU utilization of the
dd process is higher compared to WoFS-RE, but this changes
for WoFS-AE, where WoFS requires the highest part of the
CPU. For example, the median CPU utilization for dd using
WoFS-RE with a payload size of 100 MB on the Intel CPU is
at about 56% and 37% for WoFS, dd uses below 1% for the
same experiment using WoFS-AE and WoFS about 93%. This
supports the hypothesis that WoFS-AE achieves relatively poor
results in terms of runtime and data rate compared to WoFS-
RE due to additional encryption steps.

F. Memory

The last metric in our evaluation is memory utilization, as
shown in Figure 6. The y-axes show the memory utilization

in MB, the remainder of the figure is the same as Figure 5
Two main takeaways become apparent in terms of memory
utilization. First, the memory requirements of the dd process
are always the same, regardless of payload size and used
software. Only the target makes a difference. The ARM CPU
requires a median of about 168 MB, while the Intel and
AMD CPUs require a median of about 56 MB of memory.
The second takeaway is that WoFS always requires about the
same amount of memory (i.e., between 32 MB and 56 MB).
Passthrough experiments allocate less peak memory. For the
Intel and AMD CPUs, this means a median overhead of about
87% to 100%. For the ARM CPU, the median overhead is at
about 33%, because dd requires more memory than WoFS.
However, nodes in modern WSNs are equipped with multiple
GBs of memory. Even the Raspberry Pi 5 has at least 4 GB
memory, making the additional 56 MB memory negligible.

VI. CONCLUSION

We presented WoFS, a novel privacy-aware file system
for WSNs. It secures data without user interaction, even if
a sensor node is stolen. WoFS uses symmetric encryption
with volatile keys via a ratchet mechanism or asymmetric
encryption. The latter results in slower write speeds, but it
allows nodes to continue operating after a reboot, unlike
the ratchet-based method. Our evaluation shows that WoFS
achieves write speeds of 200 MB/s or more.

Future work includes exploring more efficient cryptographic
primitives to reduce WoFS overhead, especially for small
files, and developing a kernel module for increased efficiency.
Additionally, WoFS should be adapted for microcontrollers
and IoT devices, which are commonly used in WSNs, but
lack an operating system with defined syscalls.

ACKNOWLEDGMENT

This work is funded by the Hessian State Ministry for
Higher Education, Research and the Arts (HMWK) (LOEWE
emergenCITY), and the German Research Foundation (DFG,
Project 210487104 - SFB 1053 MAKI).



REFERENCES

[1] D. Zeuss, L. Bald, J. Gottwald, M. Becker, H. Bellafkir, J. Bendix,
P. Bengel, L. T. Beumer, R. Brandl, M. Brändle, S. Dahlke, N. Farwig,
B. Freisleben, N. Friess, L. Heidrich, S. Heuer, J. Höchst, H. Holz-
mann, P. Lampe, M. Leberecht, K. Lindner, J. F. Masello, J. Mielke-
öglich, M. Mühling, T. Müller, A. Noskov, L. Opgenoorth, C. Peter,
P. Quillfeldt, S. Rösner, R. Royaute, C. Mestre-Runge, D. Schabo,
D. Schneider, B. Seeger, E. Shayle, R. Steinmetz, P. Tafo, M. Vogel-
bacher, S. Wöllauer, S. Younis, J. Zobel, and T. Nauss, “Nature 4.0: A
networked sensor system for integrated biodiversity monitoring,” Global
Change Biology, vol. 30, no. 1, p. e17056, 2024.

[2] J. Gottwald, P. Lampe, J. Höchst, N. Friess, J. Maier, L. Leister,
B. Neumann, T. Richter, B. Freisleben, and T. Nauss, “BatRack: An
open-source multi-sensor device for wildlife research,” Methods in
Ecology and Evolution, Jul. 2021.

[3] J. Höchst, J. Gottwald, P. Lampe, J. Zobel, T. Nauss, R. Steinmetz, and
B. Freisleben, “tRackIT OS: Open-source software for reliable VHF
wildlife tracking,” in 51. Jahrestagung der Gesellschaft für Informatik,
Digitale Kulturen, ser. LNI. GI, Sep. 2021.

[4] S. Garg and N. Baliyan, “Comparative analysis of Android and iOS from
a security viewpoint,” Computer Science Review, vol. 40, p. 100372,
2021.

[5] C. Tan, L. Zhang, and L. Bao, “A deep exploration of BitLocker
encryption and security analysis,” in 20th International Conference on
Communication Technology. IEEE, 2020, pp. 1070–1074.

[6] O. Choudary, F. Grobert, and J. Metz, “Security analysis and decryp-
tion of Filevault 2,” in 9th IFIP International Conference on Digital
Forensics. Springer, 2013, pp. 349–363.

[7] S. Bossi and A. Visconti, “What users should know about full disk
encryption based on LUKS,” in 14th International Conference on
Cryptology and Network Security. Springer, 2015, pp. 225–237.

[8] T. Hornby, “Security Audit of gocryptfs v1.2,” Mar. 2017. [Online].
Available: https://defuse.ca/audits/gocryptfs.htm

[9] M. A. Halcrow, “eCryptfs: An enterprise-class encrypted filesystem for
Linux,” in Proceedings of the 2005 Linux Symposium, vol. 1, 2005, pp.
201–218.

[10] S. Sharma, “Transcrypt: Design of a secure and transparent encrypting
file system,” M. Tech Thesis, Indian Institute of Technology Kanpur,
Kanpur, 2006.

[11] T. M. Peters, M. A. Gondree, and Z. N. Peterson, “Defy: A deniable,
encrypted file system for log-structured storage,” 2015.

[12] T. Martin, “Undecryptable symmetric encryption,” in GCC Conference
and Exhibition. IEEE, 2011, pp. 225–228.

[13] C. Dwork, “Differential privacy,” in International Colloquium on Au-
tomata, Languages, and Programming. Springer, 2006, pp. 1–12.

[14] J. Hiller, M. Henze, M. Serror, E. Wagner, J. N. Richter, and K. Wehrle,
“Secure low latency communication for constrained industrial IoT
scenarios,” in 43rd Conference on Local Computer Networks. IEEE,
2018, pp. 614–622.

[15] M. Min, X. Wan, L. Xiao, Y. Chen, M. Xia, D. Wu, and H. Dai,
“Learning-based privacy-aware offloading for healthcare IoT with energy
harvesting,” Internet of Things Journal, vol. 6, no. 3, pp. 4307–4316,
2018.

[16] G. Giaconi, D. Gunduz, and H. V. Poor, “Privacy-aware smart metering:
Progress and challenges,” Signal Processing Magazine, vol. 35, no. 6,
pp. 59–78, 2018.

[17] G. Cano-Quiveu, P. Ruiz-de-clavijo Vazquez, M. J. Bellido, J. Juan-
Chico, J. Viejo-Cortes, D. Guerrero-Martos, and E. Ostua-Aranguena,
“Embedded LUKS (E-LUKS): a hardware solution to IoT security,”
Electronics, vol. 10, no. 23, p. 3036, 2021.


