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Abstract—Computation offloading is often used in mobile
cloud, edge, and/or fog computing to cope with resource limita-
tions of mobile devices in terms of computational power, storage,
and energy. Computation offloading is particularly challenging
in situations where network connectivity is intermittent or error-
prone. In this paper, we present OPPLOAD, a novel frame-
work for offloading computational workflows in opportunistic
networks. The individual tasks forming a workflow can be
assigned to particular remote execution platforms (workers) either
preselected ahead of time or decided just in time where a
matching worker will automatically be assigned for the next task.
Tasks are only assigned to capable workers that announce their
capabilities. Furthermore, tasks of a workflow can be executed
on multiple workers that are automatically selected to balance
the load. Our Python implementation of OPPLOAD is publicly
available as open source software. The results of our experimental
evaluation demonstrate the feasibility of our approach.

Index Terms—Offloading, Opportunistic Networks, Workflows

I. INTRODUCTION

Opportunistic networking is useful for communication in
scenarios where no infrastructure is available, if network
connectivity is intermittent or error-prone. This is achieved
using a store, carry and forward approach to transmit bun-
dles hop-to-hop, from source to destination. Opportunistic
networking can help first responders and victims in disasters,
inhabitants in rural areas, and researchers in environmental
monitoring of natural habitats to exchange data without relying
on a working communications infrastructure [5], [10], [18].
Since mobile devices used in such scenarios typically have
limited computational power, storage, or energy, offloading
computational tasks can reduce load on initiating devices or
even enable task execution, e.g., if specialized hardware is re-
quired [21]. Face detection in disaster scenarios could help first
responders to save resources for essential communication [10],
and environmental monitoring with mobile sensor nodes is a
current research topic [5].

In this paper, we present OPPLOAD, a novel framework for
offloading computational workflows in opportunistic networks.
Fig. 1 shows an example for offloading a simple face detection
workflow where Task 1 converts an image to grayscale, and
Task 2 extracts faces and returns them to the client [22].
Using OPPLOAD, clients can assign the individual tasks of a
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Fig. 1. Illustrative example: executing a workflow on two workers.

workflow to particular remote execution platforms (workers)
ahead of time or can leave the assignment open, i.e., each
worker will search for another suitable worker just in time for
the next task using our novel worker assignment algorithm,
while both modes can be mixed in a workflow. Workers
publish their capabilities and resources (available memory,
remaining battery capacity, etc.), i.e., clients will only select
capable workers. Furthermore, workflow tasks can be executed
on multiple workers that are automatically selected to balance
the overall load, based on a folded standard normal distribution
and an innovative worker ranking system, where workers are
rated based on their available resources, their capabilities,
and the proximity to the calling client/worker, resulting in a
novel approach ensuring that load on workers is distributed
fairly in the network. No permanent connection to the worker
nodes is needed. Depending on node mobility, results can still
be delivered even after longer periods of isolation due to a
disruption-tolerant networking (DTN) underlay.

To show the feasibility of our approach, we emulated up
to 30 highly mobile nodes in different experimental settings,
showing that the success rate of offloading increases by up to
40% with negligible overhead. Our Python implementation1

and all artifacts23 of this paper are publicly available.
The paper is organized as follows. Section II discusses

related work. Section III presents the design of OPPLOAD,
Section IV covers its implementation. Section V presents an
experimental evaluation of OPPLOAD. Section VI concludes
the paper and outlines areas for future work.

1https://github.com/umr-ds/OPPLOAD
2https://github.com/umr-ds/OPPLOAD-experiments
3https://ds.mathematik.uni-marburg.de/oppload/oppload results.tar.gz



II. RELATED WORK

A. Workflow-based Approaches

To offload tasks to other mobile devices, Serendipity splits
each task into smaller tasks that are either offloaded or not if
no worker is found [25]. In a mobile cloud computing scenario,
Ahn et al. [1] start the execution of tasks locally and offload
them to suitable cloudlets. Ravi and Peddoju [24] present an
offloading algorithm where an application is partitioned into
clusters containing tasks to decide whether to offload, based
on a density-based clustering algorithm.

Although these proposals follow a workflow-based ap-
proach, they do not have a worker selection algorithm to
distribute the load fairly in the network and/or they are not
suitable for opportunistic networks.

B. Proximity-based, Movement-based, and Social Approaches

COMET [19] is a framework for offloading parts of applica-
tions to neighboring nodes to speed up their execution. Mtibaa
et al. [23] propose a framework where a task is offloaded to
mobile devices that belong to the same social context, e.g.,
the same household or a group of first responders in a disaster
scenario.

Wang et al. [27] present an offloading scheme for op-
portunistic networks where mobility patterns are analyzed to
estimate the number and duration of contacts for the offloading
decision. Zhang et al. [32] consider the load of a device, the
availability of cloudlets, and user mobility to maximize the
probability of successfully offloading tasks. Honeybee [15]
includes a work sharing algorithm that employs nearby nodes
to execute tasks based on job stealing.

These publications either focus on a single aspect (e.g.,
movement/proximity of nodes or social relationships), or they
are designed for cloudlet scenarios and thus are not suitable for
opportunistic networks. Additionally, most of these approaches
do not follow a workflow-based approach and offload only
entire tasks, without splitting them into smaller tasks.

C. Offloading in Cloud Environments

Deng et al. [11] decide for each task of a workflow
whether it should be offloaded to the cloud or executed
locally, based on the capabilities and the movement of nodes.
Chatzopoulos [7] use an incentive mechanism where users
have to define how many resources they are willing to spend
for executing offloaded tasks. Chowdhury et al. [9] migrate
tasks between cloud, mobile devices, or robots by considering
energy, latency, and task execution deadlines.

All these works are designed for cloud environments and are
therefore not optimized for resource savings in opportunistic
networks with mobile devices.

D. Mobile Cloud, Edge, and Fog Environments

Fan et al. [13] present an approach where a base station
in a mobile cloud scenario can either execute an offloaded
task itself or further offload it to another base station. Using
a fuzzy decision engine, Flores et al. [16] consider multiple
criteria like CPU power to decide whether a task should be

offloaded to a mobile cloud server. Yang et al. [29] offload
computations in mobile cloud scenarios to maximize the
throughput of applications. Chen et al. [8] formulate a game
theoretic approach for offloading tasks in a mobile cloud
scenario. Bellavista et al. [6] present a computation offloading
approach, where tasks are offloaded to mobile edge cloud
instances and the results are return over the same node or
a different one, if the user has moved in the meantime. Zhang
et al. [31] introduce a task allocation scheme where social
sensing applications are offloaded to edge servers to maximize
a node’s payoff by saving energy. Yang et al. [28] propose an
algorithm to offload tasks to a nearby edge server.

These approaches assume the availability of a mobile cloud,
cloudlets, or similar technologies. In addition, neither worker
capabilities, nor highly unreliable networks, nor workflow-
based execution to preserve resources are taken into account.

E. Other Approaches

Funai et al. [17] present an approach that minimizes energy
consumption by offloading computations across multiple hops
in an ad-hoc network. Zanni et al. [30] propose an approach
to split arbitrary Android apps into smaller tasks that can be
offloaded. Sterz et al. [26] present a framework for remote
procedure calls in disruption-tolerant networks with separated
control and data channels to cope with short contact durations.
Internet-of-Things devices use more capable devices that are
reachable within one hop to execute a task [12]. Feng et
al. [14] present an approach where mobile devices offload
tasks to other mobile devices via cellular base stations without
prior knowledge of the devices’ resources.

These approaches are either not suitable for opportunistic
networks and faulty situations, or they only consider a very
limited scope of capabilities and worker selection. Further-
more, most of them do not handle workflows but single tasks
only, which is not suitable for scenarios where mobile devices
are the main execution platforms.

Finally, to the best of our knowledge, there is no previous
work that takes all these parameters into account, introduces
a transparent workflow-based computational task offloading
algorithm for multi-hop opportunistic networks, and provides
an open source proof-of-concept implementation.

III. OPPLOAD’S DESIGN

A. Workflow-based Computations

OPPLOAD supports workflow-based computations where a
client defines a workflow that consists of a chain of tasks. The
client assigns each task to a worker, and OPPLOAD will take
care of the execution order, even in unpredictable network sit-
uations. Furthermore, OPPLOAD transparently passes inputs
and outputs between the different tasks of a workflow. Con-
nectivity is achieved using protocols for disruption-tolerant
networking (DTN), while we assume that the communication
overhead in terms of CPU and memory resources for remote
execution is negligible [3].
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Fig. 2. Architecture of OPPLOAD client and worker showing a possible
workflow with Ahead of Time (AoT) or Just in Time (JiT) worker assignment.

B. Worker Addressing

OPPLOAD supports two worker addressing modes: Ahead
of Time (AoT) and Just in Time (JiT). This makes it possible
to select the best suitable and available worker for each task,
based on the user’s preferences and the network environment.

1) Ahead of Time: Using AoT addressing, the client assigns
a task to a worker explicitly. It is possible to select a different
worker for each task, as well as the same worker for different
tasks. This mode exists mainly for two reasons. Privacy-
sensitive tasks should be executed on known and trusted
workers. Furthermore, worker operators might give certain
guarantees, e.g., to stay in the network or to always execute a
task, even under heavy load.

2) Just in Time: In JiT mode, workers publish all services
they offer periodically by broadcasting them into the network.
These offers are stored on every node locally, where workers
are searched from. Since in opportunistic networks nodes can
appear and disappear frequently from the network, these offers
are only valid for a certain time period, depending on the
dynamics of the network.

If a client does not assign a task to a specific worker, OPP-
LOAD will transparently chose a suitable worker by passing
the workflow description through a number of steps that are
part of worker assignment, as shown in Fig. 2. During the
first step of worker assignment, a worker with an offer for
executing a desired task will be searched in the local database.
If the search is successful, the task will be executed on this
worker. This mode is helpful when it is not clear whether a
worker is available for a task.

C. Worker Capabilities

Workers announce their capabilities and available re-
sources, such as CPU load, available memory, and other met-
rics. Additionally, workers announce available special hard-
ware or other properties that help executing specific tasks
better than other workers, e.g., face detection in images is
more energy efficient on a GPU that may not be available
on all workers. The time interval for periodic capability
announcements matches the dynamics of the network. The
more dynamic a network is, the more often the capabilities
are broadcast. In the second step of worker assignment using
JiT addressing, these capabilities are taken into account. Task
requirements specified by the client are compared to the ca-
pabilities published by the workers to select capable workers.

D. Worker Assignment

During worker assignment, multiple capable workers may
be available. Therefore, we have developed a novel worker
assignment algorithm that distributes the workload fairly in the
network on multiple workers and selects nearby and powerful
workers. Instead of simply selecting a random worker or the
worker with the most recent offer, we introduce a worker rating
scheme based on different weighted metrics. The user has to
estimate, e.g., CPU, memory, or disk space requirements for
a task. Additionally, the rating scheme also keeps the tasks
spatially close to the calling client. Therefore, the geographical
distance between the two involved nodes is a metric of the
rating. During worker assignment, the client will calculate for
each capable worker how well it satisfies each requirement
of a task by dividing the capabilities published by workers
by the given requirements for every metric. By applying this
rating scheme, the best capable worker based on the local
knowledge is selected. However, this can lead to an unfair
load distribution in the network, where nearby and powerful
workers could be disadvantaged, since they would always be
chosen. Therefore, a worker is selected from the sorted list of
workers based on their rating following the folded standard
normal distribution. This ensures that a nearby and powerful
worker will be selected with a high probability, but the load is
also distributed to different workers, leading to a fair workload
distribution approach.

E. Error Handling

Bundle delivery in opportunistic networks cannot be guar-
anteed. If a worker disappears in OPPLOAD before it could
execute an assigned task, the client would wait infinitely
long. Therefore, users can specify a time-to-live (TTL) for
a workflow. This has two implications. First, the client stops
waiting for the results after the TTL has expired, making it
possible to re-issue the workflow. Second, a worker will not
execute a task if the TTL is expired, which preserves resources
on workers. This ensures a defined behavior in cases where
no result can be retrieved in time.

If errors occur in conventional networks, clients can be
notified immediately to handle the error appropriately. In
opportunistic networks, this is not necessarily possible due to
potentially poor network conditions. Thus, OPPLOAD handles
three classes of error. The first error class is a task execution
error. These errors occur during the execution of the task
itself. The offloaded task can implement error and exception
handling on its own and provide error messages and stack
traces, which OPPLOAD will deliver to the client. The second
error class is a worker selection error. These errors occur if the
execution of a task was successful, but a worker cannot find a
subsequent worker during the assignment. The third error class
is a worker calling error. These errors can occur in different
situations, such as when the worker is no longer capable to
execute the task or if it is not offering the service and was
called by mistake in AoT mode. Error handling for these errors
depends on the addressing mode. If the worker on which the
error occurred was selected in JiT mode, it will inform the



prior worker about the error, which will retry to assign the
task to a capable worker one more time. If the second try also
fails or the worker was chosen in AoT mode, the client will
be informed about the error using the same communication
mechanisms as before. The client is then responsible to handle
the error appropriately. After an offloaded task finishes or an
error occurs, OPPLOAD will clean up all involved files and
bundles across all workers to save storage.

IV. IMPLEMENTATION

We implemented OPPLOAD based on the bundle store im-
plementation, Rhizome, of the Serval Mesh [18], which uses a
simple epidemic DTN routing protocol. OPPLOAD is written
in Python and uses Rhizome’s RESTful API for handling all
network-related duties. In previous work, we have conducted
an in-depth evaluation of Serval in various experiments with
different network setups and usage patterns [3].

A. Offering a Service

Workers offer a service by a name, an arbitrary number
of parameters, and an executable that should be executed
on the worker. Any executable that runs on the underlying
operating system can be used, e.g., Python programs, or
compiled binaries. Every worker periodically publishes the
definitions of its services, and clients will then use these offers
for the JiT worker assignment. In addition to the service offers,
workers also announce their capabilities as key-value pairs that
are published together with the service offers to reduce the
network overhead.

B. Executing a Workflow

To execute a workflow, a user splits it into tasks to
be executed across multiple workers. All tasks have to be
described in a workflow description containing the desired
worker (either AoT or JiT), the name of the task, and all
required parameters, for each task. A workflow description
must include at least one task. This workflow description has to
be provided to the OPPLOAD client that handles the remaining
parts transparently.

A workflow description has the following form. First, a task
has to be assigned to a worker, which can be an address for
AoT mode or a placeholder indicating that JiT mode should be
used. Then, the name of the service to be executed has to be
given, followed by all parameters. Using another placeholder
indicates that the output of a task should be the input for
the next task. Each task can only have one result, and the
placeholder is allowed only once per task. Finally, a task can
have requirements that are only used during assignment for this
particular task. After specifying the workflow, OPPLOAD will
assign a worker to the first task, if applicable. The first step
is to rank all workers, which is based on the requirements,
as introduced in Section III-D. For each metric, a weighted
rank is calculated and summed up, using the weight and
the requirements as well as the worker’s capability for the
particular metric. Workers are sorted based on their ranking,
and a random worker is selected based on the folded normal

distribution with location parameter µ = 0 and scale parameter
σ = 1. All files required for a task, the workflow description
itself, and task results or errors will be packed into an archive
that will be sent as an encrypted bundle to the selected worker.
By packing everything in a single archive, fragmentation in
transmission is avoided, and a worker is guaranteed to have
everything required for processing the task.

When the offloaded task arrives, the worker starts prepro-
cessing by unpacking the archive and parsing the workflow
description. It will check whether it is capable of executing
the assigned task, since the capabilities could have changed
during the transmission due to network delays. If the worker is
capable, the service will be executed. After the service finishes,
the worker will replace the parameter placeholder of the next
task in the description with the result of its execution. Finally,
the worker assigns a next worker if required, packs everything
into an archive, and passes it on.

When the final task is executed, the last worker will return
the result to the client that will then trigger a network cleanup.
This is achieved by having the workers remove their payloads,
and it is finished when the final result is removed. If an
error occurs, the worker will stop further execution, pack all
intermediate files including the error log into an archive and
return them as an error bundle to the client, which will raise
an exception. The client is responsible to handle the exception
appropriately, e.g., re-execute the workflow.

V. EVALUATION

A. Test Setup

To evaluate OPPLOAD in a realistic manner, the net-
work emulation framework Common Open Research Emulator
(CORE) was used. In contrast to simulation approaches like
NS-3, CORE uses Linux namespaces to execute binaries and
scripts natively, which gives us the opportunity to evaluate
software and frameworks as close to reality as possible by
still being able to scale the experiments easily [2].

1) Test Cases: To evaluate OPPLOAD, the algorithm of
Lampe et al. [22] for detecting faces in images on smartphones
was adapted. The workflow of this algorithm has five tasks.
The first task is to denoise an image. The second task is to
scale the image up by 10% to increase the probability of
fitting a possible face into the detection window. The third
task is to crop the image by 10% to decrease the image size,
which speeds up the detection time while maintaining a high
detection accuracy. The fourth task converts the colored image
into an 8-bit grayscale image, which additionally speeds up
face detection while maintaining the same detection accuracy.
The fifth task detects faces on the preprocessed image. These
five tasks are executed on five different workers in the network.
In every experiment, the bandwidth of the network links was
set to 54 Mbit/s, and a delay of 20 ms was used. All nodes
were configured as workers. In JiT mode, we compared four
worker assignment algorithms: (i: recent) selecting the worker
whose offer arrived most recently, (ii: random) selecting a
worker randomly, (iii: best) selecting the best available worker
based on our rating, and (iv: spread) using the algorithm
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Fig. 3. Exemplary overall workflow time in different configurations.

described in Section III-D to spread the load among the best
available workers. Since OPPLOAD is designed for networks
with mobile devices as workers, the weights for the worker
rating were set to keep the tasks on nodes with high energy
reserves and spatially close to the client. Therefore, available
energy and distance were weighted with 30%, CPU with 20%,
and available memory and free disk space with 10%. We
modelled energy using a virtual energy unit e. These were
used to model energy consumption for each task related to
the task’s execution time, meaning that the longer a task takes
on average, the more e is consumed. In our experiments, a
service offer from a worker was set to expire after 120 seconds,
as described in Section III-B. Finally, workers announced
their capabilities every 2 seconds, since this is the sweet spot
announcement interval, as shown by Baumgärtner et al. [4].

B. Baseline Evaluation

The baseline tests show how OPPLOAD performs under
good network conditions. For these tests, twelve static nodes
were arranged in a ring, where each node had exactly two
neighbors and only the first node was a client. In AoT mode,
workers were selected at the start of an experiment in the
same order as they appear in the network, always skipping one
node. The same workers were used for all AoT experiments
for comparability. To evaluate the effect of worker capabilities,
this setup was first executed with all workers equally capable
of executing a task and a second time where we used the
following capability distribution: 20% (2) of the workers were
capable with no constraints, 40% (5) were also capable, but
had less energy reserves, 30% (3) could execute the task, but
with limited capabilities (like little available memory) and
10% (2) were not capable to execute the task at all. The
capabilities were modeled using available disk space, memory,
CPU resources, and energy e, which was reduced according
to the above description. Since worker assignment requires
randomness, our random number generator was initialized with
25 different seeds. Finally, we executed the experiments also
on the client to have a benchmark for comparison.

1) Workflow Profiling: To analyze the overhead of OPP-
LOAD, workflow processing was split into three phases: (i)
runtime (red) of the OPPLOAD implementation, i.e., pre-
and postprocessing and worker assignment in JiT tests, (ii)
transmission time (blue) for transmitting the bundle, and (iii)

TABLE I
AVERAGE RUNTIMES OF WORKFLOW PARTS IN THE RING SCENARIO IN

CLIENT-ONLY TESTS AND USING AOT ADDRESSING.

Addr. Exec. (s) Runt. (s) Transm. (s) Total (s)
Client 8.10 (0.21) 3.55 (0.11) 0.87 (-) 12.52 (0.32)
AoT 9.94 (0.26) 3.77 (0.08) 20.44 (0.13) 34.15 (0.47)

execution time (green) of the task itself. The colors refer to
Fig. 3. The x-axis shows the workflow execution time, each
bar denotes a specific configuration.

As shown in Fig. 3, OPPLOAD does not introduce signif-
icant processing overhead. The workflows are offloaded from
the clients 10 seconds after the start of the experiment. Re-
gardless of the test configuration, postprocessing and worker
assignment require about 1 second, while preprocessing can
be neglected. The execution time depends on the task. While
scaling, cropping, and grayscaling only require about 2 sec-
onds, denoising and detecting faces can take up to 6 seconds.

If AoT addressing is used in known topologies, users can
estimate a workflow time range in which it finishes. The
downside is that if a worker is not capable of executing a task,
the entire workflow will be stopped, as indicated by the second
last bar in Fig. 3. Therefore, tasks should only be explicitly
assigned in cases where no other option is desirable, or if a
task must be handled by a specific worker.

The major overhead is introduced by transmitting the bun-
dles across the network. The last bar of Fig. 3 shows the same
workflow executed on the client, thus no networking is needed.
The entire workflow needs about the same time as two to three
tasks in the JiT tests, depending on the worker assignment.
Although overhead is introduced by network related opera-
tions, it can still be better to offload workflows than executing
them locally. First, the client may not be able to execute the
tasks due to resource constraints or other limitations. Second,
the longer the tasks take to be executed, the more negligible
the communication overhead becomes. Finally, the decision
whether to offload or not also depends on the number of hops
between the offloading node and the worker, as indicated by
Graubner et al. [20]. For OPPLOAD, we assume that the user
decides whether to offload during the creation of the workflow.

Tables I and II show the average time needed for the parts
of a workflow (the numbers in brackets show the standard
deviation) in seconds. Table II indicates that the overall
workflow time highly depends on the worker assignment in



TABLE II
AVERAGE RUNTIMES OF WORKFLOW PARTS IN THE RING SCENARIO USING

JIT ADDRESSING AND ALL FOUR ASSIGNMENTS.

Assign. Exec. (s) Runt. (s) Transm. (s) Total (s)
Recent 9.65 (0.26) 3.89 (0.09) 50.94 (10.20) 64.48 (10.50)
Random 9.82 (0.16) 3.93 (0.09) 32.60 (4.27) 46.35 (4.25)
Best 10.02 (0.28) 3.94 (0.08) 23.54 (9.63) 37.49 (9.99)
Spread 9.95 (0.20) 3.95 (0.09) 24.05 (6.82) 37.94 (7.11)

the JiT experiments. The recent worker assignment with an
average of about 64.48 seconds requires the longest time, due
to the long distance between the nodes, since their offers take
longer to reach the client and thus arrive more recently. The
standard deviation is also relatively high with more than 10
seconds, indicating long running tasks and differing results.
The random worker assignment achieves better results with
about 46.35 seconds on average and a deviation of 4.25
seconds, since closer workers are chosen. Always selecting
the best available worker leads to significantly lower workflow
times, requiring about 37.49 seconds, but with a standard
deviation of 9.99 seconds. Finally, using the spread assignment
algorithm, the workflow time does not significantly differ from
the previous assignment algorithm, using about 37.94 seconds,
but has a better standard deviation of 7.11 seconds. If all
workers are equally capable, the workflow times using the
best worker or the spread algorithm do not differ. This shows
clearly that in terms of workflow time, the algorithm using the
best workers and our spread approach outperform the other
approaches. But since not all workers are equally capable in
the different capability tests, tests using the best worker have
a broader standard deviation, since the capable workers are
further away in the topology. This means that always using the
best worker is slightly faster than using the spread algorithm,
but is more unpredictable in how long the execution of a
workflow will take, since the very best workers will be worn up
and worse workers have to be chosen consequently. Therefore,
we propose our spread algorithm as the best available solution.
Executing a workflow locally at the client would only require
execution time and runtime, since the networking part is not
needed. As shown in Table I, the total execution time is about
12.52 seconds and is pretty stable with only about 300 ms
deviation. Finally, the AoT mode needs about 34.15 seconds
in total and is also stable with only about 400 ms deviation.
Since in AoT mode a worker is always two hops away from
the next hop, the transmission is even faster than using JiT
mode with the best worker assignment.

2) Worker Load Distribution: Fig. 4 shows the worker load
distribution in all four worker assignment algorithms using JiT
mode. On the y-axis, the calling nodes are shown, whereas on
the x-axis the assigned worker is denoted. The lighter the color,
the more often a particular client selected a particular worker.

The recent selection approach spreads the load over partic-
ular nodes, but almost always selects a worker on the opposite
side of the network, leading to long-running workflows. Using
a random worker, the workload is distributed on nearly all
available workers. Although this leads to a fair load distri-
bution, the profiling analysis shows that this approach does
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not necessarily give the fastest workflow execution times.
Additionally, tasks are sent to spatially far away workers,
leading to the same problems of long transmission times and
network splits in mobile networks as in the recent approach.
Always using the best available worker keeps the workflow
execution spatially close, and the overall runtimes are the
lowest achievable, but with an unfair load distribution, which
disadvantages close and powerful workers over others that are
also able to execute a task. In dense networks with a high
offloading frequency, this could lead to overloaded nodes and
empty batteries, which in the end would be less beneficial for
the overall performance. Finally, our approach spreading the
load on the best workers leads to the best overall results. Close
and powerful workers are preferred over others, while less
powerful workers also have chances to be selected. Overall, as
previously shown in Table II, the workflow times are nearly as
good as always selecting the best worker. Thus, our algorithm
should be used instead of the other presented approaches.

C. CPU, Memory, and Bandwidth Utilization

Fig. 5 shows the CPU and memory utilization of an exper-
iment in AoT mode where every worker was equally capable
to execute a task. On the x-axis, the time is shown, whereas



the left (blue) y-axis denotes the CPU usage and the right
(orange) y-axis shows the memory allocation. In both graphs,
the resource usages of all nodes are stacked, whereas 100%
CPU load means that one CPU core of the emulation host is
fully utilized (the emulation host had 80 CPU cores and 256
GB RAM, both are not exceeded).

During the first 10 seconds, the test is set up (the emulated
nodes are started, configuration files are prepared, etc.). After
10 seconds, Serval and OPPLOAD are started, which require
many computations (e.g., loading Python interpreters into
memory, computing hashes for the worker capabilities), and
the CPU utilization has a high peak with more than 400%
CPU. During the experiment, five peaks can be identified,
which are the five tasks of the workflow. The CPU peaks
are more blurred, since not only during the task the CPU
is used heavily, but also during transmitting the result to
the next worker using Serval. Memory usage shows that on
average every node requires about 60 MB of memory, while
the execution of a task leads to peaks, due to the fact that
the image and the task binary itself have to be loaded into
memory.

D. OPPLOAD in Action

In the final set of experiments, we studied a 30 node network
using five different random-waypoint mobility models, since
randomly moving nodes is the most challenging scenario
in opportunistic networks. The worker capabilities were set
differently in all experiments, as defined in Section V-B.
Furthermore, we evaluated the behavior with 5 and 10 clients
that offload tasks at the same time in the network at the start of
an experiment, which can lead to workers executing multiple
tasks simultaneously. To simulate an IEEE 802.11g network,
which is still widely used especially in decolping countries,
with a bandwidth of 54 Mbit/s, a basic range model for the
Wi-Fi nodes with 40 meters of range was used. The mobility
model was configured for 30 nodes, walking randomly in
an area of about 1.7 km2 at a speed between 0.8 m/s and
1.9 m/s or rest for up to 60 seconds, which corresponds to
human walking speed. This setup leads to relatively small
mesh networks that are appearing and disappearing during the
execution of the experiment. Overall, 200 experiments were
executed, all using JiT mode. An experiment finished either
successfully, meaning that all clients received their results, or
it was stopped after 30 minutes.

Fig. 6 shows the final states of the workflows executed in the
specific scenarios, where the bars are grouped by the number
of clients per experiment and worker assignment. The y-axis
shows the number of tasks in a particular state. The first case
is a successful workflow (Success), where a workflow was
offloaded, all tasks could be executed, and the result arrived
at the client. Second, OPPLOAD performed as intended but
errors occurred as discussed in Section III-E (Worker Error)
and the client could successfully be informed about this error.
An experiment stopped in the Transmission state, if a task was
transmitted to the next worker, but not received until the end
of the experiment, e.g., if the recipient cannot be reached due
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Fig. 6. Final workflow states, by number of active clients in JiT mode.

TABLE III
AVERAGE RUNTIMES OF TASKS IN MOBILE JIT SCENARIOS IN SECONDS.

Assign. Exec. (s) Runt. (s) Transm. (s) Total (s)
Recent 8.7 (0.64) 5.0 (1.89) 269.0 (336.37) 282.8 (338.91)
Random 8.9 (1.02) 5.0 (1.84) 254.9 (300.75) 268.8 (303.61)
Best 8.9 (0.62) 5.2 (1.80) 135.5 (191.26) 149.6 (193.68)
Spread 8.9 (0.68) 5.1 (1.95) 234.2 (300.75) 248.1 (303.61)

to network fragmentation. Due to experiment abortion while
OPPLOAD was in a runtime state or a worker executed the
task itself, it is denoted as Runtime and Execution, respectively.

Experiments using the recent assignment mode have the
lowest success rates, which is due to the fact that workers
are selected that are far away and the offers arrive late. Using
a random worker increases the number of successes slightly.
Using the best worker available, all tests were either successful
or the client was informed about an error when 5 clients are
used. Our spreading approach is as good as using the best
worker in terms of successful workflows or errors returned in
time. The fact that even using the best worker does not lead to
100% successful executions is due to the worker capabilities
and the transmission time in opportunistic networks. A worker
updates its capabilities after executing a task, which can lead
to the situation that another task is offloaded to the worker,
even though it is not capable anymore. The falsely assigned
worker will decline task execution and inform the client.

Table III shows the average workflow runtimes over all
mobile experiments. It is evident that using our spread algo-
rithm gives better results than random assignment and using a
recent worker. Note that the transmission times (and thus also
the total times) have a rather high standard deviation. This is
due to the mobility of the nodes and potentially disappearing
links between two nodes, resulting in re-transmissions. These
increase the time, whereas many transmissions are successful
within the first try, reducing the mean transmission time.

To summarize, OPPLOAD introduces negligible overhead
in terms of CPU load or memory consumption and supports
efficient offloading of computational workflows on resource-
constrained devices in opportunistic networking scenarios.

VI. CONCLUSION

We presented OPPLOAD, a novel framework for offloading
computational workflows in opportunistic networks, with two



addressing modes, workers publishing their capabilities and
available resources, a worker assignment algorithm, appropri-
ate error handling, and network cleanup to reduce network
load. Experiments with up to 30 emulated mobile nodes
showed that worker assignment is important for speeding
up workflow execution and for spreading the load fairly on
spatially close but powerful workers, which increases the rate
of successful offloadings significantly.

There are several areas for future work. Incorporating
further network or social knowledge could improve worker
assignment further. Using OPPLOAD in the field of Named
Data Networking (NDN) could be interesting for the JiT
addressing mode, since clients or intermediate workers would
not need to do the worker assignment, but use the abstraction
NDN introduces to achieve the same results. Finally, instead
of task chains, support for executing independent tasks of a
workflow using DAGs could broaden the scope of OPPLOAD.
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