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Abstract: Long-term animal monitoring in natural habitats provides significant insights into the ani-
mals’ behavior, interactions, health, or external influences. However, the sizes of monitoring devices
attachable to animals strongly depends on the animals’ sizes, and thus the range of possible sensors
including batteries is severely limited. Gathered data can be offloaded from monitoring devices to
data sinks in a wireless sensor network using available radio access technologies, but this process
also needs to be as energy-efficient as possible. This paper presents an approach to combine the ben-
efits of high-throughput WiFi and robust low-power LoRa communication for energy-efficient data
offloading. WiFi is only used when connectivity between mobile devices and data sinks is available,
which is determined by LoRa-based distance estimations without the need for additional GPS sensors.
A prototypical implementation on low-end commodity-off-the-shelf hardware is used to evaluate the
proposed approach in a German mixed forest using a simple path loss model for distance estima-
tion. The system provides an offloading success rate of 87%, which is similar to that of a GPS-based
approach, but with around 37% less power consumption.
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1 Introduction

The long-term monitoring of animals in their natural habitats provides valuable scientific
insights for researchers. This includes animal health, territorial behavior, interactions with
other animals or other species, and external influences like humans and human-made infras-
tructure [Sa09, Xu16, Wy18, As19, KA20]. Monitoring can be performed using a range of
sensors and technologies attached to animals, but these are typically strictly limited by
weight and size, depending on the monitored animals. This is especially true for the battery
size, which stands in contrast to a desired long-term performance of the monitoring sensors,
and may also prohibit the use of GPS sensors [Go19].

Transmitting the monitored data from sensor nodes to data sinks is similarly demanding,
and a considerate amount of the available battery power is usually consumed for the trans-
mission [SIB12]. With limited storage size, data must be collected before it is overwrit-
1 Multimedia Communication Lab (KOM), Technical University of Darmstadt, Germany {julian.zobel,patrick.

lieser,ralf.steinmetz}@kom.tu-darmstadt.de,paul.frommelt@stud.tu-darmstadt.de
2 Department of Mathematics & Computer Science, University of Marburg, Germany, {hoechst,lampep,

freisleb}@informatik.uni-marburg.de

https://creativecommons.org/licenses/by-sa/4.0/
https://orcid.org/0000-0002-5648-3297
https://orcid.org/0000-0003-4084-2598
https://orcid.org/0000-0002-7326-2250
https://orcid.org/0000-0002-6233-0959
https://orcid.org/0000-0002-7205-8389
https://orcid.org/0000-0002-6839-9359
mailto:{julian.zobel, patrick.lieser, ralf.steinmetz}@kom.tu-darmstadt.de, paul.frommelt@stud.tu-darmstadt.de
mailto:{julian.zobel, patrick.lieser, ralf.steinmetz}@kom.tu-darmstadt.de, paul.frommelt@stud.tu-darmstadt.de
mailto:{hoechst, lampep, freisleb}@informatik.uni-marburg.de
mailto:{hoechst, lampep, freisleb}@informatik.uni-marburg.de


2 Zobel and Frommelt et al.

ten and lost. However, different Radio Access Technologies (RAT) or data collection ap-
proaches have various advantages and drawbacks. Cellular services can be used, but may
not be available within the animal habitat and are usually too expensive in terms of hard-
ware, provider costs, power consumption, and weight. Long-range low-power communica-
tions for Low-Power Wide Area Networks (LPWANs) like LoRa require significantly less
power, weight, and have long transmission ranges, but can only send very small datasets
due to their limited bandwidth.

Furthermore, data collection using Unmanned Aerial Vehicles (UAVs) is a recent and
promising approach, but this would require the sensor node to be available at any time,
which also increases power consumption [Xu16]. In addition, motorized UAVs yield severe
audible disturbances in the animal habitat, negatively and artificially influencing animal
behavior [Rü16]. A common approach is to integrate mobile nodes into a larger Wireless
Sensor Network (WSN). If several communication technologies are available, they are also
referred to as multi-RAT WSNs. Whenever a mobile node, e.g., attached to an animal, moves
within the communication range of a static data sink, the mobile node attempts to offload its
data. Such opportunistic offloading approaches are usually performed over high-throughput
RATs like WiFi or Bluetooth. Nevertheless, regularly probing for the availability of a data
sink increases power consumption, e.g., approximately 180 µAh for a single scan for avail-
able WiFi networks [Hu15].

In this paper, we overcome these challenges by combining the benefits of high-throughput
WiFi and robust low-power LoRa communication in a multi-RAT WSN. Our approach
predicts the WiFi connectivity between mobile sensor nodes and static data sinks based on
LoRa distance estimations, without the need for additional GPS sensors on mobile nodes
or time synchronization within the network. WiFi is only activated when a node determines
a possible connection to a data sink, to further increase the node’s energy efficiency. The
approach is implemented in a prototype system based on widely available low-cost low-end
hardware, and evaluated in a German mixed forest. We achieve an offloading success rate
of 87%, which is similar to that of a GPS-based system, but with up to 37% lower power
consumption for the communication and data offloading process.

To summarize, this paper makes the following contributions:

• We provide a design for a lightweight data offloading approach based on LoRa and
WiFi communication that is independent of power-hungry GPS-based localization
on mobile nodes and time synchronization in the WSN.

• We present the implementation of our prototype system using commodity-off-the-
shelf low-end hardware and a simple path loss model for LoRa-based connectivity
estimations.

• In a proof-of-concept evaluation, we highlight the applicability and benefits of our
approach for data offloading in mobile multi-RAT WSNs.
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The rest of this paper is structured as follows. Section 2 discusses related work for data
offloading as well as localization and distance estimation in WSNs. Our protocol design is
presented in Section 3, followed by the prototypical system implementation in Section 4.
This prototype is then evaluated in a forest environment in Section 5 and compared to a
GPS-based approach. Section 6 concludes the paper and gives an outlook on future work.

2 Related Work

Within multi-RAT applications, data offloading describes the general approach of redirect-
ing traffic flows over a more suitable communication medium, i.e., a medium that pro-
vides higher throughput, increased reliability, reduced energy consumption, or better cost-
efficiency. Typically, data offloading is studied in the field of cellular networks. Here, the
common idea is to relieve the usually more expensive and more occupied cellular medium
(e.g., LTE or 5G) by using other available networks such as an available Wireless Local
Area Network (WLAN) provided by public WiFi hotspots [Hu15, Zh18], WiFi or Blue-
tooth using ad hoc communication for localized communication exchange [Ri14], or even
access points of power line carriers [Wu17]. For WSN or IoT applications with small and
infrequent data generation, offloading is also possible using long-range low-power commu-
nication technologies for LPWANs like SigFox and LoRa [Le19].

A typical research problem in the field of multi-RAT applications is the definition of condi-
tions, which trigger the switch between communication technologies. This switch may be
initiated by the user or the mobile device, which provides an individual choice of the used
technology. However, this decision may be not optimal due to the lack of global knowl-
edge on that device. In contrast, if the operator or a base station decides to switch based
on a broader knowledge, the decision is often better for the overall network, but not neces-
sarily for the individual user [Yu17]. Similar to handover procedures in cellular networks,
the decision for switching between RATs can be based simply on the availability of an-
other network, measured or estimated signal properties like Received Signal Strength In-
dicator (RSSI) and Signal-to-Noise Ratio (SNR), the throughput of the networks, or the
distance between a mobile device and the access point [Wu17, Zh18, Le19].

In energy-constrained applications like mobile WSNs, constantly probing or listening for
available network access points is not feasible due to the significant power consump-
tion [Hu15, SIB12]. Mobile nodes can match their position to determine if they are in
range of access points. Similarly, localization of mobile sensor nodes by global navigation
satellite systems (GNSS) like GPS or Galileo may also be unavailable due to high energy
consumption and comparably expensive hardware. Therefore, a considerable amount of
research is conducted in GNSS-less localization of mobile nodes in WSNs. Triangulation
is one of the most widespread approaches, where multiple base stations with known loca-
tions use incoming signals of a mobile node to estimate its position. By comparing differ-
ences in metrics like time of arrival, time of flight, RSSI, or SNR between base stations,
this method achieves good results. However, triangulation requires a highly accurate time
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synchronization within the WSN and several—i.e., three or better more– base stations to
function properly and , which may be infeasible in certain scenarios [LCL18, DPT19].

Another well-known approach is fingerprinting the area of operation. Basically, a map of
the area is created that contains important information like RSSI or SNR for locations on the
map. Mobile nodes then compare their measurements of received signals with this map to
obtain their location without the need of additional hardware [AGM09, Ha19]. Obviously,
this requires a detailed fingerprint map for accurate localization. The creation of such a map
may impose a tremendous effort — or even an impossible effort for large or inaccessible
operation areas — before being able to deploy the WSN in the first place.

However, acquiring the exact position is often not necessary for data offloading, but es-
timating the distance to a base station is sufficient in many scenarios [Xu10]. Recent
simulations have shown that localization over LoRa is possible using the time of flight
or the RSSI values from received LoRa packets to estimate distances between base sta-
tions [LCL18, LSH19]. These distances themselves are obtained using a path loss model
that matches RSSI values to a certain distance [J�17, KT17, Wi17, Li18, Wu20]. A com-
monly used model is the Log-Distance Model that uses a logarithmic decrease of the RSSI
with the distance. More sophisticated variants, like the Log-Normal Shadowing Model, in-
clude non-deterministic characteristics of real-world signal propagation like occasional
obstruction, reflection, or interference [Xu10, Wu20]. The drawback of such models is
that model parameters are highly scenario-specific and may change over the course of a
year [Wu20]. Thus, they are usually derived from empirical data within the corresponding
environment for a certain model, for example, as performed for the Log-Normal Shadowing
Model in a representative Central European mixed forest area by Palaios et al. [PLM14].
In this work, we use these acquired parameters in the Log-Normal Shadowing Model for
the distance estimation and demonstrate how this model can be used on low-end hardware
with restricted performance for energy-efficient data offloading.

3 Design

In this section, we present our design of a lightweight data offloading approach that is
executable on low-end hardware and energy-efficient on mobile nodes. We assume a het-
erogeneous, multi-RAT WSN with small, battery-powered mobile sensor nodes that are
mounted, for example, on deer. More powerful, static sensor nodes are sparsely located
throughout the animal habitat and act as distributed data sinks. Nodes and data sinks pro-
vide both LoRa and WiFi as communication technologies, but due to the size of the habitat,
data sinks do not cover the whole area. As a restriction, we neglect the data acquisition
within this work, because it is highly dependent on the specific application with its used
sensors, measurement intervals, and more. We also assume that nodes and data sinks have
no time synchronization.
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Battery longevity is very important for animal monitoring, since it allows a long-term as-
sessment without disturbing animals. However, it is also of high interest to acquire the
collected monitoring data in a timely manner, which should be done energy-efficiently due
to the first restriction. On the one hand, the obvious first choice of transmitting the data via
the long-range low-power technology LoRa is, however, infeasible. The limited bandwidth
and the strict duty cycle restrictions in the used frequency bands do not allow transmitting
large amounts of data. Additionally, best-effort transmissions of LoRa over long distances
can possibly lead to lost messages and, thus, lost data. On the other hand, WiFi has very
limited range and a large habitat cannot be fully covered by data sinks due to ecological and
economical reasons. By utilizing the mobility of the observed animals, an opportunistic ap-
proach to upload data when the monitored animal moves in range of a data sink is possible.
However, constantly using WiFi to probe for available data sinks would rapidly deplete the
battery of a mobile node [Hu15]. In a similar fashion as presented in Section 2, using GPS
sensors or RSSI fingerprinting is infeasible due to high power consumption and the vast
size of animal habitats, respectively. Furthermore, the positions and the number of data
sinks can change during long-term animal monitoring and, thus, rendering fingerprinting
or location matching infeasible without replacing the information on the mobile nodes.

To overcome these problems, we propose an approach to combine the possibility for dis-
tance estimation over LoRa with the capability of WiFi for high-throughput data transmis-
sion on mobile nodes. The energy-efficient LoRa technology is used to opportunistically
probe for available data sinks and estimate distances to them. Because LoRa is strictly lim-
ited by a duty cycle, due to the used frequency bands, and to minimize power consumption,
LoRa messages should be as small as possible in general. If a monitored animal moves
within the WiFi range of a data sink, a data offloading attempt is started. The activation of
the energy-demanding WiFi connection is minimized and only used for a quick transmis-
sion. Our approach for combined distance estimation and data offloading is divided into
three phases for mobile nodes. An overview of these phases is shown in Figure 1.

Sleep Phase The sleep phase is the basic condition of the mobile node, in which most
components are turned off to save power. Within a predefined interval, the node comes out
of hibernation to perform certain tasks, like collecting data or probing for data sinks. As
stated beforehand, we do not incorporate a specified data collection phase into our com-
munication protocol within the scope of this paper, since data acquisition is specific to the
application and the used sensors. Similarly, the node should only proceed to the discovery
phase if data is available for offloading.

Discovery Phase In the discovery phase, the mobile node opportunistically probes over
LoRa for available data sinks using a beacon message. On reception at a data sink, the sink
sends a response back that the mobile node will use to estimate the distance to the data sink
with a path loss model and the RSSI of the response. The time of flight as additional metric
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Sleep Phase

- collect data
- disable hardware

Discovery Phase

- probe data sinks
- estimate distance

Offloading Phase

- connect to WiFi
- upload data

data available

distance <= threshold

distance > threshold

Fig. 1: Overview on the three-phased data offloading approach.

to the RSSI cannot be used reliably without a highly accurate time synchronization between
sender and receiver. Additionally, timestamps would significantly increase the size of LoRa
packets. By using only the RSSI, our approach is independent of time synchronization. If
the estimated distance based on the RSSI is less or equal to an offloading threshold, the
mobile node switches to the next phase. However, if no response is received or the estimated
distance exceeds the threshold, it goes back to the sleep phase.

Offloading Phase In the offloading phase, the node will activate its WiFi module and
attempt to connect to the data sink’s WiFi hotspot. When connected, available data is of-
floaded to the data sink. The node deactivates its WiFi directly afterwards to minimize WiFi
usage. Then, the node switches back to the sleep phase to further save energy.

As an alternative, the distance estimation could also be performed on the data sink, for
example if the node’s hardware is not capable of calculating the path loss model. A response
could then only be sent if the distance estimation on the sink is lower than the threshold.
However, communication properties may not be bidirectionally balanced, e.g., due to more
powerful hardware on the sink than on the node. It is, therefore, possible that the data
sink will reach the node via WiFi, but not vice versa. A deeper analysis of this alternative
approach is left open for future research. Using low-end commodity-off-the-shelf hardware,
we realized this communication protocol in a prototypical implementation, as presented in
the following section.
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4 Prototypical Implementation

In this section, we present our prototype system for mobile sensor data offloading with
LoRa-based connectivity estimations. First, we describe the realization of data sinks and
mobile sensor nodes with a focus on the hardware components, followed by the communi-
cation protocol and interaction between them. The prototype is realized by using broadly
available, inexpensive commodity-off-the-shelf hardware and open source libraries.

4.1 Data Sink

The foundation of the data sink is a single-board Raspberry Pi 4B computer. It provides a
64-bit quad-core 1.5 GHz ARM Cortex-A72 processor, 2 GB of RAM, and built-in WiFi
capabilities. A standard installation of the Raspberry Pi OS3 as provided by Raspberry Pi
Foundation4 is used. The prototype is powered over the Raspberry’s USB-C port with a
99 Wh LiPo battery, but can also be powered for long-term use by a combination of a solar
panel and a 12 V car battery as power source [Go19].

For the additional LoRa communication capabilities, we use a Dragino PG1301 LoRa Con-
centrator5, which is connected directly to the GPIOs of the Raspberry Pi. The PG1301 uses
one SX1301 and two SX1257 LoRa modules to allow receiving on up to 10 parallel LoRa
channels and sending on one LoRa channel, respectively, using the manufacturer’s standard
library6. It is used by our LoRaPi service that processes incoming messages and can also
send out replies, as detailed in Sections 4.3 and 4.4. Furthermore, the LoRaPi service can
also interact with the WiFi management service to activate or deactivate the sink’s WiFi
access point.

The WiFi management service hostapd7 runs in the background, managing the Raspberry’s
WiFi access point and IP addresses of mobile nodes. Each sink uses a standardized SSID
which is extended by the specific sink’s ID for a unique WiFi SSID. Additionally, a UDP
service is running in parallel that monitors the connection of all mobile nodes and the
progress of their data upload. The upload itself is performed over FTP, using the proftpd8

library that collects the data on an FTP server in the background.
3 https://www.raspberrypi.org/software/
4 https://www.raspberrypi.org/
5 https://www.dragino.com/products/lora/item/149-lora-gps-hat.html
6 https://github.com/dragino/pi_gateway_fwd
7 https://w1.fi/hostapd/
8 http://www.proftpd.org/

https://www.raspberrypi.org/software/
https://www.raspberrypi.org/
https://www.dragino.com/products/lora/item/149-lora-gps-hat.html
https://github.com/dragino/pi_gateway_fwd
https://w1.fi/hostapd/
http://www.proftpd.org/
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4.2 Mobile Nodes

Our prototype of a mobile sensor node is realized on a Heltec ESP32 LoRa WiFi v29 board.
It has a 32-bit dual-core 240 MHz LX6 microcontroller and 529 kB internal SRAM with a
weight of only 20 g. It provides Bluetooth, 2.4 GHz dual-mode WiFi, and LoRa using one
SX1276 LoRa transceiver for communication. As a prototyping device, it also provides a
0.96 inch OLED display and can be powered either over a micro-USB port or a 1.25 mm
JST LiPo battery interface.

For data storage, we use a standard SD card breakout board10 connected via SPI. The SD
card stores the used dummy sensor data and configuration files for the mobile node. The
latter include a node’s ID, LoRa settings, and configurations of the main program running
on the node. Configuration files are stored in JSON format11. For evaluation purposes, the
prototype can be equipped with an optional GPS device12 connected via SPI.

The main program is written in the C-like Arduino language and uses the standard library
of the Heltec ESP3213 for LoRa communication. WiFi communication is provided by the
standard Arduino library, the FTP transfer uses the ESP32 FTP Client14 library.

The software running on a mobile node includes the lightweight communication protocol
over LoRa and WiFi, further discussed in detail in the following sections. The crucial part
of the main program is the distance estimation. For evaluation purposes, this includes the
possibility to use GPS localization and matching with a predefined location of the data sink.

However, for the main procedure, distance estimation is performed by a path loss model
estimation. The code of the estimation can be easily exchanged with different models, but
for our prototype, we used the already discussed Log-Normal Shadowing Model. In addition
to the logarithmic reduction of a signal’s RSSI over distance, this model also includes non-
deterministic influences from the environment for the path loss 𝑃𝐿:

𝑃𝐿 (𝑑) = 𝑃𝐿 (𝑑0) + 10𝑛 log10 (
𝑑

𝑑0
) + 𝑋𝜎 (1)

where 𝑛 is the path loss exponent, 𝑑 is the distance between sender and receiver, 𝑋𝜎 is a
zero-mean Gaussian-distributed random variable with standard deviation𝜎, and a reference
measurement 𝑃𝐿𝑑0 at a distance 𝑑0. The estimated distance 𝑑𝐸 on a given RSSI is then
calculated by

𝑑𝐸 (𝑅𝑆𝑆𝐼) = 𝑑0 ∗ 10(𝑅𝑆𝑆𝐼−𝑃𝐿 (𝑑0)−𝑋𝜎 )/(10𝑛) . (2)
9 https://heltec.org/project/wifi-lora-32/

10 Code based on: https://iotdesignpro.com/projects/logging-temperature-and-humidity-
data-on-sd-card-using-esp32

11 https://rapidjson.org/
12 https://github.com/adafruit/Adafruit_GPS
13 https://github.com/HelTecAutomation/Heltec_ESP32
14 https://github.com/ldab/ESP32_FTPClient

https://heltec.org/project/wifi-lora-32/
https://iotdesignpro.com/projects/logging-temperature-and-humidity-data-on-sd-card-using-esp32
https://iotdesignpro.com/projects/logging-temperature-and-humidity-data-on-sd-card-using-esp32
https://rapidjson.org/
https://github.com/adafruit/Adafruit_GPS
https://github.com/HelTecAutomation/Heltec_ESP32
https://github.com/ldab/ESP32_FTPClient
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The fitted properties are 𝑛 = 4.96, 𝜎 = 6.13 dB, and 𝑃𝐿 (𝑑0) = 52.4 dB with 𝑑0 = 10 m as
measured by Palaios et al. [PLM14] for a Central European mixed forest. Note that these
measurements were conducted with a center frequency of 485 MHz, but our LoRa com-
munication is performed in the 868 MHz EU SRD frequency band. However, we assume
this to have only a minor influence, since possible external influences of different foliage or
forestation in our work compared to the related work are expected to have a more significant
influence.

4.3 LoRa Communication in the Discovery Phase

Within the discovery phase, all communication is performed over LoRa. We use a cus-
tomized LoRa approach with very small messages, to minimize medium occupancy and
power consumption. Each message is only 2 bytes in size, consisting of a 1-byte ID of the
sending device and a 1-byte field for message flags that identify the type of message that is
sent. Such a packet has an airtime of approximately 166 ms with a robust standard setting
of spreading factor 10, coding rate 4/5, and bandwidth of 125 kHz of LoRa. This setting
is also used in our evaluation setup. As a theoretical upper limit, each node and data sink
could therefore send more than 200 of such packets each hour with a duty cycle of 1% in
the 868 MHz EU SRD frequency band.

In our current implementation, four message types are available: Beacon, Reply, Offload
Initialization, and Offload Acknowledge. Beacons are sent by mobile nodes containing their
ID. Within a single discovery phase, only a single beacon is sent. When no Reply is received,
the mobile node goes back to the sleep phase.

Every Beacon that is received by a data sink is answered with a Reply message containing
the ID of that sink. The mobile node listens to incoming replies for a certain reception
window, as multiple data sinks may possibly overhear and answer its message. Only the
reply with the largest RSSI is used, all others are discarded. This reply message is then
used for the distance estimation, as presented above. If this estimated distance is below the
given threshold, the mobile node sends an Offload Initialization message to the data sink
with the sink’s ID.

On reception of an Offload Initialization message at a data sink, the ID is checked first
to assure that the message is intended for that device. Then, the sink starts up the WiFi
access point and acknowledges the availability with an Offload Acknowledge message. If
the mobile node does not receive the ACK within its reception window, it again goes back
to the sleep phase. Otherwise, when the offload ACK is received, the mobile node also turns
on its WiFi module and switches to the offloading phase.



10 Zobel and Frommelt et al.

4.4 WiFi Communication in the Offloading Phase

In the offloading phase, the mobile node tries to access the wireless network provided by
the data sink. The WiFi SSID of each sink is a standard identifier followed by the sink’s ID,
e.g., ”SSID-A1” for the data sink with the (hexadecimal) ID 0xA1. The mobile node directly
connects to that specific access point by using the ID information provided in the previously
received Reply message. If the WiFi cannot be found, e.g., if the distance estimation was
wrong or other circumstances prevent the mobile node from accessing WiFi, the mobile
node will go back to the sleep phase.

If it is connected, however, a short acknowledgement is sent to the UDP service running
on the data sink. This service blocks the sink’s WiFi from deactivating until the mobile
node has transferred its data to the background FTP service. After offloading the data, the
mobile node again sends a small UDP packet to confirm the transfer. The UDP service then
unblocks the WiFi again if there are no other devices currently connected. Furthermore, it
also manages timeouts, in case that the WiFi connection is lost and the second UDP message
is received. The mobile node, either after confirming the transfer or after losing connection,
turns off its WiFi module and goes to the sleep phase.

4.5 Limitations of the Prototype

In its current state, the prototype does not generate any meaningful sensor data and does not
incorporate a distinct data acquisition phase. Since the used sensors and the type and fre-
quency of measurements are specific for animals, scenarios, and applications, respectively,
we deliberately omit a specification of the data acquisition, but focus on the communica-
tion. However, our implementation provides the possibility to easily integrate such a phase
in the prototype. Within the scope of this work, we use randomly generated data blocks for
evaluating the communication protocol.

The LoRa transceiver on the ESP32 board used for the mobile nodes theoretically provides
the full range of spreading factors from 7 to 12. However, we found that the LoRa modem
often does not meet the frequency error tolerance for spreading factors 11 and 12 and,
thus, a significant amount of messages is not received. For high spreading factors, a stable
frequency reference is required as stated in the transceiver’s datasheet15, which we assume
is not provided by the ESP32’s XO. In case that higher spreading factors—or other LoRa
settings with higher demands on the frequency stability, like low bandwidths—should be
used reliably, an external TCXO is advised by the manufacturer. Within this work, we limit
our prototype to spreading factor 10.

Another limitation of mobile nodes is the used FTP library for ESP32. It is only possible
to reserve blocks of a maximum of 100 kB due to the construction of the ESP32’s heap

15 The current datasheet for LoRa transceivers is provided by Semtech Corporation, www.semtech.com

www.semtech.com
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memory. Therefore, files that are transferred directly from the SD card to the FTP server
can only have that same or a smaller size. An adaptation of the library to larger file sizes is
out of the scope of this paper and, thus, left for future work.

5 Experimental Evaluation

The evaluation of the prototype was conducted as a field experiment in a forest near the
city of Darmstadt, Germany16. As shown in Figure 2, the data sink was non-invasively
attached to a tree at a height of approximately 1.80 m. The terrain around the chosen tree
is slightly leveled without any artificial elements or forest aisles within 100 m, and mostly
accessible with few bushes or shrubs within the direct vicinity. Since we measured in the
winter months, there was no foliage.

(a) Data sink prototype. (b) Tape measurements.

Fig. 2: The data sink prototype was attached to a tree at around 1.80 m height. Distances were mea-
sured with a tape measure in a German mixed forest.

We used a mobile node including a GPS sensor for tracking the position of each measure-
ment location in the experiment. LoRa communication was used on a robust standard set-
ting, as summarized in Table 1. A total of 331 measurements were taken centered around
the data sink tree over several days. Since the GPS localization has an inaccuracy of more
than ±10 meters in the forest, we used a tape measure to determine the distance between
mobile node and data sink and took measurements every five meters. Shrubs, bushes, and
other trees, however, did not allow to measure in all directions and usually only up to 40

16 Coordinates: 49.857028 N 8.696744 E
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Parameter Setting
TX Power 14 dB
Frequency 868 MHz
Spreading Factor 10
Bandwidth 125 kHz
Coding Rate 4/5
Preamble Length 8 symbols
CRC disabled

Tab. 1: LoRa settings for the field experiments.

to 60 meters, depending on the direction. Furthermore, we also took measurements at the
approximate limits of the WiFi range (approx. 40–100 m) in a circle around the data sink
tree. As a result, 174 of the 331 measurements are taken with a tape measure, from which
144 data points are in a measured distance of 50 meters or less.

For each measurement, the mobile station is started in the discovery phase. As expected
for LoRa, it is possible to send and receive LoRa messages at all measurement locations
within that comparably short range. In addition, the evaluation system is adapted, such
that it switched to the offloading phase regardless of the measured distance. With that, we
determine if a WiFi connection to the data sink is possible at that location and if the decision
of the mobile node to switch to the offloading phase would be correct. We use the acquired
data points to first assess the quality of the distance estimation.

Fig. 3: Data points for 331 WiFi offloading attempts. The location of the data sink is denoted by the
black square. Blue points denote positions with successful offloading, with lighter colors showing a
higher LoRa RSSI, crosses where WiFi access is not possible.
(Maps ©Thunderforest, Data ©OpenStreetMap contributors)

www.thunderforest.com
www.osm.org
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5.1 Distance Estimation and Data Offloading

All data points are visualized in Figure 3, showing successful and unsuccessful WiFi of-
floading attempts, respectively. The location of the data sink is shown as a black square.
Blue dots are locations where access to the sink’s WiFi is possible, with lighter colors
showing a stronger LoRa RSSI. Grey crosses denote where a WiFi connection is not possi-
ble. The measured area is approximately 200 m by 200 m in size.

As expected, a WiFi connection is typically possible within 50 meters, especially with line-
of-sight to the data sink. To the east of the data sink, however, a large number of connection
attempts fails even at close distance, most probably due to the the obstruction by several
larger trees. The LoRa RSSI degrades similarly in this area. In contrast, a relatively large
isle to the south-west allows line-of-sight to the data sink, with WiFi connections to around
100 m and reasonably good RSSI values for the LoRa communication. Nevertheless, nearby
locations that are even closer to the data sink but without line-of-sight do not succeed in
establishing a WiFi connection at all. It is therefore clear that the surrounding environment
has a more significant impact on the connectivity than the pure distance to the data sink.
Furthermore, this impact is similarly perceivable on the RSSI measurements for LoRa and
WiFi, respectively.

Figure 4 highlights this coherence between LoRa RSSI and WiFi RSSI for the tape-
measured distances and the approximated distances by the used path loss model, respec-
tively. The general trend of decreasing RSSI values at longer distances is evident for both
wireless technologies. The measured RSSI values in Figure 4a also show a significant vari-
ance, comparable to the results of Palaios et al. [PLM14]. With increasing distance, the
number of failed WiFi connections increases. The longest exactly measured distance for
a successful upload is 65 meters, although two out of three connections are unsuccessful

(a) RSSI for tape-measured distances. (b) RSSI for PLM distance approximation.

Fig. 4: LoRa RSSI and WiFi RSSI values for tape-measured and approximated distances, respectively.
Unsuccessful WiFi connections are marked by a cross.
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at that same location. However, as already stated, longer distances are possible but highly
dependent on the surrounding environment.

More interestingly, no WiFi connection is possible in any case where the approximated
distance by the path loss model exceeds 50 m, as shown in Figure 4b. For less than 15 m
approximated distance, every WiFi connection is successful. Approximations between 15
and 30 meters result in circa 30% failed connections, similar to the obstructed locations to
the west of the data sink (cf. Figure 3), and the ratio of failed connections further increases
with distance. Nevertheless, the number of failed connections between 15 and 30 meters
cannot entirely be described by these measurements. We, therefore, also compare the ap-
proximated distance with all measured distances in Figure 5a. Clearly, the used path loss
model with the respective parameter settings (cf. [PLM14]) underestimates the real dis-
tance on the average. This might be a result of the used LoRa technology: it is more robust
and uses a different frequency band compared to the related work. Other possible influ-
ences are differences in the terrain, the forestation, or foliage at the respective evaluation
site. Clearly, the parameter settings or the path loss model must be adapted specifically
for the used evaluation environment for a more realistic distance estimation, or may even
require an adaptive adjustment to cope with varying influences of a diverse environment.

(a) Approximated distance vs. measured distance. (b) Success after an offloading decision of the prototype
w.r.t. the offloading threshold.

Fig. 5: The comparison of the approximated distance with the real distance shows a significant un-
derestimation. Nevertheless, the results can be used to make a correct decision for offloading on the
mobile node. The RSSI-based LoRa approach with an offloading threshold of 20 m provides a similar
success rate to a GPS-based approach with an offloading threshold of 50 m.

5.2 Offloading Threshold

Despite the underestimation in the distances between data sink and mobile node, it is pos-
sible to use the approximated distance to decide whether the mobile node should start the
offloading process or not. For that, we compare different offloading thresholds on the eval-
uation data, as depicted in Figure 5b. The ordinate shows the success rate of the offloading
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phase for both the LoRa RSSI-based approach and the GPS-based approach based on a
fixed threshold. Success is defined as a completed WiFi connection and data offloading
phase, happening after the respective approach calculates the distance to the data sink to be
less or equal to that threshold. In case of the RSSI approach, this distance is approximated
by the path loss model. In case of GPS, this is the difference between the measured GPS
location and the location of the data sink. With a threshold of 50 m, the GPS approach has a
success rate of 0.86, i.e., 86% of all offloading attempts were successful for that threshold.
A similar success rate of 0.87 is achieved by the RSSI approach at 20 m. This resembles a
similar offset than that between measured and approximated distance (cf. Figure 5a). Thus,
due to the divergence of the RSSI approach, using an offloading threshold of 20 m for the
decision based on LoRa RSSI measurements allows to offload data within 50 m in real-
ity. As a result, both approaches result in a similar success rate with appropriately defined
thresholds.

The eventual decision on an offloading threshold must be based on the specific application
scenario and must include factors like the monitored animals and their mobility, the area
coverage by data sinks, as well as available power resources and the amount of generated
data on mobile nodes. In general, a smaller threshold will yield a higher probability for
successful WiFi connections, on the one hand, but will equally decrease the actual chance
for data offloading in the context of animal monitoring significantly. On the other hand, a
larger threshold increases the chances for offloading attempts, but similarly also the number
of unsuccessful attempts, leading to a lower energy efficiency.

5.3 Power Consumption of the Prototype

Finally, we measure the power consumption of our prototype’s mobile node using a USB
multimeter in three scenarios for 60 seconds with and without GPS, respectively, resulting
in a total of six settings. For all settings using GPS, a GPS satellite lock is established before
starting the test. Acquiring a lock takes up to 5 minutes and, therefore, would have signif-
icantly increased the power consumption for each test. By acquiring the lock beforehand,
our results only incorporate the difference of GPS usage compared to no GPS usage within
the evaluation frame. This allows us to specifically evaluate and compare the communica-
tion and distance estimation part, without external influences on the GPS. Similarly, we do
not include further sensors, measure any sensor’s power requirements, or perform a long-
term measurement on the prototype, due to the scope of this paper and the prototype which
focus on the offloading procedure and the communication. The three scenarios, on which
me measured the power consumption of the prototype, are (1) an idle mode of the ESP32
without the use of LoRa or WiFi, but activated built-in OLED display, (2) a full procedure
of LoRa communication between mobile node and data sink but without activating WiFi,
and (3) the same procedure with a connection and upload to the data sink over WiFi.

The results of the comparison of the scenarios is depicted in Figure 6. We find that the
full bidirectional LoRa communication between mobile node and data sink consumes 109–
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Fig. 6: Power consumption for the LoRa- and GPS-based localization, respectively, split for con-
sumption of the ESP32 device, the WiFi offloading, and the localization approach. The LoRa-based
approach requires only 63% of the power of the GPS-based approach.

120 µAh, which is less than for scanning for a WiFi access point once [Hu15]. Accessing
the data sinks WiFi and uploading a 100 kByte dummy file to the FTP server consumes an
additional 226–253 µAh. But as expected, the most significant impact on the overall power
consumption is the running GPS. The idle mobile node without GPS consumes around
467 µAh, but with active GPS consumes an additional 431–469 µAh within the same mea-
surement frame. As already stated, this does not include additional power required for ac-
quiring a satellite lock and a position in the first place. Furthermore, note that also the data
sink’s WiFi has to be constantly activated for a GPS-based system due to the lack of a
second communication channel, further increasing the overall power demand.

It is evident that substituting the GPS-based approach with the RSSI-based approach has a
significant impact on the overall power consumption, while maintaining a similar offloading
success rate within 50 meters. Within the measurement setup, our approach only requires
63% of the power of the GPS approach. Even when omitting the power consumption of
LoRa communication, which may not be required in a GPS approach, the power demand is
still reduced to 70%. Additionally, our RSSI-based approach using LoRa communication
is highly applicable for making the offloading decision with a sensibly chosen offloading
threshold with a success rate of 87%.

6 Conclusion

In this paper, we presented an approach for energy-efficient data offloading via WiFi using
LoRa-based connectivity estimations for mobile sensor nodes in multi-RAT WSNs. An ex-
perimental evaluation of our prototypical implementation demonstrated that our approach
is capable of providing reasonable estimations whether data offloading via WiFi is possible



Mobile Sensor Data Offloading using LoRa-based Connectivity Estimations 17

or not, based on received LoRa messages and without further GPS capabilities. Our proto-
type uses available parameters for the log-normal shadowing path loss model [PLM14] for
distance estimation, which has shown to underestimate real distances within our forestry
evaluation setup. Nevertheless, it was possible to determine a reasonable offloading dis-
tance threshold in the evaluation results. In particular, we achieved an offloading success
of 87%, which is similar to the performance of an GPS-based approach, while reducing the
power consumption by up to 37%.

In our evaluation, we observed that the path loss model is highly dependent on its
parametrization. Determining the environment-specific parameters is, therefore, of primary
interest for future work to obtain realistic distance estimations. Furthermore, extended eval-
uations are required to determine if our rather static approach is also applicable in large-
scale scenarios with very different terrain or types of forests in the same area, or for long-
term monitoring under varying environmental conditions like rain and snow or the change
of foliage over the year. Additionally, future work may encompass the influence of animal
mobility, data sink distribution, area coverage, as well as adaptive offloading thresholds
and more complex path loss models. Our next research goal is to compare sensor node-
based, data sink-based, and cooperative distance estimation approaches and evaluate their
influence on the offloading decision accuracy. Nevertheless, we have shown that wireless
sensor networks with heterogeneous communication technologies are already capable of
energy-efficient data offloading without the need for a GPS device and that a simple path
loss model calculated on low-end commodity hardware yields valuable results.
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7 Revisions & Changes

7.1 Review 1

This paper presents an energy-efficient mobile sensor data offloading
system for monitoring wildlife integrating LORA-based distance
estimation to Wi-Fi radio stations. In this way, it minimises the
energy demand associated to continuous pinging of wifi stations or
use of GPS localisation. It's really well written and seems novel.

Authors:

We thank the reviewer for this kind feedback.

7.2 Review 2

Energy-efficient data transmission is a challenge in environmental
and conservation monitoring. The authors present a partial solution
to this problem by realizing energy savings in multi-RAT WSNs through
LoRa-based distance measurements. This means that energy-hungry
WiFi connections only need to be established when the data sensor
attached to animals, for example, is actually in transmission proximity
to a data uplink station. By means of a log-normal shadowing model,
the LoRa signal is used for this distance measurement. The sensor,
built from off-the-shelf components, remains in data collection mode
until the distance estimate indicates proximity to a data collection
station, at which point it switches to a short data transmission
mode using WiFi.

Both prototypes and a field study are presented. The field study,
however, remains at a purely descriptive level when it comes to
interpreting the spatial pattern that emerges from the successful
and unsuccessful WiFi connections. Direct line of sight certainly
plays a role, but the method would likely gain significantly if a
spatial model (e.g., derived from LiDAR data for the forest patch)
were included as a cost model in the decision. This would probably
allow the offloading threshold to be shifted to greater distances.
On the other hand this would require the GPS device on the mobile
nodes to determine the approximate position in the spatial model at
least at rough time intervals with slightly negative effects on the
energy savings compared to the pure LoRa mode. This approach need
not become part of the current study. However, with a somewhat more
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concrete idea for the next research steps, the overall good case
study would gain.

Authors:

We thank the reviewer for this valuable feedback.

The reviewer points out a very interesting idea of integrating spatial models within the
offloading decision for a higher precision. However, a fine-granular model, e.g., on LIDAR
data, strongly contradicts our approach of using low-performance hardware, which may not
be suitable or inefficient for calculating an offloading decision based on a highly-detailed
spatial model. As the reviewer already pointed out, this would also require the node to know
where it is located, e.g., using GPS. Our approach, on the contrary, is fully independent of
GPS (or any other GNSS localization methods, to be precise).

Another opposing issue to the application of this idea is the significant measurements and
models that would need to be executed and created beforehand to obtain these spatial mod-
els. This resembles a strong similarity to area fingerprinting, which was discussed in the
related work: A connectivity map—in the case of [AGM09] and [Ha19] for WiFi—is cre-
ated for an area, and the devices then could use this map to determine if data offloading is
possible or not. A pre-defined map or model has the severe drawback of becoming outdated
relatively quickly in nature due to changing environment (like growing leaves in spring and
summer, falling leaves in autumn, no leaves but snow in winter, and so on) and can only
be used in the measured (fingerprinted) areas. In contrast, signals of LoRa and WiFi are
subject to the same environmental influences and therefore allow a connectivity estimation
without the need for pre-defined maps or accurate spatial models. Nevertheless, if such
accurate spatial models or maps were available with knowledge on a node location, this
method really might achieve excellent results in the offloading decision, but would also not
require estimations on LoRa or other RAT RSSI/SNR measurements.

To address this review, we added a concrete statement of the next research objective in the
conclusion, which is the direct comparison of the currently used sensor node-based with a
data sink-based distance estimation and a cooperative approach between sensor node and
data sink. Furthermore, we made conclusions to our description of the evaluation results
more explicit and added a stacked barplot, showing the differences of the LoRa and GPS-
based approaches more clearly.

7.3 Review 3

The present manuscript presents a method and the testing to enable
potential long-term monitoring of animals by means of Wi-Fi and
LoRa communication protocols in sensor networks. The relevant topic
is presented technically well, the methods used are presented in
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detail. The development of a prototype and its use under field
conditions is also well described and the use is documented accordingly.

Authors:

We thank the reviewer for this valuable feedback. We split our response according to the
reviewer’s enumeration in the following:

—

In the present manuscript, the following aspects are unfortunately
not addressed enough:

(i) the use of further sensors (passive / active) on the mobile
nodes requires further energetic use, which should not be neglected.
The energy consumption by the sensors used is higher in sensor
networks than the energy consumption by the communication itself.

Authors:

We agree with the reviewer, that energy consumption of sensors on a mobile sensor node is
a significant, non-negligible impact factor. However, we assume it cannot be generalized
that the sensing parts of a sensor network always consumes more energy that the commu-
nicating parts (e.g., see [SIB12]). From our point-of-view, as mentioned in the manuscript,
this is highly dependent on the specific application and sensor node in use, including hard-
ware choices and software implementation with used duty cycles, sleep phases and their
length, frequency of communication phases, the number of used sensors, etc. Therefore,
we specifically focus solely on the communication part in our work. Our evaluation only
provides results for data offloading and mobile node-to-data sink-communication, and we
took specific care in the energy measurements to eliminate all non-communication-related
influences like the ESP32’s display and the used SD-card reader to provide only results
for our communication approach without further external influence. Nevertheless, the re-
sults can be used in specific sensor node applications to increase energy-efficiency within
the communication and data offloading. For energy-demanding sensor nodes, the energy
savings might be little in relation to the sensor demand, but similarly large in applications
where sensors consume less energy.

To address the reviewer’s issue, we specifically added to the manuscript, that the focus of
this paper is on the communication part alone, and increased the emphasis on the depen-
dency of the specific application w.r.t. overall power consumption of such a sensor node
and the non-negligible impact on battery longevity. We put more emphasis on the require-
ments of our evaluation to not incorporate external, non-communication-related aspects in
our measurements. We added reference [SIB12] to put more emphasis on the impact of
communication on sensor node power consumption.

—
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(ii) With the protocols used (especially LoRa), the proportion
intended for the transmission of information is very low, which is
what is described in the introduction to the manuscript possibilities
are partly not achievable.

Authors:

We are very sorry, but despite our best efforts we were not able to determine the exact point
of the reviewer.

We assume the reviewer relates to the strict duty cycle restrictions of LoRa in EU ISM/SRD
bands. This is exactly the reason, which was stated in the introduction, that LoRa is usu-
ally not suitable for continuously and reliably transmitting sensor data to data sinks. Our
approach, therefore, uses very small, custom LoRa packets that are just 2 bytes (+ addi-
tional LoRa Sync Word and Preamble from PHY) in size. As a result—with the used LoRa
settings of SF 10, CR 4/5, BW 125 kHz, and a 1% duty cycle as in EU868—, packet air
time is held short (around 166ms), the medium is kept free, and full LoRa communication
between a single sensor node and a data sink in terms of figures would be legally possible
more than 50 times an hour (more than 200 messages per hour per LoRa sender), but is
obviously not needed within this work.

We added more detailed information on the need for short LoRa packets within the imple-
mentation section, and additionally motivated this requirement more clearly in the design
decision for the use of LoRa.

—

(iii) Another critical aspect are the time stamps in the data acquisition,
both on the mobile nodes and in the data sink. Nothing is said about
the synchronization of the nodes or the (important) assignment of
time stamps to the data. However, this is of considerable importance
for a potential use for monitoring.

Authors:

As already stated, the data acquisition including a selection of sensors, their sleep and
measurement phases, as well as the exact implementation of acquiring, sampling or pro-
cessing, and storing sensor data is entirely out of scope of this paper. To address the issue
of the reviewer here, time synchronisation for data acquisition may be possible by several
means, such as using a dedicated Real-Time Clock on the node itself for continuous time
synchronicity, using inaccurate on-board clocks that are synchronized when connecting to
data sinks (which themselves require for example RTCs or internet access for synchroniza-
tion as well) in cases where exact time measurements are not required, or similar to RTCs
use GPS time readings, if available—although this work specifically assumes not to have
GPS for localization.
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For the communication over LoRa and the distance or connectivity estimations, we do not
require time synchronization between mobile nodes and data sinks. The possible lack of
time synchronization was a reason to use RSSI-based estimations, and not for example use
a package’s time-of-flight for distance estimation [LCL18, DPT19], since small deviations
in the synchronization would yield significant errors and the packet size would also increase
significantly by transmitting an additional timestamp within each message.

To address the reviewer’s issue, we included the possible problems of time synchroniza-
tion for communication and distance estimations within the related work, our design re-
quirements, and also put special emphasis on the independence of our approach to time
synchronization.

—

(iv) The present manuscript does not say anything about the actual
energy savings in long-term operation. However, this is an essential
part of the paper and the justification for its relevance. The
quantification of energy efficiency should be worked out more.

Authors:

The lack of a specific number for energy savings in long-term operation is a valid point for
critique, since overall energy savings are a critical part of our work. However, the scope of
this work focuses on the LoRa and WiFi communication, including distance estimations and
data offloading. A specific quantification for energy that is saved by our approach requires at
least a definition of how often communication is attempted and also if GPS on the reference
device is active all the time or only when needed. Instead, we provide a quantitative measure
for the energy saving in each data offloading process, which is about 30% compared to
a GPS-based approach. However, this is also a very conservative measure, because we
completely omit the significant power requirements of GPS to obtain a satellite lock before
we would even be possible to determine if communication should be initiated or not. From
our results and this measure, nevertheless, it is fair to say that sensor node applications
could save around 30% on each data offloading procedure. But the exact number that data
offloading is happening depends on the specific implementation and therefore makes it
impossible to state a specific number of the overall energy savings, other than the concrete
savings in communication.

We addressed the issue by extending the description of our power consumption measure-
ment setup and the dependency on actual sensor node applications to obtain a specific
number for the energy savings in long-term operation. A new figure in the evaluation of
the power consumption should make it more clear which impact the device’s consumption
has on the stated energy savings.


